
Lecture 1: Introduction. (Monday, August 24)

1.1 Basics of error analysis.

1.1.1 Generic form of a problem.

Most problems can be cast into the form

F px, dq “ 0, (1.1)

where

• F is a functional relation,

• x are the variables,

• d is the data.

Both x and d could be numbers, vectors, or even functions (where (1.1) could be an ODE or a
PDE). The distinction between the variables and the data is usually one depending on context and
physics (e.g. data could be coefficients such as mass, local speed of sound or light, etc; variables
would usually be position, velocity, electric or magnetic fields...)
A direct problem is one where F and the data d are given, and the goal is to find the variables
x.
Conversely, an inverse problem is one where F and x are given, and the goal is to recover the
data d.

Examples.

1. Ohm’s law:
U “ RI Ø U ´RI “ 0

Knowing the data U and R allows to predict the current intensity I.

2. Mass-spring system:
m:u` ku´ F ptq “ 0

Knowing the data m, k, F ptq allows to predict the motion uptq.

3. Solve a polynomial equation:
x5
´ x2

` a “ 0

Note how the first two problems can be solved explicitely with a little work, however the last
one cannot be solved explicitely - there is no formula for the solution xpaq.

Definition 1.1. A problem of the form (1.1) is well-posed, or stable, if it admits a unique
solution x depending continuously on the data d.

A central question for mathematicians, especially in analysis, the determination of whether a
problem is well-posed may sometimes seem fruitless - after all, it does not imply any actionable
knowledge about the solution! However, in practice a problem which is ill-posed indicates a
pathology in the model which numerical methods will not cure, and at worst leads to wrong
predictions.

1

1.1.2 Absolute and relative errors.

Let x be some number, vector, or object in a vector space V equipped with a norm } ¨ }, and x̂
some approximation of x in V .

Definition 1.2. • The error is defined as the quantity δx “ x̂´ x.

• The absolute error is the positive number

}δx} “ }x̂´ x}. (1.2)

• If x ‰ 0, the relative error is the strictly positive number

}δx}

}x}
“
}x̂´ x}

}x}
. (1.3)

Example. Take the numbers p “ 0.2ˆ 10´4, p̂ “ 0.15ˆ 10´4. Then

δx “ ´5ˆ 10´6, }δx} “ 5ˆ 10´6,
}δx}

}x}
“ 0.25

Notice how the absolute error is quite small, yet the relative error is large! The converse can also
happen.

1.2 Machine representation of Numbers: Floating-point systems.

1.2.1 Decimal system.

A standardized way to write a number, using the usual decimal notation:

x “ p´1qs ˆ p0.d1d2 . . . dt . . . q ˆ 10e,

where

• s P t0, 1u determines the sign of x,

• The significant digits d1, . . . are such that the first d1 P t1, . . . , 9u cannot be zero, and
dt P t0, . . . , 9u for t ě 2.

• The exponent e P Z is a signed integer.

Example.
?

2 “ p´1q0 ˆ p.14142135 . . . q ˆ 101.

1.2.2 General floating-point system:

The above notation can be generalized in a straightforward way to accomodate for a general basis
β ě 2: we write

x “ p´1qs ˆ p0.d1d2 . . . dt . . . q ˆ β
e

“ p´1qs ˆ
8
ÿ

i“1

diβ
e´i,

where

• β ě 2 is an integer: the base.

2

1.2.3 Finite number systems

Computers must allow a finite amount of memory, and cannot store infinite numbers of digits (e.g.
π). Only a fixed number of digits can be stored; usually the base used is 2 (except in that Russian
ternary computer). The standard format is then

x “ p´1qs
loomoon

sign

ˆp0. d1d2 . . . dt
loooomoooon

mantissa

q ˆ β
loomoon

base

exponent
hkkikkj

e
“ p´1qs ˆ

t
ÿ

i“1

diβ
e´i, (1.4)

where

• t is the precision, the number of digits stored;

• e, the exponent, must be in the interval L ď e ď U .

Each combination of sign, digits and exponent corresponds to a unique real number; all such
combinations, plus zero, form a finite number system F of real numbers, determined by β, t, L,
and U .

Remark 1.3. Note that the number zero needs a special representation in this system, because the
constraint d1 ‰ 0 prevents a number x of the form (1.4) to take the value 0.

Cardinality. The set Fpβ, t, L, Uq Ă R is finite, and the number of its elements is

2ˆ pβ ´ 1q ˆ βt´1
ˆ pU ´ L` 1q ` 1.

Largest positive number. The largest element in Fpβ, t, L, Uq is

M “ `

t
ÿ

i

pβ ´ 1q ˆ βU´i “ pβ ´ 1qβU´1
t´1
ÿ

i“0

p1{βqi “
β ´ 1

β

1´ p1{βqt

1´ 1{β
“ p1´ β´tqβU .

Smallest positive number. The smallest positive element in Fpβ, t, L, Uq is

m “ `p. 100 . . . 0
looomooon

t

qβ ˆ β
L
“ βL´1.

Range. The finite number system defined above is therefore contained in the three intervals:

Fpβ, t, L, Uq Ă
“

´p1´ β´tqβU ,´βL´1
‰

Y t0u Y
“

βL´1, p1´ β´tqβU
‰

.

Distribution. Fixing s “ 0 and e “ 1, and taking all combinations of digits yields all numbers
in Fpβ, t, L, Uq in the interval r1, βq, which read

1, 1` β1´t, . . . , β ´ β1´t.

This is a total of pβ ´ 1qβpt´1q numbers, evenly distributed in r1, βq with gap size β1´t.
Similarly, there are pβ´1qβt´1 numbers distributed in each interval rβe´1, βeq for L ă e ď U , with
gap size βe´t increasing as the exponent e increases.

3

Definition 1.4. The machine epsilon εM “ β1´t is the distance between 1 and the next floating-
point number, or equivalently the gap size in the interval r1, βq.
The unit roundoff or machine precision is u “ 1

2
εM “ 1

2
β1´t.

Remark 1.5. When using a binary system (β “ 2), the formulae above simplify to:

• Cardinality: |Fp2, t, L, Uq| “ pU ´ L` 1q2t ` 1,

• Extreme numbers: M “ p1´ 2´tq2U , m “ 2L´1,

• Gap size in the interval r1, 2q: 21´t,

• Unit roundoff: u “ 2´t.

4

Lecture 2: IEEE Format: Rounding errors and floating-point
arithmetic. (Wednesday, August 26)

2.1 IEEE standard.

Computers typically use a standardized single-precision or double-precision IEEE representa-
tion:

Single-precision format.

s (1 bit) e (8 bits) mantissa (23(+1) bits)

• Total of 32 bits.

• 1 bit is for the sign,

• 8 bits for the exponent ranging from (in base 2) 00000001 to 11111110,
i.e. from 1 to 27 ` 26 ` ¨ ¨ ¨ ` 21 ` 0 = 254. This number is shifted by a fixed value of ´127
resulting in the effective range of values for the exponents:

L “ ´126 ď e ď U “ 127,

• 23 bits for the mantissa, with the leading digit d1 “ 1 hidden, so an effective precision or
number of binary digits t “ 24.

Double-precision format.

s (1 bit) e (11 bits) mantissa (52(+1) bits)

• Total of 64 bits.

• 1 bit is for the sign,

• 11 bits for the exponent ranging from (in base 2) 00000000001 to 11111111110,
i.e. from 1 to 210`29`¨ ¨ ¨`21`0 = 2046. This number is shifted by a fixed value of ´1022
resulting in the effective range of values for the exponents:

L “ ´1021 ď e ď U “ 1024,

• 52 bits for the mantissa, with the leading digit d1 “ 1 hidden, so an effective precision or
number of binary digits t “ 53.

Special numbers:

• ˘0 with exponent 0 . . . 0 (all zeros) and mantissa 1 . . . 1 (all ones),

• ˘8 with exponent 1 . . . 1 (all ones) and mantissa 0 . . . 0 (all zeros),

• NaN with exponent 1 . . . 1 (all ones) and at least one nonzero mantissa digit.

5

Summary:
β t L U u m M

Single 2 24 ´126 127 2´24 « 6 ¨ 10´8 5.88 ¨ 10´39 1.7 ¨ 1038

Double 2 53 ´1021 1024 2´53 « 1 ¨ 10´16 2.2 ¨ 10´308 1.8 ¨ 10308

Relative error and distribution of floating-point numbers. We can compute the absolute
and relative distance between one floating point number and the next largest. This is easiest seen
by writing

x “ p´1qsmpxqβe´t, (2.1)

where mpxq, the mantissa, is an integer taking values from βt´1 (corresponding to p100000000
loooomoooon

t

qβ

and βt ´ 1.

• Absolute: for x in the form (2.1), it is clear that the next largest floating-point number is
located at ∆x “ p´1qsβe´t. Hence

|∆x| “ βe´t

depends only on the exponent e.

• Relative: we find
ˇ

ˇ

ˇ

ˇ

∆x

x

ˇ

ˇ

ˇ

ˇ

“
βe´t

mpxqβe´t
“

1

mpxq
,

which depends only on the mantissa, decreasing in each interval from β1´t to roughly β´t.

2.2 Rounding of real numbers.

Consider a system of numbers Fpβ, t, L, Uq. Given a real number x “ p´1qsp0.d1 . . . dtdt`1 . . . qβ ¨β
e,

how to best represent this number in F?
One reasonable option is to round to the nearest number in F: assuming L ď e ď U , we define

flpxq “

$

&

%

p´1qsp0.d1 . . . dtqβ ¨ β
e, if dt`1 ă β{2,

p´1qsp0.d1 . . . dt ` 0.0 . . . 01
looomooon

t

qβ ¨ β
e, if dt`1 ě β{2. (2.2)

This rounding introduces an absolute error:

|x´ flpxq| ď
β

2
βe´pt`1q

“
1

2
βe´t,

and a relative error:
ˇ

ˇ

ˇ

ˇ

x´ flpxq

x

ˇ

ˇ

ˇ

ˇ

ď

β
2
βe´pt`1q

βe´1
“

1

2
β1´t

“ u.

Property 2.1. If x P R is such that m ď |x| ďM , then

flpxq “ x ¨ p1` δq with |δ| ď u, (2.3)

where we recall u “ 1
2
β1´t “ 1

2
εM is the round-off unit.

Remark 2.2. An alternative policy, at the cost of greater rounding error, would be to define
rounding by simple chopping of the extra digits:

flchoppxq “ p´1qsp0.d1 . . . dtqβ ¨ β
e.

6

Overflow: if |x| ąM or e ą U , then the rounding operation flpxq is not yet defined. Typically,
this is handled by an interruption, or by setting

flpxq “

#

`8 x ąM,

´8 x ă ´M.

Underflow: if 0 ă |x| ă m, or e ă L, then underflow happens (unless sub-normal numbers are
included.) Usually, we set

flpxq “

#

`0 0 ă x ă m,

´0 ´m ă x ă 0.

2.3 Machine arithmetic.

We next need operations that will approximate exact arithmetic within the finite number systems
defined above. For example, suppose

x “ p0.x1 . . . xtqβ ¨ β
ex , y “ p0.y1 . . . ytqβ ¨ β

ey .

Assume that ex ą ey. In order to perform the addition x` y or substraction x´ y, need to align
exponents, by shifting y:

y “ p0. 0 . . . 0
loomoon

ex´ey

y1 . . . ytqβ ¨ β
ex .

Next, we carry out addition on the mantissa:

x` y “ p0.x1 . . . xt ` 0. 0 . . . 0
loomoon

ex´ey

y1 . . . ytqβ ¨ β
ex ,

but since the sum usually has more than t nonzero digits, one will round the end result to the
nearest floating-point number:

x‘ y “ flpx` yq.

Remark 2.3. If x, y ą 0 the ` operation can then be carrier out by just simply chopping y
to its first t digits after shifting the exponent; otherwise, or for the ´ operation, the machine
implementation needs a so-called extra rounding digit to perform an accurate rounding.

Definition 2.4. The approximate floating point operations will be denoted respectively ‘, a, b,
c. They are defined respectively using the model above: for ¨ being any of the operations `, ´, ˆ
or ˜,

F Q xd y “ flpx ¨ yq, for x, y P Fpβ, t, L, Uq,

or more generally for any real numbers x, y by

F Q xd y “ fl pflpxq ¨ flpyqq , for x, y P R.

The considerations above show that the following property holds:

Proposition 2.5. Error model. If ¨ is one of the operations above, and no overflow occurs then

xd y “ px ¨ yqp1` δq, for x, y P Fpβ, t, L, Uq, |δ| ď u.

7

Remark 2.6. For any 0 ď δ ă u, we have 1‘ δ “ 1, whereas 1‘ δ ą 1 for δ ą u.
What happens for δ “ u depends on the precise rounding policy: with the choice above (2.2) we get
1‘ u ą 1, whereas on most computer systems one would obtain 1‘ u “ 1.

Proposition 2.7.

• Commutativity: we have a‘ b “ b‘ a, aa b “ ba a and ab b “ bb a.

• Non-associativity: in general, a‘ pb‘ cq ‰ pa‘ bq ‘ c and ab pbb cq ‰ pab bq b c.

Example. Take x “ 2´4, y “ 1 and z “ ´1 in a binary floating-point system with t “ 3, L “ ´3
and U “ 2. The floating-point representation of x, y and z is

x “ `p.100q2 ˆ 2´3, y “ `p.100q2 ˆ 21, z “ ´p.100q2 ˆ 21,

and one computes directly

x‘ y “ flp`p.0000100q2 ˆ 21
` p.100q2 ˆ 21

q “ fl
`

`p.10001q2 ˆ 21
˘

“ p.100q2 ˆ 21,

px‘ yq ‘ z “ fl
`

`p.100´ .100q2 ˆ 21
˘

“ 0.

On the other hand,

y ‘ z “ fl
`

`p.100´ .100q2 ˆ 21
˘

“ 0,

x‘ py ‘ zq “ fl
`

`p.100q2 ˆ 2´3
` 0

˘

“ `p.100q2 ˆ 2´3.

Thus px‘ yq ‘ z ‰ x‘ py ‘ zq.

Additional rules:

p˘8q ‘ p˘8q “ ˘8; p˘8q a p¯8q “ ˘8;

p˘8q ‘ p¯8q “ NaN ; p˘8q a p˘8q “ NaN ;

p˘8q b p˘8q “ ˘8; p˘8q b p¯8q “ ¯8;

ac p˘0q “ ˘8; pac p˘8q “ ˘0 pa ą 0q;

0c 0 “ NaN ; 8c8 “ NaN ;

NaN d a “ NaN.

8

Lecture 3: Conditioning, Stability, Convergence. (Monday,
August 31)

3.1 Condition number

We remember the general abstract form of an model or problem to solve:

F px, dq “ 0. (3.1)

We will assume that this problem is well-posed: for any data d, there exists a unique solution x.
This implies the existence of the resolvent map, an (a priori) unknown but continuous function
x “ Gpdq mapping the data to the corresponding solution. Given some relevant data, we seek to
investigate the behavior of the problem in its vicinity, i.e. with hopefully small perturbations δd
and δx of the data and variables, respectively:

F px` δx, d` δdq “ 0. (3.2)

Assumption 3.1. We will assume that the resolvent map is Lipschitz continuous in the neighbor-
hood of some interesting data d, i.e. there is η0pdq ą 0 and K0pdq ą 0 such that

}δd} ď ε0 ùñ }δx} ď K0}δd}.

Under this condition, we may define two condition numbers :

Definition 3.2. The absolute condition number is the quantity

Kabspdq “ lim sup
δdÑ0

}δx}

}δd}
“ lim sup

d̂´d

}Gpd̂q ´Gpdq}

}d̂´ d}
. (3.3)

Definition 3.3. The relative condition number is the quantity

Kpdq “ lim sup
δdÑ0

}δx}{}x}

}δd}{}d}
“ lim sup

d̂´d

}Gpd̂q ´Gpdq}{}Gpdq}

}d̂´ d}{}d}
. (3.4)

The condition number measures how much a perturbation in the data d propagates to the variables
x. A problem is said to be ill-conditioned if Kpdq is infinite or big for some relevant data d ("big"
being a subjective, problem-dependent qualification). In the case where G is differentiable at d,
the condition numbers can be expressed in terms of the derivative of G with respect to d, defined
as

Gpd` δdq ´Gpdq “ G1pdq ¨ δd` op}δd|q.

Then we have
Kabspdq “ }G

1
pdq} and Kpdq “

}d}

}Gpdq}
}G1pdq}. (3.5)

Example. Let us study the conditioning of the root of a polynomial as a function of the coeffi-
cients. Let ppxq “ a0 ` a1x` ¨ ¨ ¨ ` anx

n, with a simple root λ, such that ppxq “ px´ λqqpxq with
some polynomial qpxq such that qpλq ‰ 0. We see λ as a function of one of the coefficients,

λ “ fpaiq,

9

and we want to compute the corresponding conditioning numbers Kabspaiq and Kpaiq. Solution.
The map fpaiq is our resolvent map, so we need to compute f 1paiq. We know that ppλq “ 0, so

n
ÿ

j“0

aj pfpaiqq
j
“ 0.

Differentiating w.r.t a´ i we find

f 1paiq
´

n
ÿ

j“1

jaj pfpaiqq
j´1

looooooooomooooooooon

“p1pλq

¯

` pfpaiqq
i

loomoon

“λi

“ 0

so
f 1paiq “

´λi

p1pλq
and Kabspaiq “

|λ|i

|p1pλq|
.

The relative condition number is then

Kpaiq “ |ai|{|λ|Kabspaiq “
|ai||λ|

i´1

|p1pλq|
.

3.2 Errors in a practical situation.

Given a difficult problem of the form (3.1), one usually sets up a sequence of more approachable
problems,

Fnpdn, xnq “ 0 (3.6)
with the expectation that the xn’s can be used as approximations to the exact solution x because
xn Ñ x as dn Ñ d.
It is sometimes useful to categorize errors:
• The absolute backward error (data) }dn ´ d},

• the absolute forward error (solution) }xn ´ x}, which can be further decomposed into

xn ´ x “ Gnpdnq ´Gpdq “ Gnpdnq ´Gpdnq
loooooooomoooooooon

computational error

` Gpdnq ´Gpdq
looooooomooooooon

propagated data error

.

10

Note that the propagated data error can be measured using the condition number of the problem,
since

}Gpdnq ´Gpdq} Æ Kpdq}dn ´ d}.

3.3 Concepts of consistency, stability, and convergence

In this section, we introduce in a very general setting the three most important concepts for the
rigorous analysis of numerical methods.

Definition 3.4. A scheme of the form (3.6) is said to be consistent if

Fnpx, dq “ Fnpx, dq ´ F px, dq Ñ 0 as nÑ 8,

where x is the exact solution to the problem (3.1) with exact data d.

Example. Faced with the problem of computing the integral I of some function fptq over an
interval pa, bq, which can be cast into the form (3.1) with

F pI, fq “ I ´

ˆ b

a

fptqdt “ 0,

one can decompose the interval into n uniformly smaller intervals a “ t1 ă t2 ă ¨ ¨ ¨ ă tn “ b and
use the midpoint rule to compute a numerical approximation In of the integral over each piece
with a finite number of function evaluations:

FNpIn, fq “ In ´H
n´1
ÿ

k“1

f

ˆ

tk ` tk`1

2

˙

,

where H “ b´a
n

and tk “ a` pk ´ 1qH.
Because it is known that the midpoint rule’s accuracy is of order H3 over each small interval of
size H, one can show that In Ñ I as nÑ 8. As a result, one easily checks that

FNpI, fq ´ F pI, fq Ñ 0,

where I is the exact integral of the function over pa, bq, as long as f is continuous, i.e. this numerical
integration method is consistent for continuous functions.

Definition 3.5. A scheme of the form (3.6) is said to be stable if it admits finite condition
numbers:

Knpdnq “ lim sup
δdnÑ0

}δxn}{}xn}

}δdn}{}dn}
“ lim sup

δdnÑ0

}Gnpd` δdnq ´Gnpdq}

}δdn}

}dn}

}Gnpdq}
,

and

Kabs,npdnq “ lim sup
δdnÑ0

}δxn}

}δdn}
“ lim sup

δdnÑ0

}Gnpd` δdnq ´Gnpdq}

}δdn}
,

which are bounded as nÑ 8, such that asymptotically we define

Knum
pdq “ lim sup

nÑ8
Knpdq and Knum

abs pdq “ lim sup
nÑ8

Kabs,npdq.

11

Remark 3.6. A numerical scheme can unstable even if the underlying problem is itself stable
(well-conditioned)!

Definition 3.7. A scheme of the form (3.6) is said to be convergent if the computed sequence of
solutions converges to the exact solution:

lim
nÑ8

lim
δnÑ0

Gnpd` δdnq “ Gpdq

or more formally, for any ε ą 0 there exists n0pεq and δ0pn0, εq ą 0 s.t.

@n ą n0pεq, @δdn s.t. }δdn} ă δ0pn0, εq, }Gpdq ´Gnpd` δnq} ă ε.

Relations between stability and convergence Convergence is clearly the main criterion
for a numerical method to be useful, as it ensures that the result of an simulation is indeed an
approximation of the exact solution, which can be improved with additional computational power.
The usefulness of the stability concept is that it is usually much easier to investigate and prove, and
stability is a necessary condition in order for a numerical method to be convergent. In addition,
one of the most useful observations in numerical analysis is the statement

STABILITY ` CONSISTENCY ùñ CONVERGENCE.

The following non-rigorous reasoning is the template for a "proof" of this fundamental statement,
which can be made more precise for specific methods - in particular for the numerical solution of
ODEs:

"Proof." Our goal is to control the absolute error }xpdq ´ xnpd ` δdnq}. Using the triange
inequality, we decompose it as:

}xpdq ´ xnpd` δdnq} ď }xpdq ´ xnpdq} ` }xnpdq ´ xnpd` δdnq} (3.7)

and we observe that the first term on the right-hand side of (3.7) can be controlled thanks to the
stability assumption:

}xnpdq ´ xnpd` δdnq} ď Kabs,npdq}δn}.

Thus it remains to control the second term on the right-hand side of (3.7). We will assume that
F px, dq is locally differentiable:

Fnpxpdq, dq ´ Fnpxnpdq, dq “
BFn
Bx

ˇ

ˇ

ˇ

pξ,dq
pxpdq ´ xnpdqq

where ξ is "between" x and xn. Assuming that the derivative BFn

Bx
is an invertible linear map (which

is reasonable, as the problem should be stable and hence well-conditioned) leads to the identity

xpdq ´ xnpdq “

ˆ

BFn
Bx

ˇ

ˇ

ˇ

pξ,dq

˙´1

pFnpxpdq, dq ´ Fnpxnpdq, dqq

Passing to the norms, and using the fact that Fnpxnpdq, dq “ F pxpdq, dq “ 0 leads to the identity

}xpdq ´ xnpdq} “

›

›

›

›

›

ˆ

BFn
Bx

ˇ

ˇ

ˇ

pξ,dq

˙´1
›

›

›

›

›

}Fnpxpdq, dq ´ F pxpdq, dq} .

12

Now consistency ensures that this last term goes to zero as n Ñ 8, which completes the proof.
Formally, given ε ą 0, using consistency we may choose n0pεq such that

}Fnpxpdq, dq ´ F pxpdq, dq} ă ε{2

›

›

›

›

›

ˆ

BFn
Bx

ˇ

ˇ

ˇ

pξ,dq

˙´1
›

›

›

›

›

´1

for all n ě n0pεq.

Then, givenKpn0, dq “ supněn0
Kabs,npdq we select δ0pn0, εq such thatKpn0, dqδ0 ă ε{2. Then (3.7)

yields
}xpdq ´ xnpd` δdnq} ă ε.

13

Lecture 4: Rate and Order of Convergence. (Wednesday, Septem-
ber 2)

While convergence is an important notion, the usefulness of a numerical method really depends on
how fast convergence happens. We introduce in this lecture a formalism to quantify the accuracy
and efficiency of a numerical method.
First we recall:

Definition 4.1. If αn is a given numerical sequence, we define the lim sup and lim inf as

lim sup
nÑ8

αn “ lim
NÑ8

psuptαn; n ě Nuq P RY t˘8u, (4.1)

and
lim inf
nÑ8

αn “ lim
NÑ8

pinftαn; n ě Nuq P RY t˘8u. (4.2)

4.1 Asymptotic rate of convergence

Definition 4.2. Suppose we generate a sequence xk indexed by k ě 0, such that limkÑ8 xk “ α.
Such a sequence is said to converge to α with order p ě 1 if

|xk`1 ´ α|

|xk ´ α|p
ď C, @k ě k0,

for some fixed real number C ą 0 and k0 large enough. In this case, we define

r “ lim sup
kÑ8

|xk`1 ´ α|

|xk ´ α|p
,

and we classify the sequence as follows:

p “ . . . r “ . . . the sequence (or method) convergence rate is...
1 r ě 1 Sub-linear.
1 0 ă r ă 1 Linear.

r is called the convergence factor.
1 ă p ă 2 0 ă r ă 8 Super-linear.

2 0 ă r ă 8 Quadratic.
2 ă p ă 3 0 ă r ă 8 Super-quadratic.

3 0 ă r ă 8 Cubic.
2 ă p ă 3 0 ă r ă 8 Super-cubic.

integer p ą 1 0 ă r ă 8 pth order.

Some examples.

• Let s ą 0 and consider the sequence tununě0 “ tn
´su. We have un Ñ 0, and

|un`1 ´ 0|

|un ´ 0|p
“

nps

pn` 1qs
“

npp´1qs

p1` 1{nqs
.

For p ą 1, this expression converges to `8, but for p “ 1 we have

lim
|un`1 ´ 0|

|un ´ 0|
“ lim

nÑ8

1

p1` 1{nqs
“ 1.

Thus the sequence un converges sublinearly with convergence factor 1.

14

• Consider the sequence tvnuně0 “ te
´nu. Again vn Ñ 0, and

|vn`1 ´ 0|

|vn ´ 0|p
“
e´pn`1q

e´pn
“ epn´pn`1q

“ epp´1qn´1.

For p ą 1, the expression converges to `8, and for p “ 1 it converges to e´1. Hence the
sequence vn converges linearly (order 1) with convergence factor 1{e.

• Let twnuně0 be a sequence defined by the relations

w0 “ α ą 0, wn`1 “
wn ` w

´1
n

2
for n ě 0.

It can be shown that wn Ñ 1 as nÑ 8, for any value of the initial term α ą 0. Furthermore,
one has

wn`1 ´ 1 “
w2
n ´ 2wn ` 1

2wn
“
pwn ´ 1q2

2wn
so

lim
nÑ8

|wn`1 ´ 1|

|wn ´ 1|2
“ lim

nÑ8

1

2wn
“

1

2
.

The convergence rate of the sequence wn is thus quadratic (order 2).

4.2 Order notation

Definition 4.3. Let rn be a given numerical sequence of strictly positive numbers converging to
zero: rn ą 0 and limnÑ8 rn “ 0. Given another sequence tαnuně0 with limnÑ8 αn “ α in some
normed space.
If the quantity

lim sup
nÑ8

}αn ´ α}

rn
“ K (4.3)

is finite (0 ď K ă 8), we say that

• αn converges to α at the same rate as rn (more precisely, if K ą 0);

• αn ´ α is of order rn or Oprnq [big O of rn], denoted

αn ´ α “ Oprnq or αn “ α `Oprnq.

If K “ 0 in (4.3) then we use the same notation αn “ α` oprnq [small O of rn], meaning that the
order of convergence of αn to α is higher than the convergence order of rn.

Example. Let αn “
n` 2

n` e´n
. Then αÑ 1 and

|αn ´ 1| “
2´ e´n

n` e´n
ď

2

n
.

So we have the following bound:

|αn ´ 1|

1{n
ď 2 and lim sup

nÑ8

|αn ´ 1|

1{n
ď 2.

Hence αn “ 1`Op1{nq.

15

Order and asymptotic rate. A sequence tαnuně0 converging to α and such that

}αn ´ α} „ rn meaning }αn ´ α} “ cnr
n,

where 0 ă r ă 1 and the sequence cn is bounded uniformly from above and below:

0 ă c ď cn ď C for two numbers c, C independent of n,

then clearly
αn “ α `Oprnq.

Furthermore, if limnÑ8
cn`1

cn
“ 1 then the convergence rate is linear.

Similarly, if
}αn ´ α} „ rp

n

meaning }αn ´ α} “ cnr
n,

with the same assumptions 0 ă r ă 1 and the sequence cn is bounded uniformly from above and
below, then

αn “ α `Oprp
n

q and the convergence order is p.

4.3 Order notation for functions.

Definition 4.4. Let F , G be two functions defined in a neighborhood of zero taking values in some
normed space with limhÑ0 F phq ´Gphq “ 0, and a rate function rphq defined in a neighborhood of
zero with rphq ą 0 and limhÑ0 rphq “ 0. Then we say

F phq “ Gphq `O prphqq ô lim sup
hÑ0

}F phq ´Gphq}

rphq
ă 8.

Note that typically, rphq is some power hp with p ą 0.

Example This notation is convenient for the remainder term with Taylor series. Let F phq “
cosphq and Gphq “ 1´ h2{2, then applying the Taylor formula for cosphq near zero yields:

cosphq “ 1´
h2

2
`
h4

24
cospξq, for some ξ P r0, hs,

and thus
|F phq ´Gphq|

h4
ď

1

24
and cosphq “ 1´

h2

2
`Oph4

q.

4.4 Root of a function

In this chapter, we want to find the roots of some continuously differentiable function f : I Ñ R,
where I is a given finite interval of R.

Notation. CmpIq is the set of functions, defined on an interval I Ă R, whose derivatives up to
order m exist and are all continuous.
CpIq :“ C0pIq is then the set of continuous functions.

Theorem 4.5. Given some function f P CmpIq and some point p P I such that

fppq “ f 1ppq “ ¨ ¨ ¨ “ f pm´1q
ppq, f pmqppq ‰ 0,

then fpxq “ px´ pqmhpxq for some continuous function hpxq such that hppq “ f pmqppq
m!

‰ 0.

16

Proof. Using the Taylor expansion of f at p with exact remainder, for x P I, x ‰ p, we find

fpxq “
m´1
ÿ

j“0

f jppq

j!
px´ pqj

loooooooooomoooooooooon

“0

`
f pmqpξq

m!
px´ pqm, with ξ P rp, xs,

and therefore we can define a function hpxq for x ‰ p, continuous on Iztpu, satisfying the identity

hpxq “
fpxq

px´ pqm
“
f pmqpξq

m!
for ξpxq P rp, xs.

Now since f pmqppq is continuous at p, and by the squeeze theorem, limxÑp ξpxq “ p, we find that

lim
xÑp

hpxq “
f pmqppq

m!
.

By defining hppq :“ f pmqppq
m!

‰ 0, we have built a continuous function h over the whole interval I
such that fpxq “ px´ pqmhpxq, and the theorem is proved.

Definition 4.6. For f satisfying the conditions of Theorem 4.5, i.e. f P CmpIq and p P I such
that the first pm´ 1q-th derivatives of f vanish at p and the m-th derivative does not, we say that
p is a root of f with multiplicity m.

17

Lecture 5: Rootfinding (continued). (Monday, September 7)

5.1 Root conditioning.

Problem. We want to study practical methods aiming to find (approximations to) solutions of
nonlinear equations such as

fpxq “ φpxq ´ d “ 0.

This problem is well-posed in general if φ is an invertible map: in this case we may write p “ φ´1pdq.
Let us investigate the conditioning of this problem as a function of data d. Thanks to the chain
rule,

φpφ´1
pdqq ùñ pφ´1

q
1
pdq “

1

φ1ppq
,

so the condition number reads

Kpdq “
|d|

|p||f 1ppq|
, Kabspdq “

1

|f 1ppq|
,

for a simple root (multiplicity 1) such that f 1ppq ‰ 0.
For higher multiplicities, we compute explicitely

fpp` δpq “ d`
pδpqm

m!
` o ppδpqmq “ d` δd,

hence if m ą 1, Kabspdq “ lim supδdÑ0
|δp|
|δd|
“ `8.

In conclusion, rootfinding is generally ill-conditionned if the root is not simple, or if |f 1ppq| is small
or zero. In such cases, care has to be taken as the usual methods will fail to converge or converge
more slowly than usual.

5.2 Geometrical Rootfinding Methods

5.2.1 Bisection method

The very first result showing existence of a root is the following theorem:

Theorem 5.1 (Bolzano’s theorem). Let f P Cpra, bsq and fpaqfpbq ă 0, then there exists p P pa, bq
such that fppq “ 0.

Remark 5.2. One also calls such a pair a, b such that fpaq, fpbq have opposite signs a bracket as
this ensures the existence of a root in the segment ra, bs.

Bisection method This simple result inspires the following rootfinding method. Given a, b as
above, we can check one point inside the interval and use the same test to select a smaller interval,
either to the left or right of this point, where a root will necessarily exist. The most natural
candidate for this is the midpoint of the interval. In this way, the original interval is halved, and
the process may continue until the remaining interval is small enough to satisfy some prescribed
error tolerance.

18

Practically, this process writes as the following algorithm:
Initialization: Let a1 “ a, b1 “ b, the midpoint x1 “

a`b
2
.

1. Compute fpx1q.

2. If...

• fpx1q “ 0: x1 is a root, done.
• fpa1qfpx1q ă 0: we set a2 “ a1, b2 “ x1 and x2 “

a1`b1
2

.

• fpx1qfpb1q ă 0: we set a2 “ x1, b2 “ b1 and x2 “
a1`b1

2
.

3. Repeat steps 1-2, generating a3, b3, x3, . . . , an, bn, xn,

This process generates a sequence of nested intervals

ra1, b1s Ą ra2, b2s Ą ¨ ¨ ¨ Ą ran, bns Ą ¨ ¨ ¨

such that there is at least one zero pn P ran, bns for any n ě 1 per the bracketing property.
Furthermore, the sequence tpnu is Cauchy and has a limit:

p “ lim
nÑ8

pn is a root of f.

In fact, we have p “ limnÑ8 an “ limnÑ8 bn, and the midpoint sequence also converges to p by
the squeeze theorem, such that

p “ lim
nÑ8

xn.

We use this sequence to approximate the root p.

Spped of convergence. The length of the search interval In is halved at each step. Hence

|In| “ |I1|{2
n´1

“ pb´ aq{2n´1.

Denoting by en “ xn ´ p the absolute error at step n, it follows that

|en| ă |In|{2 “ pb´ aq{2
n,

and we check again that limnÑ8 |ek| “ 0.

19

Theorem 5.3. The bisection method is globally convergent: it converges unconditionally of the
starting interval, provided that a, b satisfy the bracketing property:

fpaqfpbq ă 0.

More precisely, the absolute error between the midpoint sequence and the root obeys

|p´ xn| ă 2´kpb´ aq or xn “ p`Op1{2nq.

Remark 5.4. Because we cannot guarantee a monotone reduction in the error, the method is
technically not of order 1 as defined above.

Property 5.5. To achieve a desired accuracy ε, one needs at most

m “

R

log2

ˆ

b´ a

ε

˙V

´ 1 iterations.

Proof.

|en| ă
b´ a

2n
ă ε ô n ą log2

ˆ

b´ a

ε

˙

.

Algorithm 1 Bisection method.

Input: Function f , a, b such that fpaqfpbq ă 0, and a desired accuracy ε.

Output: Approximate value p P pa, bq.

1: function Bisection(f , a, b, ε)
2: N “

P

log2

`

b´a
ε

˘T

´ 1;
3: fa “ fpaq;
4: for n “ 1 . . . N do
5: x “ pa` bq{2;
6: fx “ fpxq;
7: if fp ““ 0 then
8: Break
9: else if fa ˚ fp ă 0 then

10: b “ p;
11: else
12: a “ p;
13: end if
14: end for
15: return p
16: end function

20

Observations

• The bisection method is rather slow to converge: it needs around 2.3 steps to gain one
decimal significant digit of accuracy.

• The computational bottleneck is usually the computation of the function fppq, which is
needed once per iteration.

• This is one of very few methods with guaranteed global convergence. That there is no
equivalent for systems of equations is all the more sad.

• A few variations:

1. One may prefer (for floating-point accuracy) to compute the quantity en “ bn´an
2

, form
the midpoint as xn “ an `

bn´an
2

and use en ă ε in the loop as a stopping criterion
instead of computing N beforehand.

2. A different stopping criterion altogether, similarly to that used in Newton or secant
methods, reads |fp| ă tol where tol is a prescribed error tolerance. For the bisection
method however, this is not necessary as we control directly the absolute error on the
root (a unique feature), and in fact this modification would unnecessarily lose a key
advantage of the bisection method: it is not sensitive to ill-conditioning of the root
when |f 1ppq| « 0.

5.2.2 Newton’s method

A common factor to a different class of methods is to build a linear approximation of the problem
at each step, which can be solved easily to get a (hopefully) better approximation based on the
current one. Based on the Taylor expansion

fppq “ fpxq ` f 1pξqpp´ xq

between the root p and some approximation x with ξ P rp, xs, the idea is to use an approximation
of the unknown slope f 1pξq.

Iteration idea: given a current approximation xk of the root p and qk of the slope f 1pξq, we can
solve the linear equation

fpxkq ` qkpxk`1 ´ xkq “ 0 to obtain xk`1 “ xk ´ fpxkq{qk.

Newton’s method A most prominent member of this class of methods is the so-called Newton-
Raphson iteration, where we take the slope qk “ f 1pxkq. This leads to the Newton method:

xk`1 “ xk ´ f
1
pxkq

´1fpxkq, k ě 0.

The idea behind the method is to approximate the graph of the function around xk by its best
linear approximant: the tangent, and use it to construct the next approximation to the root.

21

Property 5.6. If f P C2pIq, given x1 close enough to a root p the Newton method constructs a
sequence converging quadratically to p (order 2) if p is a simple root and linearly if it has multiplicity
m ą 1.

The proof of this result is reserved for next week’s lecture!

Cost analysis. Each iteration of Newton’s method costs two function evaluations (f and f 1)
and a few additional floating-point operations, which usually add a negligible cost.

22

Lecture 6: Rootfinding (continued, again). Fixed Points. (Wednes-
day, September 9)

6.1 Newton’s method; methods of the Secant, chord and Regula Falsi.

We continue our exploration of rootfinding methods based on the common idea

fpxq « fp xk
loomoon

approximation to the root

q ` qk
loomoon

approximation to the slope

px´ xkq

where solving for the root on the right-hand side leads to the iteration idea

xk`1 “ xk ´ fpxkq{qk.

6.1.1 Newton’s method

The idea is here to take qk “ f 1pxkq. This leads to the algorithm:

Algorithm 2 Newton method.

Input: Function f , derivative f 1, xold, desired accuracy tol, maximum number of iterations
Nmax.

Output: Approximate value p.

1: function Newton(f , f 1, xold, tol, Nmax)
2: for n “ 1 . . . Nmax do
3: xnew “ xold ´ fpxoldq{f

1pxoldq;
4: if |xnew ´ xold| ă tol then return xnew
5: end if
6: xold “ xnew
7: end for
8: return Error(’Method failed after Nmax iterations.’)
9: end function

6.1.2 Secant method.

Similar to the bisection, we use here two initial points x0 and x1 to construct an approximation
to the slope with the rule:

qk “
fpxkq ´ fpxk´1q

xk ´ xk´1

, @k ě 1.

This leads to the two-point iteration:

xk`1 “ xk `
xk ´ xk´1

fpxkq ´ fpxk´1q
fpxkq.

Geometrically, this corresponds to the following scheme:

23

Property 6.1. Given f P C2pIq and two initial points x0, x1 close enough to a root p P I, the
secant method converges superlinearly with order Φ “ 1`

?
5

2
.

Proof. Future lecture.

Cost analysis. Each iteration of secant method costs one function evaluation of f and a few
additional floating-point operations, which usually add a negligible cost. This means the secant
method may well be faster (in wall-clock time) than the Newton method, since one can run almost
2 iterations of the secant method (esecantn`2 „ pesecantn qΦ

2) in the same time one runs a single iteration
of the Newton method (eNewtonn`1 „ peNewtonn q2) - and since Φ2 « 2.6 ą 2, the secant method may
emerge as the winner of the race (provided round-off errors, etc. do not diminish the effective
convergence rate).

6.1.3 Chord method

Here, we keep a fixed value of the slope all along, using the slope from the chord between pa, fpaqq
and pb, fpbqq:

qk “ q “
fpbq ´ fpaq

b´ a
,

leading to the iteration

xk`1 “ xk ´
b´ a

fpbq ´ fpaq
fpxkq.

24

Property 6.2. The chord method exhibits locally linear convergence.

6.1.4 Regula Falsi.

This is a very old method, that we can see as a hybrid of the secant and bisection method. The
idea is to keep the bracketing property of the bisection method by forming a sequence of pairs of
points at which the function takes opposite signs. Formally, this writes as

qk “
fpxkq ´ fpxk1q

xk ´ xk1
, @k ě 1.

where k1 is the largest index such that fpxkqfpxk1q ă 0.
Another way to formulate this method is to see it as a bisection method where, instead of checking
the midpoint xn “ an`bn

2
we check the intersection of the secant between an and bn with the

horizontal axis:

Initialization: Let a1 “ a, b1 “ b such that fpa1qfpb1q ă 0.
Compute the root x1 of the secant, x ÞÑ fpb1q `

fpb1q´fpa1q

b1´a1
px´ b1q:

x1 “ b1 ´
b1 ´ a1

fpb1q ´ fpa1q
fpb1q “

a1fpb1q ´ b1fpa1q

fpb1q ´ fpa1q
.

1. Compute fpx1q.

2. If...

• fpx1q “ 0: x1 is a root, done.

• fpa1qfpx1q ă 0: we set a2 “ a1 and b2 “ x1.

• fpx1qfpb1q ă 0: we set a2 “ x1 and b2 “ b1.

3. Compute x2 “
a2fpb2q ´ b2fpa2q

fpb2q ´ fpa2q

4. Repeat steps 1-3, generating a3, b3, . . . , an, bn,

25

This method has global convergence, and it is sometimes faster than the bisection method because
it uses some information about the function to guess where the root might be. However, it can
also be slower than the bisection method in some cases, limiting its usefulness in practice.

26

6.2 Analysis framework: the fixed-point iterations.

6.2.1 Fixed points.

Definition 6.3. Given a function gpxq, a point p such that gppq “ p is a fixed point of g.

Example. Let gpxq “ x2 ´ 2. Fixed points of g are solutions of

gpxq “ x ô x2
´ x´ 2 “ 0 ô px´ 2qpx` 1q “ 0.

Hence g has two fixed points: 2 and ´1.

A fundamental observation is that a fixed point problem can always be transformed into a root-
finding problem and vice-versa. Indeed,

p fixed point of gpxq Ø p root of fpxq “ x´ gpxq.

Theorem 6.4 (Existence of fixed points.). Suppose gpxq P Cpra, bsq such that a ď gpxq ď b for
any x P ra, bs. Then g has at least one fixed point on ra, bs.

Proof. Let fpxq “ x´ gpxq, then fpaq “ a´ gpaq ă 0 and fpbq “ b´ gpbq ą 0 since a ď gpxq ď b.
Hence, by the Intermediate Value Theorem, there exists a root p of fpxq in pa, bq, that ia a fixed
point of g.

Definition 6.5. A function g : ra, bs Ñ ra, bs, Lipschitz continuous with constant 0 ă K ă 1:

|gpxq ´ gpyq| ď K|x´ y|,

is called a contraction mapping.

Proposition 6.6. If g : ra, bs Ñ ra, bs with g P C1pra, bsq and |g1pxq| ď K ă 1 for all x P ra, bs,
then g is a contraction mapping.

Proof. Fix any x, y P ra, bs. By Taylor expansion:

fpxq “ fpyq ` f 1pξqpx´ yq for some ξ P rx, ys.

Hence
|fpxq ´ fpyq| “ |f 1pξq||x´ y| ď K|x´ y|.

Theorem 6.7. Let g : ra, bs Ñ ra, bs be a contraction mapping. Then g has a unique fixed point p.

Proof. • Existence: OK by the previous theorem.

• Uniqueness: by contradiction. Assume p1 ‰ p2 are two different fixed points of g. Then

|p1 ´ p2| “ |gpp1q ´ gpp2q| ď K|p1 ´ p2| ă |p1 ´ p2|.

This is not possible; hence p1 “ p2 and g has a unique fixed point.

27

6.2.2 Fixed point iterations.

Contraction mappings further yield a practical, constructive method for a sequence approaching
their fixed point. In general, given a map g and an initial value x0, we generate a fixed-point
iteration

xn`1 “ gpxnq, for n ě 0.

One property of such iterations is that if the sequence pxnq converges, it must be to a fixed point
p: Indeed, we check that since g is continuous,

lim
nÑ8

pn “ p implies lim
nÑ8

pn`1 “ p “ lim
nÑ8

gppnq “ gppq.

The sequence is in fact guaranteed to converge if the mapping is a contraction:

Theorem 6.8. Suppose gpxq is a contraction mapping on ra, bs. For any x0 P ra, bs, the sequence
generated by the fixed-point iteration

xn`1 “ gpxnq for n ě 0

converges to the unique fixed point p of gpxq. Moreoever, we have the error bounds

|p´ xn| ď
Kn

1´K
|x1 ´ x0|, @n ě 1,

and
|p´ xn| ď Kn maxpx0 ´ a, b´ x0q, @n ě 1.

Proof. We know that for n ě 1,

|xn`1 ´ p| “ |gpxnq ´ gppq| ď |xn ´ p|,

so by induction, we obtain immediately

|xn ´ p| ď Kn
|x0 ´ p| for n ě 0.

Since 0 ă K ă 1, this shows already that limnÑ8 pn “ p.
Furthermore,

|x0 ´ p| ď |x0 ´ x1| ` |x1 ´ p||x0 ´ x1|` ď K|x1 ´ x0|

so that
|x0 ´ p| ď

1

1´K
|x1 ´ x0|.

This shows that the first error bound holds:

|xn ´ p| ď Kn 1

1´K
|x1 ´ x0| for n ě 0.

Similarly, because |p´ x0| ď maxpp´ a, b´ pq we have

|xn ´ p| ď Kn maxpx0 ´ a, b´ x0q for n ě 0.

28

Lecture 7: Analysis of Rootfinding Methods. (Monday, Septem-
ber 14)

7.1 Convergence analysis of fixed-point iterations (cont.)

The theorem proved at the end of the previous lecture shows that fixed-point iterations generated by
contraction mappings x ÞÑ gpxq converge at least linearly to a unique fixed point p, with convergence
factor K « g1ppq. Let us now investigate and quantify the higher order of convergence expected
when g1ppq “ 0.

Proposition 7.1. Let g be a contraction mapping on I “ ra, bs with fixed point p. Assume
g P CmpIq, m ě 2 with I a suitable neighborhood of p with

gpiqppq “ 0, 1 ď i ă m and gpmqppq ‰ 0,

then the fixed-point iteration process converges to p with order m, and

lim
kÑ8

xk`1 ´ p

pxk ´ pqm
“
gpmqppq

m!
.

Proof. We know that the fixed-point iteration generates a sequence xk converging to p. Further-
more, we write a Taylor expansion about p:

xk`1 ´ p “ gpxkq ´ gppq “
m´1
ÿ

i“1

gpiqppq

i!
pxk ´ pq

i
`
gpmqpξkq

m!
pxk ´ pq

m
“
gpmqpξkq

m!
pxk ´ pq

m

with ξk P pp, xkq. Thus

lim
kÑ8

xk`1 ´ p

pxk ´ pqm
“ lim

kÑ8

gpmqpξkq

m!
“
gpmqppq

m!

since ξk Ñ p and gpmq is a continuous function.

Recap. Suppose that p is the unique fixed-point of a function g (not necessarily a contraction)
with g1 continuous in the neighborhood of p. Let us summarize the properties of the fixed-point
iteration sequence xn`1 “ gpxnq with initial value x0.

1. If |g1ppq| ą 1 and xn ‰ p @n, then the sequence txnu diverges in general since g is not a
contraction around the fixed point.

2. If |g1ppq| “ 1, the situation is underdetermined - the sequence may or may not converge to p.

3. If |g1ppq| ă 1, then xn Ñ p if x0 is close enough to p since g is locally a contraction around
p. Furthermore, the sequence converges...

• exactly linearly if g1ppq ‰ 0,

• with orderm if g1ppq “ ¨ ¨ ¨ “ gpm´1qppq “ 0 and gpmq ‰ 0 with g P Cm in a neighborhood
of p.

29

Algorithm 3 Fixed-point iteration.

Input: Function gpxq, xold, desired accuracy tol, maximum number of iterations Nmax.

Output: Approximate value of fixed-point p, or an error message.

1: function FixedPoint(g, xold, tol, Nmax)
2: for n “ 1 . . . Nmax do
3: xnew “ gpxoldq;
4: if |xnew ´ xold| ă tol then return xnew
5: end if
6: xold “ xnew
7: end for
8: return Error(’Method failed after Nmax iterations.’)
9: end function

Examples. Let us investigate the behavior of fixed-point iterations around the fixed point p “ 1
for all three functions below.

1. g1pxq “ 1{x on the interval r1{2, 2s. Here g1p1q “ 1, g11p1q “ 1 and we do not know whether
fixed-point iterations converge or not. In practice, they do not unless x0 “ 1 - the sequence
repeats the cycle x0, 1{x0, x0, 1{x0,

2. g2pxq “ x2`x´1 on the interval r1{2, 2s. Here g2p1q “ 1, g12p3q “ 1 and fixed-point iterations
will diverge.

3. g3pxq “ x{2 ` 1{2x on the interval p0,8q. Here g3p1q “ 1, g13p1q “ 0, g23p1q “ 1 so the
fixed-point iterations will converge quadratically if the starting point is close enough to 1.

In fact, we can go further:

g13pxq “ 1{2´ 1{2x2
ă 1 and g13pxq ą ´1 ô 1{2x2

ă 3{2 ô x ą 1{
?

3.

so |g13pxq| ă 1 for 1{
?

3 ă x ă 8. Hence g is a contraction on any interval ra, bs with
1{
?

3 ă a ă b and the fixed-point iteration will converge for any x0 ą 1{
?

3. Actually, g is
decreasing from 0 to 1 so for any 0 ă x0 ď 1{

?
3 ă 1 we can check that x1 “ gpx0q ą gp1q “ 1

so the fixed-point iteration converges.

In conclusion, for this function the fixed-point iteration generates a sequence converging
quadratically to 1 for any 0 ă x0 ă 8.

7.2 Application of fixed-point iteration analysis to 1-point rootfinding
methods.

Many rootfinding methods can be cast into the model

xk`1 “ gpxkq (7.1)

where the next iterate depends in some way on the previous one. Note that this is not the case
for the secant method, which relies on the previous two iterates. We call methods following the
model (7.1) 1-point rootfinding methods.

30

Chord method. The iteration for the chord method follows the model

xk`1 “ xk ´

ˆ

b´ a

fpbq ´ fpaq

˙

loooooooomoooooooon

q´1

fpxkq,

with a, b two points chosen at the start. This can be seen as the fixed-point iteration with iteration
function gpxq “ x´ q´1fpxq, which satisfies gppq “ p iff fppq “ 0. Then

g1ppq “ 1´ q´1f 1ppq,

so the convergence is guaranteed (locally) if

´1 ă g1ppq ă 1 ô 0 ă q´1f 1ppq ă 2.

Hence the slope approximation q must have the same sign as f 1ppq and

|f 1ppq| ă 2

ˇ

ˇ

ˇ

ˇ

fpbq ´ fpaq

b´ a

ˇ

ˇ

ˇ

ˇ

.

Newton method. The iteration for the Newton method follows the model

xk`1 “ xk ´ fpxkq{f
1
pxkq,

which is a fixed-point iteration with function gpxq “ x´ fpxq{f 1pxq. Assuming that p is a simple
root of f , i.e. f 1ppq ‰ 0, we compute

g1pxq “ 1´
pf 1pxqq2 ´ fpxqf2pxq

pf 1pxqq2
“
fpxqf2pxq

pf 1pxqq2
ùñ g1ppq “ 0.

Furthermore

g2pxq “
pf3pxqfpxq ` f2pxqf 1pxqqpf 1pxqq2 ´ fpxqf2pxqp2f2pxqf 1pxqq

pf 1pxqq4

“
fpxqf 1pxqf3pxq ` pf 1pxqq2f2pxq ´ 2fpxqpf2pxqq2

pf 1pxqq3
ùñ g2ppq “

f2ppq

f 1ppq
.

Assuming p is a simple root, that is f 1ppq ‰ 0, the Newton method will have quadratic order of
convergence if f2ppq ‰ 0, at higher order of convergence (at least 3) if f2ppq “ 0.
On the other hand, if the root has multiplicity m ą 1, then the convergence is only linear (Home-
work). However, we can recover quadratic convergence (at least) with the modified iteration

xk`1 “ xk ´mfpxq{f
1
pxq,

which assumes advance knowledge of the multiplicity m.

7.3 Analysis of two-point rootfinding methods

The proof of convergence for the Secant method is postponed to the next lecture.

31

7.4 Discussion: stopping criteria.

We often have to decide, based on computed or computable quantities, if the iteration has con-
verged. Optimally, we would like to know whether a certain accuracy has been reached, that is
given a prescribed tolerance ε ą 0 we have reached

|xk ´ p| “ |ek| ă ε.

Option 1. Rarely, the method gives direct control over the absolute error ek “ xk ´ p, a.k.a.
yields a computable quantity εk which satisfies

|ek| ď εk.

The bisection method is such an example, since |xk ´ p| ď εk :“ |bk ´ ak|{2. In such as case, we
can terminate the iteration at the first step where

εk ă ε.

Option 2. Direct control of the residual. We may choose to terminate at the first step
where

|fpxkq| ă ε.

‘ Simple test, straightforward to implement. Seems reasonable.

a This test may be too optimistic (if the problem is ill-posed) or pessimistic.

More precisely, assuming that p is a root of order m, we know that

fpxkq ´ fppq “
f pmqppq

m!
pxk ´ pq

m
` oppxk ´ pq

m`1
q,

so since fppq “ 0 and f pmqppq ‰ 0, we have

|ek| «

ˇ

ˇ

ˇ

ˇ

m!

f pmqppq

ˇ

ˇ

ˇ

ˇ

1{m

|fpxkq|
1{m .

• For multiple roots m ě 2, the residual test is very misleading about the actual order of
magnitude of the error.

• For a simple root, we have

|ek| «
1

|f 1ppq|
|fpxkq|.

– If |f 1ppq| « 1, then |ek| « |fpxkq|. The residual test works great.

– If |f 1ppq| ! 1, then |ek| " |fpxkq|. Hence the test is unreliable and too optimistic.

– If |f 1ppq| " 1, then |ek| ! |fpxkq|. Hence the test is too pessimistic and will lead to
more iterations than necessary.

32

Option 3. Control of the increment size. We may choose to terminate at the first step
where

|xk`1 ´ xk| ă ε.

As it turns out, this test is better conditioned than the previous one, despite not involving the
actual residual fpxkq. Let us analyze this test in the context of the fixed-point iteration analysis
with

xk`1 “ gpxkq,

which can be applied to all 1-point rootfinding methods. Then

ek`1 “ xk`1 ´ p “ gpxkq ´ gppq “ g1pξkqpxk ´ pq “ g1pξkqek.

Now xk`1´xk “ ek`1´ek “ pg
1pξkq´1qek. Since ξk Ñ p as k Ñ 8 and g1 is continuous, we obtain

|ek| «
|xk`1 ´ xk|

|g1ppq ´ 1|
.

Remember that convergence is expected iff ´1 ă g1ppq ă 1. Hence,

• The test is unreliable (too optimistic) if g1ppq « 1, however in this case the convergence is
very slow anyway.

• The test is optimal if g1ppq “ 0 since in this case |ek| « |xk`1 ´ xk|. This is the case of
quadratically converging methods such as the Newton method. This is also independent of
the root conditioning.

• The test is satisfactory if ´1 ă g1ppq ă 1{2, in which case 1{2|xk`1´xk| Æ |ek| Æ 2|xk`1´xk|.

33

Lecture 8: Analysis of the Secant method. (Wednesday, Septem-
ber 16)

The secant method is an example of Quasi-Newton method, i.e. it avoids to compute the derivative
yet approximates it along the iteration, more and more accurately. Remember the scheme,

xk`1 “ xk ´
xk ´ xk´1

fpxkq ´ fpxk´1q
fpxkq. (8.1)

Alternatively, we have the equivalent formula

xk`1 “
xk´1fpxkq ´ xkfpxk´1q

fpxkq ´ fpxk´1q
.

Such a method, which relies on the last two iterates to construct the next one, does not fit into
the framework of fixed-point iterations we have relied on to understand Newton’s method. It is
more difficult to analyze!
In this lecture, we will prove the following result.

Theorem 8.1. Let I be an open interval of R, and assume that f P C2pIq has a simple root p P I.
Then if x0, x1 are close enough to p, the sequence txku generated by (8.1) converges to p as nÑ 8,
and setting ek “ xk ´ p we have

lim
kÑ8

ek`1

ekek´1

“
f2ppq

2f 1ppq
.

Furthermore, the convergence rate of the sequence xk to p is superlinear with order p “ 1`
?

5
2

.

We will divide the proof of this Theorem in four pieces. First, we prove a result showing that the
slope of the secant of any two points close enough to the root is an approximation that is as good
as desired to the slope of the tangent at any point also close enough to the root:

Lemma 8.2. For any 0 ă c ă 1, there exists δ ą 0 such that in the interval Iδ “ tx P I s.t. |x´
p| ă δu,

ˇ

ˇ

ˇ

ˇ

ˆ

x´ y

fpxq ´ fpyq

˙

f 1pξq ´ 1

ˇ

ˇ

ˇ

ˇ

ă c

for all x, y, ξ P Iδ with x ‰ y.

Proof. As δ Ñ 0, by the squeeze theorem we have x, y, ξ Ñ p so

lim
δÑ0

fpxq ´ fpyq

x´ y
“ lim

δÑ0
f 1pξq “ f 1ppq ‰ 0.

Hence for any c ą 0, we can find δ small enough to ensure the desired result.

Armed with this result, we next show that the sequence txku generated by the secant method
converges.

Lemma 8.3. Fix 0 ă c ă 1, δ ą 0 and Iδ as per Lemma 1. Then if x0, x1 P Iδ, xk P Iδ for all
k ě 0, and

lim
kÑ8

xk “ p.

34

Notation. To facilitate some proofs, we use the shorthand fk “ fpxkq, f 1k “ f 1pxkq, . . . , and
ek “ xk ´ p.

Proof. By Taylor’s formula applied at xk about p with exact remainder, there exists ξk P pp, xkq
such that (remember fppq “ 0):

fpxkq “ fppq ` f 1pξkqpxk ´ pq ùñ fk “ f 1pξkqek,

hence
ˆ

xk ´ xk´1

fk ´ fk´1

˙

fk ´ pxk ´ pq “

„ˆ

xk ´ xk´1

fk ´ fk´1

˙

f 1pξkq ´ 1



ek.

Now we note that xk`1 “ xk ´
´

xk´xk´1

fk´fk´1

¯

fk, so we have shown that

´ek`1 “

„ˆ

xk ´ xk´1

fk ´ fk´1

˙

f 1pξkq ´ 1



ek.

By lemma 1, whenever xk, xk´1 P Iδ, since ξk P pp, xkq Ă Iδ, we have then

|xk`1 ´ p||ek`1| ă c|ek| ă cδ.

Since c ă 1 this shows that xk`1 P Iδ, and by recurrence, whenever x0, x1 P Iδ, then xk P Iδ for
all k ě 0. Furthermore, the error satisfies |ek| ď ck|e0| ă ckδ for all k ě 1 and converges to zero.
Hence we have shown that the secant method produces a linearly (at least) convergent sequence:

lim
kÑ8

xk “ p.

Next, we show that a particular ratio of the errors converges to a simple quantity.

Lemma 8.4. Fix 0 ă c ă 1, δ ą 0 and Iδ as per Lemma 1. Then if x0, x1 P Iδ,

lim
kÑ8

ek`1

ekek´1

“
f2ppq

2f 1ppq
.

Proof. We start by recalling the alternative iteration formula

xk`1 “
xk´1fk ´ xkfk´1

fk ´ fk´1

,

and similarly the sequence of errors satisfies

ek`1 “ xk`1 ´ p “
ek´1fk ´ ekfk´1

fk ´ fk´1

.

Now, using a 2nd order Taylor expansion about p, we find

fk “ fppq
loomoon

“0

`f 1ppqek `
1

2
f2pξkqe

2
k, fk´1 “ fppq ` f 1ppqek´1 `

1

2
f2pξk´1qe

2
k´1,

35

where ξk P pp, xkq, and we compute

ek´1fk ´ ekfk´1 “ f 1ppqpek´1ek ´ ekek´1q
looooooooooooomooooooooooooon

“0

`
1

2

`

f2pξkqek´1e
2
k ´ f

2
pξk´1e

2
k´1ek

˘

“
ekek´1

2
pf2pξkqek ´ f

2
pξk´1qek´1q

Continuing this computation and using the identity xk ´ xk´1 “ ek ´ ek´1:

ek´1fk ´ ekfk´1

ekek´1pxk ´ xk´1q
“
f2ppq

2
`

1

2

pf2pξkq ´ f
2ppqqek ´ pf

2pξk´1q ´ f
2ppqqek´1

ek ´ ek´1

“
f2ppq

2
`

1

2

„

pf2pξkq ´ f
2
ppqq

ek
ek ´ ek´1

´ pf2pξk´1q ´ f
2
ppqq

ek´1

ek ´ ek´1



.

Let us study the terms in the right-hand side of this equality. First, we note that

lim
kÑ8

f2pξkq ´ f
2
ppq “ lim

kÑ8
f2pξk´1q ´ f

2
ppq “ 0,

since f2 is continuous and limkÑ8 ξk “ p. Because |ek| ă c|ek´1| (see Lemma 1’s proof),
ˇ

ˇ

ˇ

ˇ

ek
ek ´ ek ´ 1

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ek{ek´1

ek{ek´1 ´ 1

ˇ

ˇ

ˇ

ˇ

ă
c

1´ c
and

ˇ

ˇ

ˇ

ˇ

ek´1

ek ´ ek´1

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1

ek{ek´1 ´ 1

ˇ

ˇ

ˇ

ˇ

ă
1

1´ c
.

As a consequence, we have the limit

lim
kÑ8

ek´1fk ´ ekfk´1

ekek´1pxk ´ xk´1q
“
f2ppq

2
.

To conclude, we now take a look at the desired quantity:

ek`1

ekek´1

“
ek´1fk ´ ekfk´1

ekek´1pxk ´ xk´1q

xk ´ xk´1

fk ´ fk´1

Ñ
f2ppq

2
ˆ

1

f 1ppq
.

36

The final piece of the puzzle will now show the error goes down with order Φ “ 1`
?

5
2

, the golden
ratio.

Lemma 8.5. ix 0 ă c ă 1, δ ą 0 and Iδ as per Lemma 1. Then ek “ xk ´ p Ñ 0 with order

Φ “ 1`
?

5
2

and convergence factor
ˇ

ˇ

ˇ

ˇ

f2ppq

2f 1ppq

ˇ

ˇ

ˇ

ˇ

1{Φ

as k Ñ 8.

Proof. Taking the log on the ratio
ˇ

ˇ

ˇ

ek`1

ekek´1

ˇ

ˇ

ˇ
we obtain from the previous limit

ak`1 “ ak ` ak´1 ` C ` op1q, (8.2)

where ak “ log |ek|, C “ log

ˇ

ˇ

ˇ

ˇ

f2ppq

2f 1ppq

ˇ

ˇ

ˇ

ˇ

, and op1q is a term going to zero as k Ñ 8.

Observe that the pakq forms an approximate Fibonacci sequence, and also ak Ñ ´8 since ek Ñ 0.
Let us assume for a moment that

ak`1 “ Φak ` β ` op1q, (8.3)

with constants Φ, β to be determined. Plugging this formula into the earlier relation (8.2) we
compute

Φ

ak
hkkkkkkkkkkikkkkkkkkkkj

pΦak´1 ` β ` op1qq`β ` op1q
looooooooooooooooooomooooooooooooooooooon

ak`1

“

ak
hkkkkkkkkkkikkkkkkkkkkj

pΦak´1 ` β ` op1qq`ak´1 ` op1q.

Rearranging the terms, we find

pΦ2
´ Φ´ 1qak´1 ` Φβ ´ C “ op1q.

In order for the left-hand side to form a sequence converging to zero even as ak´1 Ñ ´8, we must
have the two equalities

Φ2
´ Φ´ 1 “ 0 and Φβ ´ C “ 0.

This leaves two possible values Φ “
1˘

?
5

2
, but since Φ must be positive for (8.3) to hold true

even as ak and ak´1 converge to ´8, we deduce

Φ “
1`

?
5

2
and β “

C

Φ
.

In conclusion, if we can prove (8.3) then we have concluded our proof: indeed taking the exponential
yields

log |ek`1| “ Φ log |ek| ` β ` op1q ùñ lim
kÑ8

|ek`1|

|ek|Φ
“ eβ “

ˇ

ˇ

ˇ

ˇ

f2ppq

2f 1ppq

ˇ

ˇ

ˇ

ˇ

1{Φ

.

We must now verify the assumption (8.3), which is the most technical part of the proof. Let us
consider the residual

εk “ ak ´ pΦak´1 ` βq,

we need to prove that εk Ñ 0, which is equivalent to (8.3). Using the known relation (8.2) we find

εk`1 “ ak`1 ´ pΦak ` βq

“ p1´ Φqak ` ak´1 ` pΦ´ 1qβ ` op1q

“
´1

Φ
pak ´ Φak´1 ´ βq ` op1q,

37

where we have used the relations Φ´ 1 “ 1{Φ and C “ Φβ. Hence we have

εk`1 “
´1

Φ
εk ` op1q.

Since Φ ą 1, one expects a sequence satisfying such a relation to go to zero, unless the small op1q
term on the right-hand side adds up to enough along the way to perturb convergence. We prove
that convergence happens using the definition of the limit. Fix ε ą 0. By definition of the notation
op1q, since ε{2Φ2 ą 0 there exists k0 ě 0 large enough such that for k ě k0, we have

ˇ

ˇ

ˇ

ˇ

εk`1 `
1

Φ
εk

ˇ

ˇ

ˇ

ˇ

ă
ε

2Φ2
, so |εk`1| ă

|εk|

Φ
`

ε

2Φ2
.

Let us prove by induction that for n ě 0, we have

|εk0`n| ă
|εk0 |

Φn
`
ε

2
.

Indeed, this is obviously true for n “ 0, and then if it is true for n ě 0, the following computation
shows it also holds true for n` 1:

|εk0`n`1| ă
|εk0`n|

Φ
`

ε

2Φ2
ă

1

Φ

ˆ

|εk0 |

Φn
`
ε

2

˙

`
ε

2Φ2
“
|εk0 |

Φn`1
`

ˆ

Φ` 1

Φ2

˙

ε

2
“
|εk0 |

Φn`1
`
ε

2
,

where we have used the relation Φ2 “ Φ ` 1. By the induction principle, we have shown the

recurrence hypothesis. Now for n0 large enough such that
|εk0 |

Φn0
ă
ε

2
, we find for all k ě k0 ` n0

(and n “ k ´ k0 ě n0),
|εk| “ |εk0`n| ă ε.

This shows that εk Ñ 0 and ends the proof of Theorem 8.1

38

Lecture 9: Polynomial Interpolation. (Monday, September
21)

9.1 Motivation. Horner’s method

An interpolation problem starts with some data pairs

pxi, yiq, for i “ 0 . . .m.

This data may come either

• some experimental data,

• a complex, closed-form function fpxq which may be expensive to evaluate.

Definition 9.1. A function φpxq interpolates tyiu at the nodes txiu if

φpxiq “ yi, @i “ 0 . . .m.

We seek such a function, which should be simple to understand and cheap to evaluate. A natural
candidate: polynomials!

P pxq “ anx
n
` an´1x

n´1
` ¨ ¨ ¨ ` a1x` a0, an ‰ 0.

Why are polynomials so nice? Let us take a detour and think about how to evaluate polynomials
in the cheapest manner (in terms of floating-point operations).

Evaluation of polynomials. Horner’s method Naive way: we could simply use the natural
order, computing in turn

P pxq “

n multiplications
hkkikkj

anx
n

loomoon

n multiplications

` an´1x
n´1

looomooon

n-1 multiplications

` ¨ ¨ ¨ ` a1x
loomoon

1 multiplication

` a0
loomoon

0 multiplications

.

In total, this approach needs 0` 1` ¨ ¨ ¨ ` n “ npn`1q
2

multiplications and n additions.
Better way: the most expensive part of the computation above is the separate computations of
the monomial terms xk, which seems wasteful since xk`1 “ xˆ xk can be obtained without much
more work from the value of xk. We could thus compute the powers of x first,

1, x1
“ x, x2

“ xˆ x1, x3
“ xˆ x2, . . . , xn “ xˆ xn´1.

The computation of these terms amounts to n ´ 1 total multiplications. Then we need another
n` 1 multiplications to form the terms akxk and n additions to form P pxq. Hence we account in
total for 2n multiplications and n additions.
Better-er way: Horner’s method. Let us rewrite by factoring x recursively:

P pxq “ a0 ` x pa1 ` x pa2 ` ¨ ¨ ¨ ` x pan´1 ` x an
loomoon

bn

q

looooooooomooooooooon

bn´1

¨ ¨ ¨ q

loooooooooooooooooooooomoooooooooooooooooooooon

b2

q

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

b1
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

b0

.

39

Grouping the terms inside parenthesis, we form the nested multiplications :

bn “ an,

bn´1 “ an´1 ` xbn,

...
b0 “ a0 ` xb1,

and we observe that b0 “ P pxq.
The computation can be summed up as the synthetic division algorithm for evaluating P at x0:

bn “ an, bk “ ak ` bk`1x0, for k “ n´ 1, n´ 2, . . . , 0.

• This algorithm allows us to compute P px0q efficiently, using only n multiplications and n
additions.

• If we form the polynomial Qpx;x0q “ b1 ` b2x` ¨ ¨ ¨ ` bnx
n´1, then we observe

P pxq “ b0 ` px´ x0qQpx;x0q.

Formally, Q is the result of dividing the polynomial P by the term px ´ x0q, which justifies
the name of the algorithm.

• The algorithm provides also for fast evaluation of derivatives at x0, for example P 1px0q “

Qpx0;x0q: this can be achieved by forming another backwards recursion,

cn “ bn, ck “ bk ` ck`1x0, for k “ n´ 1, n´ 2, . . . , 1.

9.2 Polynomial interpolation.

Let’s go back to the matter of interpolating data, in the form of m ` 1 pairs pxi, yiq indexed by
i “ 0 . . .m.

Interpolation problem: find a polynomial of degree n interpolating tyiu at the nodes txiu.
A polynomial of degree at most n has n ` 1 free coefficients, a0, . . . , an, while the interpolation
constraints P pxiq “ yi form m` 1 equations.

• If m ‰ n, the problem is over or under-determined, and there might be zero or an infinity of
solutions.

• if m “ n, then the problem is well-posed: there exists a unique interpolating polynomial of
degree n, as we shall see.

Notation. We shall write Pn “ t polynomials of degree ď nu.

Theorem 9.2. Given n`1 distinct nodes, say x0 ă x1 ă ¨ ¨ ¨ ă xn, and n`1 corresponding values
y0, . . . , yn, there exists a unique polynomial P P Pn such that

P pxiq “ yi, @i “ 0 . . . n.

40

Proof 1. The monomials x0 “ 1, x1 “ x, x2, . . . , xn form a basis of Pn. The above conditions form
a linear system for the coefficients of the interpolating polynomial a0, . . . , an:

$

’

’

’

’

&

’

’

’

’

%

a0 ` x0 ¨ a1 ` x
2
0 ¨ a2 ` ¨ ¨ ¨ ` x

n
0 ¨ an “ y0,

a0 ` x1 ¨ a1 ` x
2
1 ¨ a2 ` ¨ ¨ ¨ ` x

n
1 ¨ an “ y1,

...
a0 ` xn ¨ a1 ` x

2
n ¨ a2 ` ¨ ¨ ¨ ` x

n
n ¨ an “ yn,

or in matrix form,
»

—

—

—

–

1 x0 x2
0 . . . xn0

1 x1 x2
1 . . . xn1

...
...

...
...

...
1 xn x2

n . . . xnn

fi

ffi

ffi

ffi

fl

»

—

—

—

–

a0

a1
...
an

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

y0

y1
...
yn

fi

ffi

ffi

ffi

fl

Now a Vandermonde matrix like X “

»

—

—

—

–

1 x0 x2
0 . . . xn0

1 x1 x2
1 . . . xn1

...
...

...
...

...
1 xn x2

n . . . xnn

fi

ffi

ffi

ffi

fl

is a very special object in Matrix

theory, which has an explicit determinant:

detpXq “
ź

iąj

pxi ´ xjq ‰ 0.

As a result, the linear system has a unique solution a0, . . . , an and there is a unique interpolating
polynomial.

Remark 9.3. Vandermonde matrices are usually very ill-conditionned. The solution of the linear
system is thus very sensitive to errors, noise in the data, etc. This indicates that this is not the
right way to look at the problem.

Proof 2. Let us try again by setting up a more appropriate basis for Pn. Let us define

`ipxq “
n
ź

j“0j‰i

x´ xj
xi ´ xj

P Pn.

We notice in particular `ipxjq “ δij “

#

1 if i “ j,

0 if i ‰ j.

Let P pxq “
řn
i“0 yi`ipxq P Pn, then clearly P pxjq “

řn
i“0 yiδij “ yj.

This already shows that there exists an interpolating polynomial for the data. Next, we want to
show its uniqueness. This can be inferred from the standard result:

Proposition 9.4. If P P Pn vanishes at n` 1 distinct points, then P vanishes uniformly.

Proof. This result is proved by recurrence on n. It is trivial for n “ 0, corresponding for constants
P pxq “ C which vanish at some point, P px0q “ C “ 0. Then for n ą 0, the polynomial P pxq
vanishing at n` 1 points x0 ă ¨ ¨ ¨ ă xn has a derivative P 1pxq P Pn´1 which vanishes at n distinct
points ti P pxi, xi`1q. By recurrence, we find that P 1pxq ” 0. Thus P is a constant, which vanishes
at some point so is identically zero.

Then, if P,Q are two polynomials interpolating the data, R “ P ´Q vanishes at the n`1 distinct
points x0, . . . , xn so R ” 0 or P,Q are in fact the same polynomial.

41

9.3 Lagrange representation.

From the previous proof, we extract a good way to represent the interpolating polynomial. Let us
recall the useful basis:

Definition 9.5. Given distinct nodes x0, . . . , xn, we define Lagrange interpolation basis functions:

`kpxq “
n
ź

i“0i‰k

x´ xi
xk ´ xi

“
ωn`1pxq

px´ xkqω1n`1pxkq

where ωn`1pxq “ px´ x0q ¨ ¨ ¨ px´ xnq “
śn

i“0px´ xiq.

Proof of this expression: exercise.

Proposition 9.6 (Lagrange Formula). The unique interpolating polynomial Pn P Pn for the data
pxi, yiq, i “ 0 . . . n is given by:

Pnpxq “
n
ÿ

i“0

yi`ipxq.

42

Lecture 10: Polynomial Interpolation II. (Wednesday, Septem-
ber 23)

We continue our exploration of the properties of interpolating polynomials. As a first step, we are
interested in estimating the error between a given function and its interpolant at a set of nodes.

10.1 Error in the Lagrange formulation.

Given a function f P Cn`1pIq, can we measure how close to fpxq is an interpolant of the data

pxi, fpxiqq, i “ 0 . . . n,

for a given set of nodes x0, . . . , xn.

Definition 10.1 (Interpolation operator.). If the data is specified by a function, yi “ fpxiq for
some function f , then we denote the corresponding interpolating polynomial Πnf P Pn, given by

Πnfpxq “
n
ÿ

i“0

fpxiq`ipxq P Pn.

Theorem 10.2 (Error formula, Lagrange.). Let f P Cn`1pIq with I Ă R some interval containing
n` 1 distinct nodes x0, . . . , xn and x P I. Then the interpolation error at x is given by

Enpxq “ fpxq ´ Πnfpxq “
f pn`1qpξq

pn` 1q!
ωn`1pxq,

where x P I, ωn`1pxq “ px ´ x0q ¨ ¨ ¨ px ´ xnq “
śn

i“0px ´ xiq, and ξ is some point in the smallest
interval containing all the points x0, . . . , xn and x.

Proof. First, the statement is clearly true if x “ xi, since Enpxiq “ fpxiq ´ Πnfpxiq “ 0 by
construction of the interpolating polynomial, and ωn`1pxiq “ 0 for i “ 0, . . . , n.
Next, we assume that x ‰ xi for any i “ 0, . . . , n. Define the function gptq on the interval I such
that

gptq “ Enptq ´ λωn`1ptq,

where λ is a constant defined as λ “ Enpxq{ωn`1pxq.
Now, gpxiq “ 0 for i “ 0, . . . , n and gpxq “ 0. Hence gptq has n ` 2 distinct zeros, forming n ` 1
pairs spanning as many disjoint open intervals, such that by Rolle’s theorem g1 has at least n` 1
distinct zeros. Continuing the argument for g2, etc. we find that gpn`1q has at least one zero

ξ P rminpx0, . . . , xn, xq,maxpx0, . . . , xn, xqs such that gpn`1q
pξq “ 0.

Now we observe that Πnf is a polynomial of degree n, hence its n`1-th derivative vanishes. Hence

Epn`1q
n pξq “ f pn`1q

pξq.

Moreover, we also have
ω
pn`1q
n`1 pξq “ pn` 1q!

so
gpn`1q

pξq “ f pn`1q
pξq ´ λpn` 1q! “ 0,

or using the definition of λ and reordering,

Enpxq “
f pn`1qpξq

pn` 1q!
ωn`1pxq.

43

10.2 An example.

Given data pairs p2,´1q, p´1, 2q and p1,´6q, let us assemble the corresponding interpolating
polynomial.

• First, we form the Lagrange basis functions:

`0pxq “
px´ p´1qqpx´ 1q

p´2´ p´1qqp´2´ 1q
“
px` 1qpx´ 1q

3
,

`1pxq “
px´ p´2qqpx´ 1q

p´1´ p´2qqp´1´ 1q
“ ´

px` 2qpx´ 1q

2
,

`1pxq “
px´ p´2qqpx´ p´1qq

p1´ p´2qqp1´ p´1qq
“
px` 2qpx` 1q

6
.

• Next, we assemble the interpolating polynomial:

P2pxq “ 1ˆ
px` 1qpx´ 1q

3
` 2ˆ´

px` 2qpx´ 1q

2
` p´6q ˆ

px` 2qpx` 1q

6
.

10.3 Newton representation

Motivation We already have two representations of the interpolating polynomial already.

• In the standard, monomial basis:

Pnpxq “ anx
n
` ¨ ¨ ¨ ` a0,

where a0, . . . , an are computed by solving a Vandermonde system. This form would be easy
to evaluate using Horner’s method, but it is not advisable due to ill-conditioning of the
coefficients with respect to the data, which induces in particular huge round-off errors when
computing the coefficients or evaluating the polynomial.

• In the Lagrange basis:
Pnpxq “ y0`0pxq ` ¨ ¨ ¨ ` yn`npxq.

This expression is mathematically simple, without the need to compute the coefficients
through a linear system. However, it is expensive to evaluate, with Opn2q floating-point
operations (although this can be amended by using the barycentric formula).

Because both representations have drawbacks, we introduce a third representation: Newton’s
formula. It is grounded in the new basis:

t1, px´ x0q, px´ x0qpx´ x1q, . . . px´ x0qpx´ x1q . . . px´ xn´1qu

Each element of the basis is denoted, consistent with the notation introduced before,

ωkpxq “ px´ x0q ¨ ¨ ¨ px´ xk´1q “

k´1
ź

i“0

px´ xiq.

We can then expand the interpolating polynomial in this new basis:

Pnpxq “
n
ÿ

k“0

ckωkpxq.

44

Once the coefficients ck of the expansion are obtained, this expression can be evaluated efficiently
using the generalized Horner’s method:

Pnpxq “ c0 ` px´ x0q pc1 ` px´ x1qpc2 ` ¨ ¨ ¨ pcn´1 ` px´ xn´1q bn
loomoon

bn

q

looooooooooooooomooooooooooooooon

bn´1

¨ ¨ ¨ qq

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

b1
looomooon

b0

leading to the algorithm

bn “ cn, bk “ ck ` px´ xkqbk`1, for k “ n´ 1, n´ 2, . . . , 0.

The feasibility of this approach hinges on the availability of a stable method for the computation
of the coefficient cn of the expansion, which we present now. First, let us notice that if we write

Pnpxq “ Pn´1pxq ` cnωnpxq, (10.1)

where Pn´1pxq “
řn´1
k“0 ckωkpxq P Pn´1, then

Pn´1pxiq “ Pnpxiq “ yi for i “ 0, . . . , n´ 1,

since ωnpxiq “ 0 for i ă n by design. Hence, Pn´1 is a polynomial of degree n´ 1 interpolating the
values y0, . . . , yn´1 at the n nodes x0, . . . , xn´1: by uniqueness, it is the interpolating polynomial on
these nodes. Hence cnωnpxq is just the correction needed to transform the interpolating polynomial
on the nodes x0, . . . , xn´1 into the interpolating polynomial on the nodes x0, . . . , xn, a process we
can call adding a node to an existing set.
As a consequence, we notice that

• cn is the leading coefficient (i.e., the coefficient in front of xn in the monomial basis) of the
polynomial Pn interpolating on the nodes x0, . . . , xn,

• cn´1 is the leading coefficient of the polynomial Pn´1 interpolating on the nodes x0, . . . , xn´1,

• cn´2 is the leading coefficient of the polynomial Pn´2 interpolating on the nodes x0, . . . , xn´2,
etc.

This leads us to the definition:

Definition 10.3. The k ´ th Newton divided difference, denoted

ck “ f rx0, . . . , xks,

is the leading coefficient of the interpolating polynomial Pk through the nodes x0, . . . , xk.

Note that the expression "divided difference" for these coefficients will be explained below. In the
meantime, a trivial recurrence on the expression above leads to:

Theorem 10.4. Newton’s formula for the polynomial interpolating a function f at distinct nodes
x0, . . . , xn is

Pnpxq “ f rx0s ` f rx0, x1spx´ x0q ` f rx0, x1, x2spx´ x0qpx´ x1q (10.2)

` ¨ ¨ ¨ ` f rx0, . . . , xnspx´ x0q ¨ ¨ ¨ px´ xn´1q “

n
ÿ

k“0

f rx0, . . . , xksωkpxq.

45

10.4 Properties of the Newton divided differences.

Invariance with respect to index permutations: Since Pn does not depend on the order
of the points x0, . . . , xn, neither does its leading coefficient cn “ f rx0, . . . , xns. Hence given a
permutation of the nodes, ti0, . . . , inu “ t0, . . . , nu, we have

f rx0, . . . , xns “ f rxi0 , . . . , xins.

Recursive definition: First, we note that for n “ 0, we have P pxq “ fpx0q the constant
polynomial interpolating f at the node x0. Its leading coefficient is fpx0q, thus

f rx0s “ fpx0q.

This is a general formula for any 1-point divided difference. Next, let us compute a formula for
the 2-point (first-order) divided difference. We find from the Lagrange formula,

P1pxq “ fpx0q
x´ x1

x0 ´ x1

` fpx1q
x´ x0

x1 ´ x0

“
fpx1q ´ fpx0q

x1 ´ x0

x` fpx0q.

We read its leading coefficient:

f rx0, x1s “
fpx1q ´ fpx0q

x1 ´ x0

.

It turns out that this formula can be extended to all higher-order Newton finite differences, taking
the form of the following recursion formula allowing to compute each n` 1-point finite differences
using two n-point ones:

f rxis “ fpxiq, f rx0, . . . , xns “
f rx1, . . . , xns ´ f rx0, . . . , xn´1s

xn ´ x0

. (10.3)

Thus the coefficients may be efficiently computed by forming a lower triangular table, with the
first column being the values fpx0q, . . . , fpxnq of the function at the nodes, and each column after
that being computed from the values in the previous one using (10.3):

x0 f rx0s

Œ

x1 f rx1s Ñ f rx0, x1s

Œ Œ

x2 f rx2s Ñ f rx1, x2s Ñ f rx0, x1, x2s

Œ Œ Œ
...

...
...

... . . .
Œ Œ Œ

xn f rxns Ñ f rxn´1, xns Ñ f rxn´2, xn´1, xns Ñ ¨ ¨ ¨ Ñ f rx0, . . . , xns

The coefficients of the Newton expansion (10.2) are then retrieved from the diagonal of this table:
f rx0s, f rx0, x1s, . . . , f rx0, . . . , xns.

46

Proof. Let us now prove the recursive formula (10.3). Given the nodes x0, . . . , xn, we define two
polynomials of degree n´ 1:

• Pn´1pxq interpolates f over the nodes x0, . . . , xn´1. Hence its leading coefficient is

f rx0, . . . , xn´1s;

• rPn´1pxq interpolates f over the nodes x1, . . . , xn. Hence its leading coefficient is

f rx1, . . . , xns.

The polynomial Pn “ Πnf interpolating f over the nodes x0, . . . , xn can be formed by adding
respectively the node xn to Pn´1, and x0 to rPn´1. By uniqueness and the formula (10.1), reordering
the nodes if necessary, we have the identity

Pnpxq “ Pn´1pxq ` f rx0, . . . , xn´1, xnspx´ x0q ¨ ¨ ¨ px´ xn´1q

“ rPn´1pxq ` f rx1, . . . , xn, x0spx´ x1q ¨ ¨ ¨ px´ xnq.

The coefficients in the monomial basis on both sides are equal. The leading term anx
n is the same

on both sides, that is
an “ f rx0, . . . , xns “ f rx1, . . . , xn, x0s :

this is the permutation invariance mentioned above. We are more interested in the next coefficient
an´1x

n´1: since

px´ x0q ¨ ¨ ¨ px´ xn´1q “ xn ´ px0 ` ¨ ¨ ¨ ` xn´1qx
n´1

` lower order terms,
px´ x1q ¨ ¨ ¨ px´ xnq “ xn ´ px1 ` ¨ ¨ ¨ ` xnqx

n´1
` lower order terms,

the coefficient of Pn in front of xn´1 equals

an´1 “ f rx0, . . . , xn´1s ´ f rx0, . . . , xnspx0 ` x1 ` ¨ ¨ ¨ ` xn´1q

“ f rx1, . . . , xns ´ f rx0, . . . , xnspx1 ` ¨ ¨ ¨ ` xn´1 ` xnq.

Reordering terms, we find

f rx0, . . . , xnspx1 ` ¨ ¨ ¨ ` xn´1 ` xn ´ x0 ´ x1 ´ ¨ ¨ ¨ ´ xn´1q “ f rx1, . . . , xns ´ f rx0, . . . , xn´1s,

or
f rx0, . . . , xns “

f rx1, . . . , xns ´ f rx0, . . . , xn´1s

xn ´ x0

.

This is the formula you are looking for.

47

Lecture 11: Interpolation Error. Piecewise interpolation. (Mon-
day, September 28)

Let us now try to understand the interpolation error better. Does the Newton approach help in
this regard?

11.1 Interpolation error and divided differences.

We have the two following results.

Theorem 11.1. Assuming f P Cn`1pIq with I some interval, fix distinct nodes x0, . . . xn and
x P I. Then

Enpxq “ f rx0, . . . , xn, xsωn`1pxq.,

where Enpxq “ fpxq ´ Pnpxq is the interpolation error and ωn`1pxq “
śn

i“0px´ xiq.

Proof. Interpolating at the n ` 2 nodes x0, . . . , xn, x using the Newton formula, we obtain using
the notation from the previous lecture,

Pn`1ptq “ Pnptq ` f rx0, . . . , xn, xsωn`1ptq,

where Pnptq is the polynomial interpolating f at the n ` 1 nodes x0, . . . , xn and ωn`1ptq “ pt ´
x0qpt ´ x1q ¨ ¨ ¨ pt ´ xnq. Taking t “ x, we know that Pn`1pxq “ fpxq since x is an interpolation
node for Pn`1, hence

fpxq ´ Pnpxq “ f rx0, . . . , xn, xsωn`1pxq.

Corollary 11.2. Given f P Cn`1pIq with I some interval, fix distinct nodes x0, . . . xn P I. Then

f rx0, . . . , xns “
f pnqpξq

n!

for some ξ P rminpx0, . . . , xnq,maxpx0, . . . , xnqs.

Proof. We apply the previous result with the m ` 1 “ n nodes z0, . . . , zm “ x0, . . . , xn´1 and
z “ xn. Then using the Lagrange interpolation result, Theorem 10.2,

Empzq “ f rz0, . . . , zm, zsωm`1pzq “
f pm`1qpξq

pm` 1q!
ωm`1pzq,

where ξ P rminpz0, . . . , zn´1, zq,maxpz0, . . . , zm, zqs and ωm`1pzq “ pz ´ z0q ¨ ¨ ¨ pz ´ zmq. Since
xn “ z is distinct from all the other nodes, ωm`1pzq ‰ 0, and we identify

f rx0, . . . , xns “
f pnqpξq

n!

as desired.

These two results clarify how divided differences are related to the derivatives of f . On the other
hand, they do not shine much light on the behavior of the interpolation error Enpxq, and we must
use another approach to understand it.

48

11.2 Error investigation: Equidistant points.

The classical counter-example is Runge’s function,

fpxq “
1

1` x2
with x P r´5, 5s.

It is clear from the plots below that increasing the order of the interpolating polynomial, instead
of increasing the accuracy of the approximation as expected, leads to large oscillations of the
interpolating polynomial near the ends of the interval, x « ´5, 5. This is not due to inaccuracies
of the numerical implementation, but a fundamental difficulty in the interpolation process, which
may not ensure Πnfpxq Ñ fpxq uniformly on r´5, 5s.

Property 11.3. For a given set of nodes X “ tx0, . . . , xnu, the interpolation error can be compared
to the best possible approximation by a polynomial with the following estimate:

}f ´ Πnf}8 ď p1` ΛnpXqqmin
PPPn

}f ´ P }8

where the best possible constant ΛnpXq “
›

›

›

řn
i“0 |`

pnq
i |

›

›

›

8
is called the Lebesgue constant of the set

of interpolation nodes x0, . . . , xn.

It can be shown that for any set of interpolation nodes,

ΛnpXq ě 2{π logpn` 1q ´ C,

where C ą 0 is some constant. In particular, this implies that ΛnpXq Ñ 8. In fact, one can show
that there exists always some continuous function such that, for any sequence of interpolating

49

nodes X1, X2, . . . , the corresponding sequence of interpolating polynomials Πnf does not converge
uniformly to f , meaning }f ´ Πnf}8 ­Ñ 0.
For the particular case of equidistant points, the Lebesgue constant grows much faster than the
lower bound above:

ΛnpXq «
2n`1

en logpnq
.

Interpolation on equidistant nodes is thus very unstable for even moderate values of n, and unlikely
to converge unless fpxq can be approximated exponentially well by polynomials in the first place
(e.g., if there is Pn P Pn such that }fpxq ´ Pnpxq}8 ă Crn with |r| ă 1{2).

11.3 Piecewise Lagrange interpolation.

Since high-order interpolation schemes may not converge as n increases, one must seek a different
way to use interpolation in order to approximate functions accurately. The main idea in this
paragraph is to divide the interval of interest in small pieces, and use a low-order interpolant on
each piece.

Piecewise Interpolant: Ingredients.

• Interval of interest ra, bs,

• Partition in K intervals Ik “ rxk, xk`1s with

a “ x0 ă x1 ă ¨ ¨ ¨ ă xK “ b

with xk`1 ´ xk “ |Ik| “ h “ |b´a|
K

.
Remark 11.4. The sub-intervals do not have to have the same length, but this makes the
presentation and analysis somewhat easier to follow.

• For n ě 1, we define the piecewise polynomial space

Xn
h “ tv P Cpra, bsq; v|Ik P PnpIkq, k “ 0, . . . , K1u.

• For f P Cpra, bsq, we construct the piecewise interpolation polynomial Πn
hf : ra, bs Ñ R,

such that for x P Ik, i.e. xk ď x ď xk`1,

Πn
hf |Ikpxq “ Πnf |Ik .

loomoon

interpolant with equidistant nodes xp0qk ,...,x
pnq
k , x

piq
k “xk`ih{n

Because the ends of the sub-intervals are part of the interpolation nodes, we check that Πn
hf |Ikpxkq “

fpxkq “ Πn
hf |Ik´1

pxkq for 1 ď k ď K ´ 1. Hence Πn
hfpxkq “ fpxkq is well-defined and Πn

hfpxq is
continuous across the interior points xk separating the intervals Ik.
By construction, the piecewise interpolation polynomial Πh

nf thus belongs to the piecewise poly-
nomial space Xn

h . Using the Lagrange error result on rxk, xk`1s we obtain

|fpxq ´ Πn
hfpxq| “

ˇ

ˇ

ˇ

ˇ

f pn`1qpξq

pn` 1q!
px´ x

p0q
k q ¨ ¨ ¨ px´ x

pnq
k q

ˇ

ˇ

ˇ

ˇ

ď Cpnq}f pn`1q
pξq}8h

n`1,

with x P Ik such that |x ´ x
piq
k | ă h and ξ P Ik, with Cpnq some constant depending only on n.

Hence, on the whole interval we have the bound

|fpxq ´ Πn
hfpxq| ď Cpnq}f pn`1q

}8h
n`1.

For a fixed order n, we can thus ensure convergence Ophn`1q “ OpK´pn`1qq by increasing the
number of sub-intervals, for any smooth function fpxq.

50

11.4 Cubic Splines

Another widely employed scheme to ensure convergence of interpolating approximations, splines
seek to enforce smoothness of the interpolant by enforcing continuity of some derivatives on the
whole interval of interest. Note that this is not the case of the piecewise Lagrange interpolant
above, whose derivative is in general not continuous at the points xk.

Interpolatory Cubic Splines: Ingredients.

• Interval of interest ra, bs,

• Partition in K intervals Ik “ rxk, xk`1s with

a “ x0 ă x1 ă ¨ ¨ ¨ ă xK “ b

with xk`1 ´ xk “ |Ik| “ hk.

• Cubic splines are functions Spxq : ra, bs Ñ R such that

S P C2
pra, bsq, S|Ik P P3.

Since there are K intervals and dimP3 “ 4, each spline is uniquely determined by the
knowledge of 4K coefficients at most.

• Interpolating splines are subject to the following set of contraints:

(1) First, the spline must interpolate the data at the nodes xk:

Spx0q “ fpx0q,

S|Ik´1
pxkq “ S|Ikpxkq “ fpxkq, for k “ 1 . . . K ´ 1,

SpxKq “ fpxKq.

(2) Next, its first derivative must be continuous accross the nodes:

S|1Ik´1
pxkq “ S|1Ikpxkq, for k “ 1 . . . K ´ 1.

(2) Finally, its second derivative must be continuous accross the nodes:

S|2Ik´1
pxkq “ S|2Ikpxkq, for k “ 1 . . . K ´ 1.

The set (1) forms a total of 2K constraints, while p2q and p3q account together for 2K ´ 2
constraints. In order to obtain a well-posed problem for the 4K coefficients of S, we need an
additional 2 constraints. Two common ways to complete the system are:

(4a) Natural spline:

S2px0q “ S2pxKq “ 0.

(4b) Clamped spline:

S 1px0q “ f 1px0q, S 1pxKq “ f 1pxKq.

51

Construction of natural splines. A natural, but non-efficient way of constructing the interpo-
latory spline is to form the system of 4K linear constraints above and solve for the 4K coefficients
of the spline, e.g. using a monomial basis on each interval Ik.
A better approach is as follows. We form the unknowns

Mk “ S2pxkq, k “ 0 . . . K,

which are well-defined quantities because S P C2pra, bsq, accounting for the set of constraints (3).
Since S is a cubic polynomial on each Ik, S2 is linear and may be expressed as

S2|Ik “Mk
xk`1 ´ x

hk
`Mk`1

x´ xk
hk

Integrating twice leads to

S|Ik “
Mkpxk`1 ´ xq

3 `Mk`1px´ xkq
3

6hk
` Cx`D,

where C,D are two integration constants to be determined. Rewriting

Cx`D “ A
xk`1 ´ x

hk
`B

x´ xk
hk

,

and because of the constraints (1) the new constants A,B must be such that

S|Ikpxkq “ fpxkq “
Mkpxk`1 ´ xkq

3 `Mk`1pxk ´ xkq
3

6hk
` A

xk`1 ´ xk
hk

`B
xk ´ xk
hk

“
h2
kMk

6
` A

so that A “ fpxkq ´
h2
kMk

6
and

S|Ikpxk`1q “ fpxk`1q “
Mkpxk`1 ´ xk`1q

3 `Mk`1pxk`1 ´ xkq
3

6hk
` A

xk`1 ´ xk`1

hk
`B

xk`1 ´ xk
hk

“
h2
kMk`1

6
`B

so that B “ fpxk`1q ´
h2
kMk`1

6
. Thus, constraints (1) and (3) have led us to the expression for the

spline

S|Ikpxq “
Mkpxk`1 ´ xq

3 `Mk`1px´ xkq
3

6hk

`

ˆ

fpxkq ´
h2
kMk

6

˙

pxk`1 ´ xq

hk
`

ˆ

fpxk`1q ´
h2
kMk`1

6

˙

px´ xkq

hk
.

It remains to compute the coefficients M0, . . . ,MK using the remaining constraints (2) and (4a)
or (4b). Continuity of the first derivative:

S|1Ik´1
pxkq “ S|1Ikpxkq, for k “ 1 . . . K ´ 1,

is implemented by computing the derivative of the expression above:

S|1Ikpxq “
´Mkpxk`1 ´ xq

2 `Mk`1px´ xkq
2

2hk
´

1

hk

ˆ

fpxkq ´
h2
kMk

6

˙

`
1

hk

ˆ

fpxk`1q ´
h2
kMk`1

6

˙

,

52

so after some manipulations,

S|1Ikpxk`1q “
fpxk`1q ´ fpxkq

hk
`
hk
6
pMk ` 2Mk`1q,

so that by substituting indices k Ñ k ´ 1 we have

S|1Ik´1
pxkq “

fpxkq ´ fpxk´1q

hk´1

`
hk´1

6
pMk´1 ` 2Mkq.

and also

S|1Ikpxkq “
fpxk`1q ´ fpxkq

hk
´
hk
6
p2Mk `Mk`1q.

Equality between these two quantities then means

6
fpxkq ´ fpxk´1q

hk´1

` hk´1pMk´1 ` 2Mkq “ 6
fpxk`1q ´ fpxkq

hk
´ hkp2Mk `Mk`1q.

Defining bk “ 6
´

fpxk`1q´fpxkq

hk
´

fpxkq´fpxk´1q

hk´1

¯

, we find that the coefficients M0, . . . ,MK must sat-
isfy:

hk´1Mk´1 ` 2phk´1 ` hkqMk ` hkMk`1 “ bk, k “ 1, . . . , K ´ 1.

Complementing these K ´ 2 linear equations are the final conditions (4). For the natural spline,
we have for example M0 “MK “ 0, which leads to the tri-diagonal "M-continuity" system

»

—

—

—

—

—

—

—

–

1 0
h0 2ph0 ` h1q h1

h1 2ph1 ` h2q h2

.
hK´2 2phK´2 ` hK´1q hK´1

0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

M0

M1

M2
...

MK´1

MK

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

b0

b1

b2
...

bK´1

bK

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Solving this linear system can be done in OpNq operations, using Gaussian elimination! See Math
782 for more details.

11.5 Properties of Cubic Spline Interpolants

Theorem 11.5 (Error bound). Let f P C4pra, bsq, M “ }f p4q}8. Let Spxq be an interpolatory
cubic spline at K ` 1 equally space nodes x0, . . . , xK with xk`1 ´ xk “ h “ b´a

K
. Then:

• Natural spline case:
}fpxq ´ Spxq}8 ď Ch2,

where C depends on f2paq, f2pbq and M ;

• Clamped spline case:

}fpxq ´ Spxq}8 ď
5M

384
h4.

We skip the proof of this result.

Property 11.6 (curvature minimization). Let f P C2pra, bsq, and Spxq a natural cubic spline
interpolating f . Then ˆ b

a

|S2pxq|2 ď

ˆ b

a

|f2pxq|2.

53

Lecture 12: Hermite Interpolation. (Monday, October 5)

In this lecture, we seek to generalize interpolation to the case where values of the derivative of f
are known at some or all of a set of distinct nodes:

`

xi, f
pkq
pxiq

˘

, i “ 0 . . . n, k “ 0 . . .mi,

wherem0, . . .mn ě are some natural integers. These data pairs form a total ofN`1 “
řn
i“0p1`miq

constraints.

Property 12.1. There exists a unique polynomial PN P PN with N “ n`
řn
i“0mi such that

P
pkq
N pxiq “ f pkqpxiq, for all i “ 0 . . . n, k “ 0 . . .mi.

In order to compute this interpolant in practice, we can employ either a Lagrange- or a Newton-
type approach.

12.1 Lagrange-type formula.

In this approach, we find a basis such that

PNpxq “
n
ÿ

i“0

mi
ÿ

k“0

y
pkq
i Likpxq,

where ypkqi “ f pkqpxiq. The Hermite characteristic polynomials Hikpxq P Pn need to satisfy

dpHik

dxp
pxjq “

#

1, if i “ j and k “ p,

0, else.

Let us define

hijpxq “

polynomial of order ď N
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

px´ xiq
j

j!
loooomoooon

h
ppq
ij pxiq “ 0, 0 ď p ă j, and h

pjq
ij pxiq “ 1

ź

k‰i

ˆ

x´ xk
xi ´ xk

˙mk`1

looooooooooomooooooooooon

h
ppq
ij pxiq “ 0, 0 ď p ď mk

P Pn.

By construction, these polynomials have the right derivatives at all points xk for k ‰ i, and also
at xi up to order j included. If j ă mi, then we must "correct" the remaining derivatives of order
j`1 . . .mi in order to satisfy all the constraints above, which we achieve by the following recursive
process.

• First, we set
Himi

pxq “ himi
pxq, for i “ 0 . . . n.

• Next, we set for j “ mi´1, . . . , 0, assuming that we have computed polynomials Hikpxq with
the right properties for all j ă k ď mi,

Hijpxq “ hijpxq ´
mi
ÿ

k“j`1

h
pkq
ij pxiqHikpxq.

54

One checks in particular that for p “ 0, . . . ,mi, the resulting polynomial satisfies

H
ppq
ij pxiq “ h

ppq
ij pxiq ´

mi
ÿ

k“j`1

h
pkq
ij pxiqH

ppq
ik pxiq “ h

ppq
ij pxiq ´

mi
ÿ

k“j`1

h
pkq
ij pxiqδkp “

$

’

&

’

%

0 if 0 ď p ă j,

1 if p “ j,

0 if j ă p ă mi.

By recurrence, the process thus leads to a set of polynomials functioning as advertised.

A particular case Let us work out this process in the case where m0 “ m1 “ ¨ ¨ ¨ “ mn “ 1:
we seek to match both values and first derivative of fpxq at the set of nodes xi. The degree of the
resulting polynomial should be N “ 2n` 1.

• First, we have Hi1pxq “ hi1pxq “ px ´ xiq
ś

k‰i

´

x´xk
xi´xk

¯2

, so recalling the definition of the
Lagrange characteristic polynomials `ipxq “

ś

k‰i
x´xk
xi´xk

,

Hi1pxq “ px´ xiq`
2
i pxq, i “ 0, . . . , n.

• Next, we want to compute

hi0pxq “
ź

k‰i

ˆ

x´ xk
xi ´ xk

˙2

“ `2
i pxq

and
Hi0pxq “ hi0pxq ´ h

1
i0pxiqHi1pxq.

We have h1i0pxq “ 2`1ipxq`ipxq, so h1i0pxiq “ 2`1ipxiq “ 2
ř

i‰k
1

xi´xk
. Hence,

Hi0pxq “ r1´ 2`1ipxiqpx´ xiqs `
2
i pxq.

Definition 12.2. The following polynomials form a basis of Hermite characteristic polyno-
mials for P2n`1:

Hipxq “ Hi0pxq “ r1´ 2`1ipxiqpx´ xiqs `
2
i pxq,

pHipxq “ Hi1pxq “ px´ xiq`
2
i pxq, i “ 0, . . . , N,

where `ipxq “
ś

k‰i
x´xk
xi´xk

are the characteristic Lagrange polynomials.

Property 12.3 (Lagrange-type formula for the Hermite interpolant). The unique Hermite inter-
polation polynomial for f at the nodes x0, . . . , xn writes

P2n`1pxq “ fpx0qH0pxq ` ¨ ¨ ¨ ` fpxnqHnpxq ` f 1px0q pH0pxq ` ¨ ¨ ¨ ` f
1
pxnq pHnpxq.

Furthermore, if f P C2n`2pIq with x0, . . . , xn, x P I then

fpxq ´ P2n`1pxq “
f p2n`2qpξq

p2n` 2q!
px´ x0q

2
¨ ¨ ¨ px´ xnq

2,

where ξ P rminpx0, . . . , xn, xq,maxpx0, . . . , xn, xqs.

We skip the proof of this result. The general formula can be found in the textbook.

55

12.2 Newton-type formula.

Recall now the formula for divided differences:

f rx0, x1s “
fpx1q ´ fpx0q

x1 ´ x0

for x0 ‰ x1.

It is clear than when x1 Ñ x0, the limit is well-defined allowing us to set

f rx0, x0s “ f 1px0q.

This allows us to use the same Newton formula as before, but with a new set of nodes repeating
the original ones as needed: for example, if m0 “ ¨ ¨ ¨ “ mn “ 1, we form the new set of nodes

tz0, z1, . . . , z2n, z2n`1u “ tx0, x0, . . . , xn, xnu.

The the Hermite interpolant is simply

P2n`1pxq “ f rz0s`f rz0, z1spx´z0q`f rz0, z1, z2spx´z0qpx´z1q`¨ ¨ ¨`f rz0, . . . , z2n`1spx´z0q ¨ ¨ ¨ px´z2nq,

or in terms of the original nodes,

P2n`1pxq “ f rx0s ` f rx0, x0spx´ x0q

` f rx0, x0, x1spx´ x0q
2

` . . .

` f rx0, x0, . . . , xn, xnspx´ x0q
2
¨ ¨ ¨ px´ xn´1q

2
px´ xnq,

where the divided differences are computed as before using the triangular table:

x0 fpx0q

x0 fpx0q f 1px0q

Œ Œ

x1 fpx1q Ñ f rx0, x1s Ñ f rx0, x0, x1s

Œ Œ

x1 fpx1q f 1px1q Ñ f rx0, x1, x2s Ñ f rx0, x0, x1, x1s

Œ Œ Œ Œ

x2 fpx2q Ñ f rx1, x2s Ñ f rx0, x1, x2s Ñ f rx0, x1, x1, x2s Ñ f rx0, x0, x1, x1, x2s

Œ Œ Œ
...

...
...

...
... . . .

A similar procedure can be employed to construct the general Hermite interpolant, using the
convention

f r x, . . . , x
loooomoooon

repeated k ` 1 times

s “
f pkqpxq

k!
.

12.3 Example.

Let us find the Hermite interpolant of fpxq “
?

2?
x2`1

at the nodes ´1, 0, 1.

We compute the derivative f 1pxq “ ´
?

2x
px2`1q3{2

and thus the data:

xk fpxkq f 1pxkq
´1 1 1{2
0

?
2 0

1 1 ´1{2

56

Construction using the Lagrange-type formula: We know that

Hipxq “ r1´ 2px´ xiq`
1
ipxiqs`

2
i pxq,

pHipxq “ px´ xiq`
2
i pxq.

Hence we start by computing the elementary Lagrange polynomials and their derivatives.

`0pxq “
xpx´ 1q

2
, `1pxq “ ´px´ 1qpx` 1q, `2pxq “

xpx` 1q

2
,

`10pxq “ x´
1

2
, `11pxq “ ´2x, `12pxq “ x`

1

2
,

`10px0q “ ´
3

2
, `11px1q “ 0, `12px2q “

3

2
.

This leads to the basis polynomials

H0pxq “ r1´ 2px` 1qp´3{2qs

ˆ

xpx´ 1q

2

˙2

“
1

4
p3x` 4qx2

px´ 1q2,

H1pxq “ r1´ 2xp0qs ppx´ 1qpx` 1qq2 “ px´ 1q2px` 1q2,

H2pxq “ r1´ 2px´ 1qp3{2qs

ˆ

xpx` 1q

2

˙2

“
1

4
p4´ 3xqx2

px` 1q2,

and
pH0pxq “ px` 1qx2

px´ 1q2,

pH1pxq “ xpx´ 1q2px` 1q2,

pH2pxq “ px´ 1qx2
px` 1q2.

Finally, we can assemble the Hermite interpolating polynomial:

P5pxq “ H0pxq `
?

2H1pxq `H2pxq `
1

2
pH0pxq ´

1

2
pH2pxq

“
1

4
p3x` 4qx2

px´ 1q2 `
?

2px´ 1q2px` 1q2 `
1

4
p4´ 3xqx2

px` 1q2 ´ x2
px´ 1qpx` 1q.

Construction using the Newton formula: Here we first compute the table of divided differ-
ences:

´1 1

´1 1 1{2
Œ Œ

0
?

2 Ñ
?

2´ 1 Ñ
?

2´ 3{2
Œ Œ

0
?

2 0 Ñ 1´
?

2 Ñ 5{2´ 2
?

2
Œ Œ Œ Œ

1 1 Ñ 1´
?

2 Ñ 1´
?

2 Ñ 0 Ñ
?

2´ 5{4
Œ Œ Œ Œ Œ

1 1 Ñ 1{2 Ñ 3{2´
?

2 Ñ 2
?

2´ 5{2 Ñ
?

2´ 5{4 Ñ 0

Then we read directly on the diagonal the coefficients for the Newton expansion of the Hermite
interpolation polynomial:

P5pxq “ 1`
1

2
px` 1q `

ˆ

?
2´

3

2

˙

px` 1q2 `

ˆ

5

2
´ 2
?

2

˙

px` 1q2x``

ˆ

?
2´

5

4

˙

px` 1q2x2.

57

Lecture 13: Numerical Integration. (Wednesday, October 7)

We want to develop methods to approximate definite integrals such as

Ipfq “

ˆ b

a

fpxqdx,

where fpxq is a given function which typically does not have an explicit anti-derivative: for example,

fpxq “ e´x
2

.

Main idea: given an approximation fn « f which as a closed-form antiderivative, we compute

Inpfq “ Ipfnq.

Typically, fnpxq “ Πnfpxq is an interpolating polynomial at well-chosen nodes. The error com-
mited by such an approach can be easily related to the error fn´f in the function approximation,
since

Enpfq “ Ipfq ´ Inpfq “

ˆ b

a

fpxq ´ fnpxqdx,

so that the absolute error can be bounded:

|Enpfq| “

ˇ

ˇ

ˇ

ˇ

ˆ b

a

fpxq ´ fnpxqdx

ˇ

ˇ

ˇ

ˇ

ď pb´ aq}f ´ fn}8.

Interpolatory quadrature rules. Using the results from our previous sections about interpo-
lation, we have a natural way of constructing approximations to the function f which are easily
exactly integrable. Given distinct nodes x0, . . . , xn P ra, bs, we form the interpolation polynomial

fnpxq “ Πnfpxq “ fpx0q`0pxq ` ¨ ¨ ¨ ` fpxnq`npxq,

where `ipxq “
ś

k‰i
x´xk
xi´xk

for i “ 0, . . . , n is the elementary Lagrange polynomial. Then,

Ipfq « Inpfq “

ˆ b

a

Πnfpxqdx “ fpx0q

ˆ b

a

`0pxqdx` ¨ ¨ ¨ ` fpxnq

ˆ b

a

`npxqdx,

that is we have the Lagrange quadrature formula

Inpfq “
n
ÿ

i“0

αifpxiq,

where the weights are given as αi “
´ b
a
`ipxq and are independent of f .

Error analysis: since we have the formula

fpxq ´ Πnfpxq “
f pn`1qpξpxqq

pn` 1q!
px´ x0q ¨ ¨ ¨ px´ xnq,

the error for the integrals writes

Enpfq “ Ipfq ´ Inpfq “
1

pn` 1q!

ˆ b

a

f pn`1q
pξpxqqΠn

j“0px´ xjqdx.

In general, we cannot simplify this expression further.

58

Exactness: One remarkable property of interpolatory quadratures is that if f P Pn, then the
quadrature is exact: Enpfq “ 0.
Let us formalize the main concepts so far.

Definition 13.1. A quadrature formula is a weighted sum

Inpfq “
n
ÿ

i“0

aifpxiq,

with specified nodes x0, . . . , xn and weights a0, . . . , an.

Note that the interpolatory rules presented above are fully specified by the nodes x0, . . . , xn, since
the weights are given by αi “

´ b
a
`ipxq.

Definition 13.2. The degree of exactness of a quadrature rule is the largest integer r ě 0 such
that

f P Pr ùñ Inpfq “ Ipfq.

Example: the interpolatory rule defined above using n ` 1 nodes has degree of exactness at least
n.
Last comments:

• The reverse is true: is a rule with n ` 1 points has degree of exactness equal or larger than
n, then the rule is interpolatory (i.e. the weights are given by the formula above).

• The degree of exactness of an interpolatory rule using n` 1 points can be as high as 2n` 1
- we will explore this phenomenon, called Gaussian quadrature, later on.

• Integration as well as numerical quadrature are linear maps on the space of functions:

Ipαf ` βgq “ αIpfq ` βIpgq, Inpαf ` βgq “ αInpfq ` βInpgq,

for any pair of integrable functions f, g and real numbers α, β.

13.1 Closed Newton-Côtes quadrature rules.

A special class of rules is obtained by choosing n ě 1 and n` 1 equally spaced nodes xj “ a` jh,
j “ 0, . . . , n, with step size h “ b´a

n
. Such rules are called closed Newton-Côtes rules - ’closed’

because the end-points of the interval are part of the set of nodes.
We denote these rules

Qnpfq “
n
ÿ

i“0

Aifpxiq, where Ai “
ˆ b

a

`ipxqdx.

Let us explore a few special cases.

Case n “ 1: the trapezoidal rule.

• In this case, we have only 2 nodes: x0 “ a and x1 “ b.

• The corresponding interpolating polynomial Π1fpxq “ fpaq`0pxq ` fpbq`1pxq, with the ele-
mentary Lagrange polynomials

`0pxq “
b´ x

b´ a
and `1pxq “

x´ a

b´ a
.

59

• The interpolatory rule is thus obtained as

Q1pfq “

ˆ b

a

Π1fpxqdx “ fpaq

ˆ b

a

`0pxqdx` fpbq

ˆ b

a

`1pxqdx,

whith the weights

α0 “

ˆ b

a

`0pxqdx “

ˆ b

a

b´ x

b´ a
dx “

´pb´ xq2

2pb´ aq2

ˇ

ˇ

ˇ

ˇ

b

x“a

“
b´ a

2
,

α1 “

ˆ b

a

`1pxqdx “

ˆ b

a

x´ a

b´ a
dx “

px´ aq2

2pb´ aq2

ˇ

ˇ

ˇ

ˇ

b

x“a

“
b´ a

2
.

We have thus derived the trapezoidal rule:

Q1pfq “
b´ a

2
pfpaq ` fpbqq “

h

2
pfpaq ` fpbqq .

• Error analysis: we have from above

E1pfq “

ˆ b

a

f2pξpxqq

2
px´ aqpx´ bqdx.

Now because px ´ aqpx ´ bq ď 0 does not change sign on the interval ra, bs, we can use the
mean value theorem:

E1pfq “
f2pξ

2

ˆ b

a

px´ aqpx´ bqdx, for some ξ P ra, bs.

We can compute explicitely this last expression:
ˆ b

a

px´ aqpx´ bq “ ´
pb´ aq3

6
,

so we obtain:

Property 13.3 (Error formula for the trapezoidal rule:).

E1pfq “ ´
pb´ aq3

12
f2pξq, for some ξ P ra, bs.

60

Case n “ 2: Simpson’s rule.

• In this case, we have 3 nodes: x0 “ a, x1 “ m “ a`b
2
, and x2 “ b, and step size h “ b´a

2
.

• The corresponding elementary Lagrange polynomials and weights are

`0pxq “
px´mqpx´ bq

pa´mqpa´ bq
Ñ A0 “

ˆ b

a

`0pxqdx “
h

3
,

`1pxq “
px´ aqpx´ bq

pm´ aqpm´ bq
Ñ A1 “

ˆ b

a

`1pxqdx “
4h

3
,

`2pxq “
px´ aqpx´mq

pb´ aqpb´mq
Ñ A2 “

ˆ b

a

`2pxqdx “
h

3
.

We have thus derived Simpson’s rule:

Q2pfq “
b´ a

6

ˆ

fpaq ` 4f

ˆ

a` b

2

˙

` fpbq

˙

“
h

3
pfpaq ` 4fpmq ` fpbqq .

Property 13.4 (Error formula for Simpson’s rule:).

E2pfq “ ´
h5

90
f p4qpξq, for some ξ P ra, bs.

The proof will be presented later. Note that the degree of exactness of Simpson’s rule is 3, which
is one more than we expect!

General remark on Closed Newton-Côtes Rules: The weights of Newton-Côtes rules de-
pend in general only on n and proportional to h, but not on a, b in particular. Indeed, using the
change of variables x “ a` th, 0 ď t ď n, then we have

`ipxq “ Πk‰i
x´ xk
xi ´ xk

“ Πk‰i
pa` thq ´ pa` khq

pa` ihq ´ pa` khq
“ Πk‰i

t´ k

i´ k
“ φiptq.

Therefore the weights are given by

Ai “

ˆ b

a

`ipxqdx “

ˆ n

0

φiptqhdt “ h

ˆˆ n

0

φiptq

˙

.

The resulting quadrature rule is

Qnpfq “ h
n
ÿ

i“0

wifpxiq, wi “

ˆ n

0

φiptqdt,

where the coefficients wi depend only on n and have usually been computed and assembled into
tables (see e.g. Table 9.2 in the textbook) for useful values of n.

61

Lecture 14: Open Newton-Côtes and Composite Rules. (Mon-
day, October 12)

14.1 Open Newton-Côtes Quadrature Rules

We proceed similarly to the construction of closed Newton-Côtes rules. For a given n ě 0, we
choose n` 1 equidistant nodes

xj “ a` pj ` 1qh, j “ 0, . . . , n, h “
b´ a

n` 2
.

This leads to the open Newton-Côtes rules:

Qnpfq “
n
ÿ

i“0

Aifpxiq, where Ai “
ˆ b

a

`ipxqdx..

More precisely, using the change of variables t “ a` pt` 1qh, we find

`ipxq “
ź

k‰i

ˆ

x´ xk
xi ´ xk

˙

“
ź

k‰i

ˆ

pa` pt` 1qhq ´ pa` pk ` 1qhq

a` pi` 1qh´ pa` pk ` 1qhq

˙

“
ź

k‰i

t´ k

i´ k
:“ φiptq,

we find that the quadrature weights take the form

Ai “

ˆ n`1

´1

φiptqhdt “ hwi, with wi “
ˆ n`1

i“´1

φiptqdt.

Note that the coefficients w0, . . . , wn only depend on n, and can generally be pre-computed and
tabulated.

14.2 Example: the midpoint rule.

• Here, we choose n “ 0 such that we have a single node x0 “
a`b

2
,

• The corresponding weight is A0 “
´ b
a
`0pxqdx “

´ b
a

1dx “ b´ a.

This yields the midpoint rule:

Q0pfq “ pb´ aqf

ˆ

a` b

2

˙

.

The error formula reads

E0pfq “ Ipfq ´Q0pfq “
pb´ aq3

24
f2pξq “

h3

3
f2pξq, a ă ξ ă b.

The degree of exactness of the midpoint rule is 1.

Proof. Using the Newton formula,

Ipfq ´Q0pfq “

ˆ b

a

f rx0, xspx´ x0qdx.

62

Let W pxq “
´ x
a
pt´ x0qdt “

1
2
rpx´ x0q

2 ´ pa´ x0q
2s “ 1

2
rpx´ x0q

2 ´ h2s “ 1
2
px´ aqpx´ bq, which

we note is strictly negative in the interval pa, bq. Integrating by parts we have

Ipfq ´Q0pfq “ f rx0, xsW pxq|
b
x“a ´

ˆ b

a

d

dx
f rx0, xsW pxq “ ´

ˆ b

a

1

2
f2pξpxqqW pxqdx.

We have used here the identity d
dx
f rx0, xs “ f rx0, x, xs “

1
2
f2pξpxqq, and using the mean value

theorem now we obtain

Ipfq ´Q0pfq “ ´
f2pξq

2

ˆ b

a

W pxqdx for some ξ P pa, bq.

To conclude, we compute
ˆ b

a

W pxqdx “

ˆ b

a

ˆ x

a

pt´ x0qdtdx “

ˆ b

a

ˆ b

t

pt´ x0qdxdt “

ˆ b

a

pb´ tqpt´ x0qdt

“ h3

ˆ 2

0

sp1´ sqds
looooooooomooooooooon

t“b´hs, dt“hds

“ h3

„

s2

2
´
s3

3

2

s“0

“ h3

ˆ

2´
8

3

˙

“ ´
2

3
h3.

14.3 Error analysis.

Theorem 14.1. Let Qnpfq be an open or closed Newton-Côtes rule with n ` 1 equidistant nodes
in ra, bs as defined above.

(a) If n is odd, the degree of precision is n and provided f P Cn`1pra, bsq,

Enpfq “ Ipfq ´Qnpfq “
Kn

pn` 1q!
hn`2f pn`1q

pξq for some ξ P pa, bq,

where

Kn “

#´ n
0
πn`1ptqdt ă 0, (closed rule),´ n`1

´1
πn`1ptqdt ą 0, (open rule),

with πn`1ptq “
śn

i“0pt´ iq.

(b) If n is even, the degree of precision is n` 1 and provided f P Cn`2pra, bsq,

Enpfq “ Ipfq ´Qnpfq “
Mn

pn` 2q!
hn`3f pn`2q

pξq for some ξ P pa, bq,

where

Mn “

#´ n
0
tπn`1ptqdt ă 0, (closed rule),´ n`1

´1
tπn`1ptqdt ą 0, (open rule).

Proof. We only sketch the main arguments in the case of even n and a closed rule (ex: Simpson’s
rule). Using the Newton formula, we write the error

Ipfq ´Qnpfq “

ˆ b

a

f rx0, . . . , xn, xsωn`1pxqdx.

Let W pxq “
´ x
a
ωn`1ptqdt, we will accept the following (nontrivial) facts:

63

• W paq “ W pbq “ 0, and

• W pxq ą 0 for a ă x ă b.

Integrating by parts, we rewrite

Ipfq ´Qnpfq “ ´

ˆ b

a

d

dx
f rx0, . . . , xn, xsW pxqdx “ ´

ˆ b

a

f pn`2qpξpxqq

pn` 2q!
W pxqdx,

and using the mean value theorem,

Ipfq ´Qnpfq “ ´
f pn`2qpξq

pn` 2q!

ˆ b

a

W pxqdx for some a ă ξ ă b.

Finally, using a change of variables we compute
ˆ b

a

W pxqdx “ ´hn`3

ˆ n

0

tπn`1ptqdt.

14.4 Composite Quadrature Rules.

In order to increase accuracy, we know that high-order interpolation should be avoided.
Instead, we proceed as for piecewise interpolation and divide the interval into many sub-intervals,
before applying one of the above rules on each one and combining the results.

14.4.1 Composite Trapezoidal Rule.

In this case, we divide the intervals using the equidistant nodes

a ă x0 ă x1 ă ¨ ¨ ¨ ă xn “ b with xi “ a` ih, h “
b´ a

n
.

Then we write

Ipfq “

ˆ x1

x0

fpxqdx`

ˆ x2

x1

fpxqdx` ¨ ¨ ¨ `

ˆ xn

xn´1

fpxqdx

«
h

2
pfpx0q ` fpx1qq `

h

2
pfpx1q ` fpx2qq ` ¨ ¨ ¨ `

h

2
pfpxn´1q ` fpxnqq

“
h

2
pfpx0q ` 2fpx1q ` 2fpx2q ` ¨ ¨ ¨ ` 2fpxn´1q ` fpxnqq

:“ Q1,npfq.

This is the composite trapezoidal rule.

Error analysis. If f P C2pra, bsq, then we may write on each sub-interval
ˆ xi`1

xi

fpxqdx´Q1pfq “ ´
pxi`1 ´ xiq

3

12
f2pξiq, xi ă ξi ă ξi`1,

64

and thus by summing over i,

Ipfq ´Q1,npfq “ ´
h3

12

n´1
ÿ

i“0

f2pξiq.

To proceed further, we need to use the following discrete Mean Value Theorem. Set ξmin such that
f2pξminq “ mini f

2pξiq and ξmax such that f2pξmaxq “ maxi f
2pξiq. Then,

f2pξminq ď
1

n

n´1
ÿ

i“0

f2pξiq ď f2pξmaxq

and thus by the intermediate value theorem, there exists ξ P pa, bq such that

1

n

n´1
ÿ

i“0

f2pξiq “ f2pξq.

Now, we rewrite

E1,npfq “ ´
h2

12

b´ a

n

n´1
ÿ

i“0

f2pξiq “ ´
b´ a

12
f2pξqh2.

We have proved:

Theorem 14.2. Suppose fpxq P C2pra, bsq, set n ě 1, h “ b´a
n
, xi “ a ` ih, i “ 0, . . . , n. The

n-th composite trapezoidal rule writes

Q1,npfq “
h

2

˜

fpaq ` 2
n´1
ÿ

i“1

fpxiq ` fpbq

¸

.

The error has the form

E1,npfq “ Ipfq ´Q1,npfq “ ´
b´ a

12
f2pξqh2, for some a ă ξ ă b.

The degree of precision of Q1,n is 1.

14.4.2 Composite Simpson’s Rule.

Similarly, we set h “ b´a
2n

and xi “ a ` ih, i “ 0, . . . , 2n. Applying Simpson’s rule on each
sub-interval rx0, x2s, rx2, x4, . . . , we have the approximation

Ipfq “

ˆ x2

x0

fpxqdx`

ˆ x4

x2

fpxqdx` ¨ ¨ ¨ `

ˆ xn

xn´2

fpxqdx

«
h

3
pfpx0q ` 4fpx1q ` fpx2qq `

h

3
pfpx2q ` 4fpx3q ` fpx4qq ` ¨ ¨ ¨ `

h

3
pfpxn´2q ` 4fpxn´1q ` fpxnqq

“
h

3
pfpx0q ` 4fpx1q ` 2fpx2q ` 4fpx3q ` 2fpx4q ` ¨ ¨ ¨ ` 2fpxn´2q ` 4fpxn´1q ` fpxnqq

:“ Q2,npfq.

This is the n-th composite Simpson’s rule.

65

Error analysis. Similarly to the above computation, we start from the elementary error formula
ˆ xi`1

xi

fpxqdx´Q2pfq “ ´
h5

90
f p4qpξiq, x2i ă ξi ă ξ2i`2,

such that

Ipfq ´Q2,npfq “ ´
h5

90

n´1
ÿ

i“0

f p4qpξiq “ ´
h4

90

b´ a

2n

n´1
ÿ

i“0

f p4qpξiq “ ´
b´ a

180
h4f p4qpξq.

Theorem 14.3. Suppose fpxq P C4pra, bsq, set n ě 1, h “ b´a
2n

, xi “ a ` ih, i “ 0, . . . , 2n. The
n-th composite Simpson’s rule writes

Q2,npfq “
h

3

˜

fpaq ` 4
n´1
ÿ

i“0

fpx2i`1q ` 2
n´1
ÿ

i“1

fpx2iq ` fpbq

¸

.

The degree of precision of Q2,n is 3 and the error has the form

E2,npfq “ Ipfq ´Q2,npfq “ ´
b´ a

180
f p4qpξqh4, for some a ă ξ ă b.

66

Lecture 15: Composite Rules (cont.) Approximation theory,
Orthogonal Polynomials. (Wednesday, October
14)

15.1 Last comments on composite rules

15.1.1 Composite Midpoint Rule.

As a final example, we take n ě 1, h “ b´a
n
, ti “ a ` ih, i “ 0, . . . , n and xi “ a ` pi ` 1{2qh,

i “ 0, . . . , n´ 1. Applying the midpoint rule on each sub-interval rt0, t1s, rt1, t2s, . . . , we have the
approximation

Ipfq “

ˆ t1

t0

fpxqdx` ¨ ¨ ¨ `

ˆ tn

tn´1

fpxqdx

« hfpx0q ` ¨ ¨ ¨ ` hfpxn´1q

:“ Q0,npfq.

This is the n-th composite midpoint rule.

Theorem 15.1. Suppose fpxq P C2pra, bsq, set n ě 1, h “ b´a
n
, xi “ a`pi`1{2qh, i “ 0, . . . , n´1.

The n-th composite Simpson’s rule writes

Q0,npfq “ h
n´1
ÿ

i“0

fpxiq.

The degree of precision of Q0,n is 1, and the error has the form

E0,npfq “ Ipfq ´Q0,npfq “
b´ a

24
f2pξqh2, for some a ă ξ ă b.

15.1.2 General Composite Newton-Côtes Rule

Taking n ě 1 sub-intervals and a rule of order m on each one, we form the composite quadrature
rule

Qn,mpfq “
n´1
ÿ

i“0

m
ÿ

j“0

αjfpxi,jq,

where the nodes are defined by setting yi “ a` ih, j “ 0, . . . , n, h “ b´a
n
, and

xi,j “

#

yi ` hpj{mq, j “ 0, . . . ,m (closed rule),
yi ` hpj ` 1q{pm` 2q, j “ 0, . . . ,m (open rule),

and the weights αj “ hwi are defined as before. The error formula for even n behaves like Ophn`2q

(degree of exactness n` 1) and for odd n like Ophn`1q (degree of exactness n.)

67

15.2 Approximation of Functions

15.2.1 The Weierstrass approximation theorem

We know that any continuous function f P Cpra, bsq may be approximated by polynomials: the
Weierstrass approximation theorem states that there exists a sequence of polynomials pn such that
}f ´ pn}8 Ñ 0 as n Ñ 8, where we can impose that pn P Pn. This result can be stated in the
following form:

lim
nÑ8

min
pPPn

max
xPra,bs

|fpxq ´ P pxq| “ 0.

The polynomial Pn P Pn realizing this minimum for a given n is called the minimax polynomial,
and is unique. It is in some sense the best approximation to the function for a given polynomial
degree, however it is hard to achieve - and as we saw in previous studies, interpolation is unstable
at high order and not a suitable method to approach the function. This is due in part to the
nature of the norm } ¨ }8, which is difficult to work with.

15.2.2 Scalar product. Generalized Fourier Series on p´1, 1q

We introduce a more amenable structure by defining a scalar (or inner) product for integrable
functions on p´1, 1q: given a continuous weight wpxq ą 0, defined for ´1 ă x ă 1, such that´ 1

´1
wpxqdx ă 8, we set

pf, gqw “

ˆ 1

´1

fpxqgpxqwpxqdx.

This is a well-defined bilinear form for f , g continuous on ra, bs, which satisfies all the usual

conditions to be a scalar product - in particular, }f}w :“ pf, fq
1{2
2 “

´´ 1

´1
|fpxq|2wpxqdx

¯1{2

is a
norm on functions on p´1, 1q: for example, }f}w “ 0 implies fpxq “ 0 for ´1 ă x ă 1.
We further define the space of square-integrable functions

L2
w “ L2

wp´1, 1q “ tf : p´1, 1q Ñ R, measurable,
ˆ 1

´1

f 2
pxqwpxqdx,8u.

This space contains all continuous functions on p´1, 1q: indeed,

}f}w ď

ˆˆ 1

´1

}f}28wpxqdx

˙1{2

ď

ˆˆ 1

´1

wpxqdx

˙1{2

}f}8.

Since it is equipped with a scalar product, the Hilbert space L2
w comes with a lot of useful notions

(orthogonality, etc) for approximation. In particular, we are interested in forming a orthogonal
basis, i.e. a set of functions p0, p1, . . . such that ppk, plqw “ 0 for any k ‰ l and any function in L2

w

may be expanded as a series

f “
8
ÿ

k“0

pfkpk
looomooon

convergent series in L2
w norm

, pfk P R.

Such an expansion is called a generalized Fourier series. The classical example is given by the
functions

p2k “ cospkπxq, p2k´1 “ sinpkπxq,

which is an orthogonal basis for the weight wpxq “ 1 for functions on the interval p´1, 1q.

68

Fundamental properties

• Fourier coefficients: the expansion coefficients may be computed explicitely: since

pf, pkqw “

˜

8
ÿ

l“0

pflpl, pk

¸

w

“ pfkppk, pkqw “ pfk}pk}
2
w,

so
pfk “

pf, pkqw
}pk}2w

.

• Parseval identity:

}f}2w “
8
ÿ

k“0

|fk|
2
}pk}

2
w.

• For any n ě 0, the truncated Fourier series

fn “
n
ÿ

k“0

pfkpk

is the best approximation of f within Pn “ Spantp0, . . . , pnu:

}f ´ fn}w “ min
pPPn

}f ´ p}w.

Indeed, we know that f ´ fn “
ř8

k“n`1
pfkpk is orthogonal to any basis member p0, . . . , pn:

pf ´ fn, pkqw “ 0, k “ 0, . . . , n,

such that by linearity, pf ´ fn, pq “ 0 for any p P Pn. Then, we compute

}f ´ fn}
2
w “ pf ´ fn, f ´ fnqw

“ pf ´ fn, f ´ pqw ` pf ´ fn,

PPn
hkkikkj

p´ fnqw

“ pf ´ fn, f ´ pqw ď }f ´ fn}w}f ´ p}w
looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

Cauchy-Schwartz inequality.

Hence }f ´ fn}w ď }f ´ p}w, which is the result we wanted to prove.

15.3 Families of orthogonal polynomials.

Here, we seek to form an orthogonal basis such that pn P Pn is a polynomial. In particular,
p0, . . . , pn must be linearly independent and therefore a basis of Pn. These polynomials should
satisfy the orthogonality relation

ˆ 1

´1

pkpxqplpxqwpxqdx “

#

ą 0, k “ l,

0, k ‰ l.

In general, the sequence of polynomials can be generated using the Gram-Schmidt orthogonaliza-
tion process starting with the standard basis t1, x, . . . , xn, . . . u: the algorithm proceeds recursively,

69

setting p0 “ 1 and then once p0, . . . , pn are formed the next polynomial in the basis is obtained by
setting

pn`1pxq “ xn`1
´

n
ÿ

k“0

pxn`1, pkqw
}pk}2w

pkpxq.

This is an expensive process since at each step, all previously constructed polynomials are needed.
As the following result shows, this is not actually the case for families of orthogonal polynomials, for
which on the last two polynomials are needed to construct the next - a so-called 3-term recurrence.

Theorem 15.2. A monic orthogonal family tpnuně0 satisfies the relations

xp0 “ p1pxq ` α0p0,

xpnpxq “ pn`1pxq ` αnpnpxq ` βnpn´1pxq for n ě 1

with constants αn, βn depending only on the weight wpxq.

Proof. We notice that the scalar product defined above satisfies the shift property pxf, gqw “

pf, xgqw. Now, since pn and pn`1 are assume to have leading coefficients equal to 1 (monic property)
we know that xpnpxq ´ pn`1pxq has degree at most n, so it may be expanded in the orthogonal
basis p0, . . . , pn with the Fourier coefficients defined above:

xpnpxq ´ pn`1pxq `
n
ÿ

k“0

pxpn, pkqw
}pk}2w

pkpxq

Furthermore, we note that pxpn, pkqw “ ppn, xpkqw per the property above; however, xpkpxq has
degree equal to k ` 1, so it is orthogonal to pn if k ` 1 ă n, implying that pxpn, pkqw “ 0 for
k ` 1 ă n. Hence,

xpnpxq ´ pn`1pxq `
pxpn, pnqw
}pn}2w

loooomoooon

“αn

pnpxq `
pxpn, pn´1qw

}pn´1}
2
w

loooooomoooooon

“βn

pn´1pxq

This means that all orthogonal polynomial families are constructed by a 3-term recurrence of the
form

p0pxq “ A0, p1pxq “ A1x´B1,

pn`1pxq “ pAnx´Bnqpnpxq ´ Cnpn´1pxq for all n ě 1,

with some sequence of numbers An, Bn, Cn depending only on the weight wpxq and normalization
An.

70

Lecture 16: Chebyshev and Legendre polynomials; Gaussian
Quadrature. (Monday, October 19)

16.1 Chebyshev polynomials.

Consider the weight function wpxq “ 1?
1´x2 , the Chebyshev polynomials of the first kind are

defined by the formula
Tnpxq “ cospn arccospxqq.

This formula, which makes sense for ´1 ă x ă 1, can be shown to define a sequence of polynomials
by using trigonometric identities: in particular,

T0pxq “ 1, T1pxq “ x.

Properties.

• Using the change of variables t “ arccospxq, one checks easily that

ˆ 1

´1

TkpxqTlpxqwpxq “

ˆ π

´π

cospkxq cosplxqdx “

$

’

&

’

%

π, if k “ l “ 0,

π{2, if k “ l ą 0,

0, else.

Hence, the Chebyshev polynomials form an orthogonal basis for the weight wpxq “ 1?
1´x2 .

• The cosine formula implies many nice properties, in particular

|Tnpxq| ď 1, for ´ 1 ď x ď 1.

• Tnpxq is an even (resp. odd) function of x if n is even (resp. odd).

• Tnpxq has n distinct zeros in p´1, 1q, which are explicitely:

xj “ ´ cos

ˆ

p2j ` 1qπ

2n

˙

, j “ 0, . . . , n´ 1.

• Three-term recurrence: we have by a trigonometric identity

Tn`1pxq ` Tn´1pxq “ 2 cos

ˆ

pn` 1q ` pn´ 1q

2
arccospxq

˙

cos

ˆ

pn` 1q ´ pn´ 1q

2
arccospxq

˙

“ 2xTnpxq,

which is the 3-term recurrence

Tn`1pxq “ 2xTnpxq ´ Tn´1pxq.

This is the cheapest and most stable way to compute the value of Chebyshev polynomials
for a given x.

• The leading coefficient of Tnpxq is 2n´1.

• The Chebyshev polynomials have the minimax property:

}
1

2n´1
Tn}8 “ 21´n

ď }P }8,

for all P P Pn with leading coefficient equal to 1, i.e. p “ xn ` lower degree terms.

71

Application: for any f P L2
wp´1, 1q, the best approximation of f in Pn in the } ¨}w norm is given

by the truncated generalized Fourier series:

Pnpxq “
n
ÿ

k“0

pfkTkpxq,

with the expansion coefficients given by the explicit formula

pfk “
2´ δk0

π

ˆ 1

´1

fpxqTkpxq
dx

?
1´ x2

.

16.2 Legendre polynomials.

Now, let us take the weight wpxq “ 1, leading to the classical L2 scalar product

pf, gq “

ˆ 1

´1

fpxqgpxqdx, }f}L2 “

ˆˆ 1

´1

fpxq2dx

˙1{2

.

The orthogonal polynomials for this weight are the Legendre polynomials:

Ljpxq “
1

j!2j
dj

dxj
px2

´ 1qj (Rodrigues’ formula)

or recursively through the 3-term relation:
#

L0pxq “ 1, L1pxq “ x,

pj ` 1qLj`1pxq “ p2j ` 1qxLjpxq ´ jLj´1pxq.

Properties:

• The polynomial Ljpxq is an even (resp. odd) function of x if j is even (resp. odd).

• The scalar product and Li and Lj is

pLi, Ljq “
2

2j ` 1
δij.

Application: for any f P L2p´1, 1q, the best approximation of f in Pn in the } ¨ } norm is given
by the truncated generalized Fourier series:

Pnpxq “
n
ÿ

j“0

pfjLjpxq,

with the expansion coefficients given by the explicit formula

pfj “ pj ` 1{2q

ˆ 1

´1

fpxqLjpxqdx.

72

16.3 Gaussian quadrature

We are interested in quadrature rules with maxximum order of exactness to approximate weighted
integrals:

Iwpfq “

ˆ 1

´1

fpxqwpxqdx.

Given nodes x0, . . . , xn, we know that the interpolatory quadrature rule

In,wpfq “
n
ÿ

i“0

αifpxiq, αi “

ˆ 1

´1

`ipxqwpxqdx,

will have degree of exactness at least n.
In order to extract the maximum accuracy from the quadrature, it is of interest to choose the
nodes x0, . . . , xn to maximize the degree of exactness. To construct such rules, say with degree of
exactness n`m for m ą 0, we rely on the following result:

Theorem 16.1. For m ą 0, an interpolatory rule In,w has degree of exactness at least n `m if
and only if the polynomial

ωn`1pxq “ px´ x0q ¨ ¨ ¨ px´ xnq

is orthogonal to any polynomial in Pn´1, meaning that
ˆ 1

´1

ωn`1pxqppxqwpxqdx “ 0, @p P Pm´1.

Proof. If f P Pn`m, we use polynomial division by ωn`1 to write

fpxq “ ωn`1pxqqm´1pxq ` rnpxq, qm´1 P Pn´1, rn P Pn.

Now we compute the quadrature. Since ωn`1pxiq “ 0 for i “ 0, . . . , n and In,w is exact for all
polynomials in Pn,

n
ÿ

i“0

αifpxiq “
n
ÿ

i“0

αirpxiq “

ˆ 1

´1

rnpxqwpxqdx “

ˆ 1

´1

fpxqwpxqdx´

ˆ 1

´1

ωn`1pxqqm´1pxqwpxqdx
loooooooooooooooomoooooooooooooooon

“0 (by assumption).

.

Since this must hold for all possible polynomials qm´1pxq in Pm´1, the two propositions in the
theorem are in fact equivalent.

Corollary 16.2. The maximum degree of exactness for an interpolatory quadrature formula is at
most 2n` 1.

Proof. Pick fpxq “ ω2
n`1pxq, then the exact integral is Iwpfq “

´ 1

´1
ω2
n`1pxqwpxqdx ą 0, but the

quadrature is In,wpfq “
řn
i“0 αiω

2
n`1pxiq “ 0. Hence the rule cannot be exact for all polynomials

of degree 2n` 2.

To achieve the maximum order of exactness 2n` 1, we thus want ωn`1pxq to be orthogonal to all
polynomials of order at most n, i.e.

pωn`1, pqw “ 0, @p P Pn.

This implies that ωn`1 is proportional to pn`1, where tpkpxqu is an orthogonal basis of polynomials
for L2

wp´1, 1q.

73

Definition 16.3. Given n ě 0, let pn`1pxq be the pn ` 1q-th order orthogonal polynomial with
respect to the weight wpxq.

• The roots ´1 ă x0 ă ¨ ¨ ¨ ă xn ă 1 of pn`1 are the Gauss nodes associated with the weight
function wpxq.

• The weights α0, . . . , αn defined by αi “
´ 1

´1
`ipxqwpxqdx are the Gauss weights.

• The Gauss quadrature formula

Gn,wpfq “
n
ÿ

i“0

αifpxiq

has degree of exactness 2n` 1, the highest possible (2n` 1) using n` 1 quadrature nodes.

Properties.

• The Gauss nodes are all internal to the interval: ´1 ă x0 ă x1 ă ¨ ¨ ¨ ă xn ă 1.

• The Gauss weights are all positive: indeed αi “ Gn,wp`
2
i pxqq “ Iwp`

2
i pxqq ą 0.

Gauss-Lobatto quadrature If including the end points is a desired property of the quadra-
ture, one can reduce slightly the order of exactness of the quadrature in order to do so. The
resulting quadrature rule is called Gauss-Lobatto. In order to achieve this result, we construct the
polynomial

ωn`1pxq “ pn“1pxq ` Apnpxq `Bpn´1pxq

with A,B chosen in such a way that ωn`1p´1q “ ωn`1p1q “ 0. Such a polynomial is orthogonal to
all polynomials of order n´ 2, and includes as its roots the end points ´1 and 1 by construction.
As a consequence, the roots of ωn`1pxq form a set of quadrature nodes ensuring degree of exactness
2n´ 1.

Definition 16.4. Given n ě 0, let ωn`1pxq be constructed as above.

• The roots ´1 “ x0 ă x1 ă ¨ ¨ ¨ ă xn ă xn “ 1 of ωn`1 are the Gauss-Lobatto nodes associated
with the weight function wpxq.

• The weights α0, . . . , αn defined by αi “
´ 1

´1
`ipxqwpxqdx are the Gauss-Lobatto weights.

• The Gauss-Lobatto quadrature formula

GLn,wpfq “
n
ÿ

i“0

αifpxiq

has degree of exactness 2n ´ 1, the highest possible using n ` 1 quadrature nodes including
the end points of the interval.

Convergence of Gauss quadrature rules.

Theorem 16.5. For any continuous function f : r´1, 1s Ñ R, the Gauss quadrature rules converge
to Ipfq as nÑ 8:

lim
nÑ8

Gn,wpfq “ lim
nÑ8

GLn,wpfq “ Iwpfq.

Proof. Skipped.

74

Error formula. One recalls the error formula for the Hermite interpolation polynomial at
x0, . . . , xn:

fpxq “ P2n`1pxq `
f p2n`2qpξpxqq

p2n` 2q!
px´ x0q

2
¨ ¨ ¨ px´ xnq

2.

Since P2n`1 is integrated exactly by the Gauss quadrature rule and the error term vanishes at the
quadrature nodes, we compute

Iwpfq ´Gn,wpfq “

ˆ 1

´1

f p2n`2qpξpxqq

p2n` 2q!
px´ x0q

2
¨ ¨ ¨ px´ xnq

2wpxqdx

“
f p2n`2qpξq

p2n` 2q!

ˆ 1

´1

px´ x0q
2
¨ ¨ ¨ px´ xnq

2wpxqdx

using the mean value theorem, with ξ P p´1, 1q. The integral on the right is a constant independent
of f , which depends only on the weight and on the orthogonal polynomials: for example, in the
case of Chebyshev weight (wpxq “ p1´ x2q´1{2) one has Tn`1pxq “ 2npx´ x0q ¨ ¨ ¨ px´ xnq, hence

ˆ 1

´1

px´ x0q
2
¨ ¨ ¨ px´ xnq

2wpxqdx “
1

22n
pTn`1, Tn`1qw “

π

22n`1

yielding the error formula for Chebyshev-Gauss quadrature

Iwpfq ´Gn,wpfq “
π

22n`1p2n` 2q!
f p2n`2q

pξq, ξ P p´1, 1q.

75

Lecture 17: Numerical Quadrature: the Conclusion. (Wednes-
day, October 21)

17.1 Integration over arbitrary intervals.

Any rule over r´1, 1s may be apped onto an arbitrary interval of finite length ra, bs using the
change of variables

φpsq “
a` b

2
`
b´ a

2
s,

since setting x “ φpsq such that dx “ b´a
2
ds implies

ˆ b

a

fpxqdx “
b´ a

2

ˆ 1

´1

fpφpsqqds «
b´ a

2

n
ÿ

i“0

αifpφpξiqq,

where ξi, αi are respectively the nodes and weights of the quadrature rule over r´1, 1s, for example
a Gauss quadrature rule obtained in the previous lecture. Hence, on ra, bs we have the new nodes
and weights

xi “ φpξiq, Ai “
b´ a

2
αi.

Remark 17.1. When the quadrature over r´1, 1s corresponds to a weighted integral Iwpfq “´ 1

´1
fpsqwpsqds, then the new quadrature over ra, bs approximates

´ b
a
fpxqW pxqdx, another weighted

integral with the weight W pxq “ wpφ´1pxqq where φ´1pxq “ 2
b´a

`

x´ a`b
2

˘

is the inverse function
of φ.

Error formulae An error formula follows also by change of variables. For example, let us
consider the Gauss-Legendre quadrature with error term

ˆ 1

´1

F psqds´GnpF q “ CnF
p2n`2q

pξq, ξ P p´1, 1q,

where Cn “ 1
p2n`2q!

´ 1

´1
px ´ x0q

2 ¨ ¨ ¨ px ´ xnq
2dx is a constant depending only on n. Then letting

F psq “ fpφpsqq, because φ1psq “ b´a
2

a trivial recurrence using the chain rule implies

F p2n`2q
pξq “

ˆ

b´ a

2

˙2n`2

f p2n`2q
pξ1q, ξ1 “ φpξq P pa, bq.

Hence
ˆ b

a

fpxqdx´
n
ÿ

i“0

Aifpxiq “
b´ a

2

˜ˆ 1

´1

fpφpsqqds´
n
ÿ

i“0

αifpφpξiqq

¸

“
b´ a

2

ˆˆ 1

´1

F psqds´GnpF q

˙

“ Cn

ˆ

b´ a

2

˙2n`3

f p2n`2q
pξ1q.

76

Composite rules The mapping above by change of variables allows us for example to build
composite rules based on Gaussian quadrature, which take advantage of their stability and high
accuracy. Given

• a Legendre-Gauss or Legendre-Gauss-Lobatto quadrature rule with n ` 1 nodes ξ0, . . . , ξn
and weights α0, . . . , αn over r´1, 1s:

Gnpfq “
n
ÿ

i“0

αifpξiq «

ˆ 1

´1

fpxqdx;

• the partition a “ y0 ă y1 ă ¨ ¨ ¨ ă ym “ b of a given interval ra, bs, with equidistant nodes
yk “ a` kh for step h “ b´a

m
;

we can build a composite Legendre-Gauss quadrature rule over ra, bs:

Gn,mpfq “
h

2

m´1
ÿ

k“0

n
ÿ

i“0

αifpx
pkq
i q,

with the quadrature nodes xpkqi “ yk ` h

ˆ

1` ξi
2

˙

.

The corresponding error term is of order Oph2n`2q using the Gauss-Legendre, and Oph2nq using
the Lobatto-Gauss-Legendre rule and weights. Indeed, using the error formula for the Gauss
quadrature from the previous lecture, we find that over each sub-interval, we have

ˆ yk`1

yk

fpxqdx´
h

2

n
ÿ

i“0

αifpx
pkq
i q “ Cn

ˆ

h

2

˙2n`3

f p2n`2q
pξkq, for ξk P pyk, yk`1q.

Summing over all the intervals, we find that, using a discrete mean value theorem,
ˆ b

a

fpxqdx´Gn,mpfq “ Cn

ˆ

h

2

˙2n`2
b´ a

2m

m´1
ÿ

k“0

f p2n`2q
pξkq

“ Cn
b´ a

2

ˆ

h

2

˙2n`2

f p2n`2q
pξq, for some ξ P pa, bq.

The composite rules uses a total mpn ` 1q function evaluations in the Gauss-Legendre case and
mn` 1q in the Lobatto-Gauss-Legendre case (since the end points of sub-intervals in the interior
of ra, bs appear twice in the sum).

Remark 17.2. One can also construct composite rules based on other Gaussian rules (e.g., Cheby-
shev), but particular care should be taken to take the weight into account.

17.2 Examples

Let us construct explicitely some low-order Gaussian quadrature rules.

17.2.1 Case n = 0.

We check here that the Legendre-Gauss quadrature with 1 node is the midpoint rule. We seek the
node x0 and weight w0 such that the following quadrature rule has degree of precison 2 ¨ 0` 1 “ 1:

G0pfq “ w0fpx0q « Ipfq “

ˆ 1

´1

fpxqdx.

77

Method of Undetermined Coefficients. Let us form directly two equations corresponding to
the required exactness property:

G0p1q “ Ip1q Ñ w0 “

ˆ 1

´1

1dx “ 2,

G0pxq “ Ipxq Ñ w0x0 “

ˆ 1

´1

xdx “ 0 Ñ x0 “ 0.

This yields the quadrature rule
G0pfq “ 2fp0q,

which is just the midpoint rule applied to Ipfq.

Using Legendre polynomials. Using the theory from the last lecture, we can also construct
the node x0 as the only root of the Legendre polynomial L1pxq “ x, that is x0 “ 0, and compute
the corresponding weight as the integral of the corresponding elementary Lagrange interpolation
polynomial, `0pxq “ 1. Hence

x0 “ 0, w0 “

ˆ 1

´1

`0pxqdx “

ˆ 1

´1

1dx “ 2.

This is indeed the same result.

17.2.2 Case n = 1.

Let us seek now the Legendre-Gauss quadrature with 2 nodes x0, x1 and weights w0, w1 that
integrates exactly all polynomials of degree at most 3:

G1pfq “ w0fpx0q ` w1fpx1q « Ipfq “

ˆ 1

´1

fpxqdx.

Method of Undetermined Coefficients. Let us form directly four equations corresponding
to the required exactness property:

G1p1q “ Ip1q Ñ w0 ` w1 “

ˆ 1

´1

1dx Ñ w0 ` w1 “ 2,

G1pxq “ Ipxq Ñ w0x0 ` w1x1 “

ˆ 1

´1

xdx Ñ w0x0 ` w1x1 “ 0,

G1px
2
q “ Ipx2

q Ñ w0x
2
0 ` w1x

2
1 “

ˆ 1

´1

x2dx Ñ w0x
2
0 ` w1x

2
1 “ 2{3,

G1px
3
q “ Ipx3

q Ñ w0x
3
0 ` w1x

3
1 “

ˆ 1

´1

x3dx Ñ w0x
3
0 ` w1x

3
1 “ 0.

This is a nonlinear system of 4 equations for 4 unknowns. We can simplify its solution by guessing
that, by symmetry, x0 “ ´x1 and w0 “ w1, thus

2w1 “ 1 Ñ w0 “ w1 “ 1,

2w1x
2
1 “ 2{3 Ñ x1 “ ´x0 “

?
3

3

78

This yields the quadrature rule

G1pfq “ f

ˆ

´

?
3

3

˙

` f

ˆ

?
3

3

˙

.

Using Legendre polynomials. We can also construct the nodes x0, x1 as the two roots of the
Legendre polynomial L2pxq. We know that L0pxq “ 1, L1pxq “ x, and the three-term recurrence
for Legendre polynomials reads

pj ` 1qLj`1pxq “ p2j ` 1qxLjpxq ´ jLj´1pxq,

so 2L2pxq “ 3x ¨ L1pxq ´ L0pxq “ 3x2 ´ 1 or L2pxq “
1
2
p3x2 ´ 1q, which has roots x0, x1 “ ˘

?
3

3
.

Next, one can compute the corresponding weight as the integral of the corresponding elementary
Lagrange interpolation polynomials:

w0 “

ˆ 1

´1

x´ x1

x0 ´ x1

dx “
´1

2
?

3{3

ˆ 1

´1

ˆ

x´

?
3

3

˙

dx “
´1

2
?

3{3

´

0´ 2
?

3{3
¯

“ 1,

w1 “

ˆ 1

´1

x´ x0

x1 ´ x0

dx “
1

2
?

3{3

ˆ 1

´1

ˆ

x`

?
3

3

˙

dx “
1

2
?

3{3

´

0` 2
?

3{3
¯

“ 1.

This computation yields the same quadrature rule:

G1pfq “ f

ˆ

´

?
3

3

˙

` f

ˆ

?
3

3

˙

.

Last remarks on Integration

• Gauss quadrature requires usually some extra work to set up (mainly the computation of
the nodes and weights), but it is usually more stable and accurate than comparable Newton-
Côtes rules.

• Adaptive quadrature rules, whether built out of simple Newton-Côtes or high-order Gaussian
quadrature rules using an error estimator to guide the construction of a composite rule using
a non-uniform partition of the interval, will usually be more effective as a general-purpose tool
for accurate integration, especially when applied to a function which is not uniformly smooth
throughout the interval of interest. A review of error estimators and adaptive algorithms
can be found in the textbook, section 9.7.

• Acceleration methods such as Anderson acceleration and, in the case of quadrature, Romberg
integration, are useful tools to accelerate the convergence of low-order methods such as the
trapezoidal rule without requiring the additional work of setting up e.g. more complex
Gaussian quadrature rules.

• There exist methods for both improper integrals, where the interval of interest is not bounded,
as well as singular integrals where the function to be integrated blows up at a given point(s)
in the interval but whose integral remains finite, but such cases require special care.

79

Lecture 18: Numerical Differentiation. (Monday, October 25)

Let us now turn to the different question of approximating derivatives f 1pxiq at a set of nodes
x0, . . . , xn P ra, bs given values of fpxq at the nodes.
In principle, one could use the interpolating polynomial to compute such approximations:

f 1pxiq « pΠnfq
1
pxiq “

n
ÿ

k“0

fpxkq`
1
kpxiq.

However, this approach is both expensive (the computation of `1kpxiq requires Opn2q work in gen-
eral) and rather unstable because of the Runge phenomenon for high-order interpolation, so we
focus on efficient low-order schemes called finite differences.

Remark 18.1. One remarkable exception is interpolation using a set of Gauss quadrature nodes,
usually using a scaled set of Chebyshev-Gauss xj “ ´ cos rπpj ` 1{2q{pn` 1qs or Chebyshev-Gauss-
Lobatto nodes xj “ ´ cos rjπ{ns, j “ 0, . . . , n. This approach can be shown to yield an efficient,
stable scheme whose accuracy is limited only by the smoothness of the function to be approximated,
whether approximating the function, its derivatives or integrals, see Section 10.3 of the textbook
and the Matlab package Chebfun developed by Prof. Nick Trefethen (Oxford) for a set of Matlab
routines allowing to experiment with the power of Chebyshev interpolation.

In the following, we assume the nodes txiu are distributed uniformly on the interval ra, bs:

xi “ a` ih, i “ 0, . . . , n, h “
b´ a

n
.

18.1 Classical Finite Difference Schemes

Forward Finite Difference formula. The very definition of the derivative gives us a first hint
at an approximation:

f 1pxiq “ lim
hÑ0`

fpxi ` hq ´ fpxiq

h
.

Taking a fixed step size h ą 0 in this limit, such that xi ` h “ xi`1, we obtain a first numerical
approximation of the derivative, the forward finite difference:

f 1pxiq « uFDi “
fpxi`1q ´ fpxiq

h
, i “ 0, . . . , n´ 1.

80

Graphically, the formula computes the slope of the secant to the curve between xi and xi`1, which
is expected to converge to the slope f 1pxiq of the tangent to the curve as hÑ 0.
To estimate the error attached to this formula, we expand fpxq in a Taylor series of order 2 around
xi:

fpxi`1q “ fpxi ` hq “ fpxiq ` hf
1
ipxq `

h2

2
f2pξiq, ξi P pxi, xi`1q,

and reorder the terms we find

f 1ipxiq “
fpxi`1q ´ fpxiq

h
´
h

2
f2pξiq

that is an error formula:
f 1ipxiq ´ u

FD
i “

´h

2
f2pξiq,

where ξi P pxi, xi`1q. This shows in particular that the error is of order Ophq, which goes to zero
as hÑ 0.

Backwards finite difference formula. Next, we can also write a formula involving the previous
node xi´1:

f 1pxiq « uBDi “
fpxiq ´ fpxi´1q

h
, i “ 1, . . . , n.

Graphically, the formula computes the slope of the secant to the curve between xi´1 and xi, which
is expected to converge to the slope f 1pxiq of the tangent to the curve as hÑ 0.
This formula behaves very similarly to the previous one, and using a similar Taylor expansion of
order 2 around xi, we derive an error formula:

fpxi´1q “ fpxi ´ hq “ fpxiq ` p´hqf
1
ipxq `

p´hq2

2
f2pξiq, ξi P pxi´1, xiq,

and thus
f 1ipxiq ´ u

BD
i “

h

2
f2pξiq,

this time with ξi P pxi´1, xiq. In particular, the error has the same order (power of h) as the
forward finite difference formula.

A better approximation can be obtained by forming the average of the two previous formulas,
which is the so-called centered finite difference:

f 1pxiq « uCDi “
fpxi`1q ´ fpxi´1q

2h
, i “ 1, . . . , n´ 1.

81

Graphically, the formula computes the slope of the secant to the curve between xi´1 and xi`1. The
error term can be derived by using a Taylor series of order 3 for fpxq around xi: we find

fpxi`1q “ fpxi ` hq “ fpxiq ` hf
1
ipxq `

h2

2
f2pxq `

h3

6
f3pξ`i q, ξ`i P pxi, xi`1q,

fpxi´1q “ fpxi ´ hq “ fpxiq ` p´hqf
1
ipxq `

p´hq2

2
f2pxq `

p´hq3

6
f3pξ´i q, ξ´i P pxi, xi`1q,

such that
fpxi`1q ´ fpxi´1q “ 2hf 1ipxq `

h3

6

“

f3pξ`i q ` f
3
pξ´i q

‰

.

Dividing by 2h and reordering, we find that

f 1ipxq ´ u
CD
i “ ´

h2

6

“

f3pξ`i q ` f
3pξ´i q

‰

2
.

We now observe that by the intermediate value theorem / discrete mean value theorem, there is

ξi P pxi´1, xi`1q such that fpξiq “
rf3pξ`i q`f

3pξ´i qs
2

, which simplifies the error formula down to

f 1ipxq ´ u
CD
i “ ´

h2

6
f3pξiq.

This shows that the formula has order of accuracy Oph2q - much better than the forward or
backwards finite difference formulae.

End-point formulae To approximate the derivate at one of the end-points of the interval, only
one of the three formulae above is usable: the forward FD (left end-point) or the backwards FD
(right end-point). Neither of these formulae is as accurate as the centered finite difference, which
is why we introduce the left end-point formula and right end-point formula:

uLEP0 “
´3fpx0q ` 4fpx1q ´ fpx2q

2h
, uREPn “

fpxn´2q ´ 4fpxn´1q ` 3fpxnq

2h
.

Using Taylor expansions around x0 and xn respectively, one shows that both methods are Oph2q

accurate (homework).

Definition 18.2. • A finite difference formula in which only 2 points appear, e.g. xi and xi`1

(forward FD) or xi and xi´1, is called a 2-point finite difference formula.

• A finite difference formula in which 3 points appear, e.g. xi´1, xi and xi`1 (centered FD),
or xi, xi`1 and xi`2 (left end-point FD) is called a 3-point finite difference formula.

82

18.2 Method of Undetermined Coefficients

Given a point x where one wishes to approximate the derivative and neighboring nodes x ˘ h,
x ˘ 2h, ... we seek generically to compute approximations the derivative f 1pxq of the form of a
linear combination of the values of f at these nodes,

u “
1

h

m
ÿ

j“´m

Ajfpx` jhq,

with the right coefficients A´m, . . . , Am.

Example. the centered difference formula takes the form: m “ 1,

uCD “
1

h
pA´1fpx´ hq ` A0fpxq ` A1fpx` hqq

To determine the right coefficients, one seeks to find Aj such that the error f 1pxq ´ u has the
highest order of h possible. We achieve this by computing Taylor expansions of order at least
2m`1 (one term for each coefficient in the expansion, plus one for the error term) around x, here:

fpx´ hq “ fpxq ´ hf 1pxq `
h2

2
f2pxq ´

h3

6
f3pξ´q,

fpxq “ fpxq,

fpx` hq “ fpxq ` hf 1pxq `
h2

2
f2pxq `

h3

6
f3pξ`q.

We form the linear combination u as above with coefficients A´1{h, A0{h, A1{h: grouping terms
of the same order in h,

u “
A´1 ` A0 ` A1

h
fpxq`p´A´1`A1qf

1
pxq`

h

2
pA´1`A1qf

2
pxq`

h2

6
p´A´1f

3
pξ´q ` A1f

3
pξ`qq .

We seek coefficients such that u “ f 1pxq `Oph3q, leading to the three conditions

A´1 ` A0 ` A1 “ 0,

A1 ´ A´1 “ 1,

A1 ` A´1 “ 0.

We solve this linear system and find

A´1 “ ´1{2, A0 “ 0, A1 “ 1{2,

and we recovered the coefficients of the centered finite difference and its error formula:

uCD “
fpx` hq ´ fpx´ hq

2h
“ f 1pxq `

h2

6

pf3pξ´q ` f
3pξ`qq

2
“ f 1pxq `

h2

6
f3pξq.

18.3 Difference formulae for the second derivative.

Using the same ideas, we can also approximate higher derivatives, starting with f2pxiq at some
of the nodes. Using the method of undetermined coefficients, we propose the generic form for a
2m` 1-point formula:

f2pxq « v “
1

h2

m
ÿ

j“´m

Ajfpx` jhq,

with the right constants A´m, . . . , Am such that f2pxq ´ v has the highest order of h possible.

83

Example: 3-point centered formula with nodes x´ h, x and x` h (m “ 1).
Using the Taylor expansions of order 2m` 1 “ 3 around x from the previous paragraph, we form
the linear combination

v “
A´1 ` A0 ` A1

h2
fpxq `

´A´1 ` A1

h
f 1pxq `

1

2
pA´1 ` A1qf

2
pxq `

h

6
p´A´1f

3
pξ´q ` A1f

3
pξ`qq .

We seek coefficients such that u “ f2pxq `Ophq, leading to the three conditions:

A´1 ` A0 ` A1 “ 0,

A1 ´ A´1 “ 0,

A1 ` A´1 “ 2.

We solve this linear system and find

A´1 “ 1, A0 “ ´2, A1 “ 1,

and we find the centered finite difference for the second derivative:

vCD “
fpx´ hq ´ 2fpxq ` fpx` hq

h2
“ f2pxq `

h

6
p´f3pξ´q ` f

3
pξ`qq .

Now, we notice that, if f is of class C4 then f3pξ`q ´ f3pξ´q is itself of order Ophq, meaning the
formula is more accurate than indicated by the previous error formula. To show this, we write
Taylor expansions of order 4 for fpx˘ hq:

fpx´ hq “ fpxq ´ hf 1pxq `
h2

2
f2pxq ´

h3

6
f3pxq `

h4

24
f p4qpξ´q,

fpxq “ fpxq,

fpx` hq “ fpxq ` hf 1pxq `
h2

2
f2pxq `

h3

6
f3pxq `

h4

24
f p4qpξ`q.

Then we recompute the error formula:

vCD “
fpx´ hq ´ 2fpxq ` fpx` hq

h2
“ f2pxq `

h2

24

`

f p4qpξ´q ` f
p4q
pξ`q

˘

.

Using the intermediate value theorem, we find ξ P pxi´1, xi`1q such that fpξq “ f p4qpξ´q`f p4qpξ`
2

leading to

vCD “ f2pxq `
h2

12
f p4qpξq.

This shows that the 3-point finite difference formula for the second derivative is also of order Oph2q.

18.4 Application:

Finite Differences method for boundary value problems.
Assume we seek to find an approximate solution to a boundary value problem such as the Poisson
equation,

#

´ u2pxq “ fpxq for x P pa, bq,
upaq “ upbq “ 0,

for a given continuous function fpxq on ra, bs. To achieve this, we set up a grid of equidistant
points xj “ a ` jh for j “ 0, . . . , n, h “ b´a

n
, and we seek values u0 « upx0q, . . . , un « upxnq such

that

84

• u2pxjq « ´uj´1`2uj´uj`1

h2 “ fpxjq, for j “ 1, . . . , n´ 1, and

• u0 “ un “ 0 (the boundary conditions).

This yields a linear system of n` 1 equations for n` 1 unknowns:

1

h2

»

—

—

—

—

—

–

1 0 . . . 0
´1 2 ´1

.
´1 2 ´1

0 . . . 0 1

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

u0

u1
...

un´1

un

fi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

0
f1
...

fn´1

0

fi

ffi

ffi

ffi

ffi

ffi

fl

.

This system can be solved easily using e.g. Matlab’s backlash operator for the values u0, . . . , un.
This is the simplest example of the method of finite differences for solving ODEs and PDEs
in boundary value problems.

18.5 Pseudo-spectral differentiation (Chebfun).

If the function fpxq is very smooth, a high-order, high-accuracy alternative to finite differences
is the pseudo-spectral derivative

Dnf “
`

ΠCGL
n f

˘1
P ¶n´1,

where ΠCGL
n f is the interpolation operator using a well-chosen set of quadrature nodes, which is

here the Chebyshev-Gauss-Lobatto quadrature nodes on ra, bs, that is

xj “
a` b

2
`
a´ b

2
cos

ˆ

πj

n

˙

, j “ 0, . . . , n.

This set of points ensures stability of interpolation such that, on the interval r´1, 1s to keep
estimates simple, for any s ě 1 such that f has at least s derivatives in the space L2

w,

1. In the L2
w weighted norm }g}w “

´´ 1

´1
|gpxq|2 dx?

1´x2

¯1{2

, we have the error estimate:

}f ´ ΠCGL
n f}w ď Cn´s

˜

n
ÿ

k“0

}f pkq}2w

¸1{2

,

where the constant C ą 0 depends in general on s. This means that the interpolant converges
to f as nÑ 8 with order 1{ns.

2. In the 8-norm }g}8 “ sup´1ďxď1 |gpxq|, we have the interpolation error estimate:

}f ´ ΠCGL
n f}8 ď Cn1{2´s

˜

n
ÿ

k“0

}f pkq}2w

¸1{2

,

where the (possibly different) constant C ą 0 also depends in general on s. This means
that the interpolant also converges uniformly to f as n Ñ 8 with (slightly lower) order
1{nps´ 1{2q.

85

3. Finally, the derivative of ΠCGL
n f also converges to f 1 with order 1{ns´1, with the error

estimate

}f 1 ´Dnf}8 ď C 1n1´s

˜

n
ÿ

k“0

}f pkq}2w

¸1{2

,

where the constant C 1 ą 0 also depends in general on s.

Notice how the order of convergence is only limited by the smoothness of f , in particular if fpxq can
be differentiated an infinity of times, then the interpolant and its derivatives converge to f and its
derivatives faster than any power of n. This kind of convergence is termed "spectral convergence".

Implementation. We have the Lagrange formula for the interpolant,

ΠCGL
n fpxq “

n
ÿ

k“0

fpxkq`kpxq,

so the derivative takes the form

Dnfpxiq “
`

ΠCGL
n f

˘1
pxiq “

n
ÿ

k“0

`1kpxiqfpxkq.

The right-hand side can be formulated as a matrix-vector product, using the differentiation matrix
D with coefficients Dik “ `1kpxiq. Note that these coefficients have explicit formulae for the chosen
set of points (see the textbook), which makes this a very practical expression:

~f 1
loomoon

Vector of derivative values rf 1px0q, . . . , f 1pxnqs

“ D
loomoon

Differentiation matrix

~f
loomoon

Vector of function values rfpx0q, . . . , fpxnqs]

.

86

Lecture 19: Numerical Solution of ODEs. (Wednesday, Octo-
ber 27)

19.1 The Cauchy problem.

Given an interval I Ă R, an initial point t0 P I and value y0, and a function f : I ˆ R Ñ R, we
consider the initial value problem:
Find y P C1pIq such that:

#

y1ptq “ fpt, yptqq, for all t P I,
ypt0q “ y0.

(19.1)

Equivalent integral formulation Integrating directly these equations with respect to time
yields an equivalent problem: find y P C1pIq such that

yptq “ y0 `

ˆ t

t0

fps, ypsqqds.

Existence and Uniqueness of solutions. Before desigining numerical methods to approximate
the solution of this problem, we need to understand under which condition the Cauchy problem
is well-posed and stable. The following theorem provides a condition for the existence and
uniqueness of solutions.

Theorem 19.1. If fpt, yq is continuous as a function of the two variables t, y and satisfies a
Lipschitz condition in the variable y, i.e.

|fpt, y1q ´ fpt, y2q| ď L|y1 ´ y2|, (19.2)

for all t P I and y1, y2 in R, that is in the region D “ tpt, yq s.t. t P I, y P Ru,
then the Cauchy problem (19.3) has a unique global solution yptq on I.

The Lipschitz condition is obviously satisfied if the partial derivative fy exists and is bounded,
leading to the following result, which is slightly less general but easier to apply:

Corollary 19.2. The Cauchy problem (19.3) has a unique global solution yptq on I if fpt, yq is
continuous, differentiable with respect to y and

|fypt, yq| ď L, @pt, yq P D.

We skip both proofs.

Example. Let us show that the following Cauchy problem is well-posed:

y1 “ 1` t cosptyptqq, yp0q “ 0, t P r0, 2s.

Solution. Clearly, the function fpt, yq “ 1`t cosptyq is continuous. Furthermore, it is differentiable
with respect to y and

|fypt, yq| “ | ´ t
2 sinptyq| ď |t2| ď 4,

for all t P r0, 2s and y P R. By Corollary 2, this IVP has a unique solution.

87

19.2 Stability.

Now that we have some understanding of when the Cauchy problem has a unique solution, we
turn our attention to the conditionning of the problem, that is how much the solution varies if one
perturbs the data, that is y0, f . We investigate the perturbed problem:
Find z P C1pIq such that:

#

z1ptq “ fpt, zptqq ` δpt, zptqq, for all t P I,
zpt0q “ y0 ` δ0,

(19.3)

where the perturbations δpt, yq is continuous and satisfies a Lipschitz condition in y of the type (19.2)
to ensure this problem has a unique solution as in Theorem 19.1.

Definition 19.3. Let I be a bounded interval of R. The Cauchy problem (19.3) is called stable
in the sense of Lyapunov, or well-posed, if for any perturbations δ0, δ such that

|δ0|, |δpt, yq| ă ε, @pt, yq P D,

then there exists C ą 0 such that |yptq ´ zptq| ă Cε, for all t P I.

Letting uptq ´ zptq ´ yptq, we see that u satisfies
#

u1ptq “ fpt, zptqq ` δpt, zptqq ´ fpt, yptqq, for all t P I,
upt0q “ δ0.

so that, using the Lipschitz condition for fpt, yq: |u1ptq| ď L|uptq| ` ε. Now we integrate from t0
to t and obtain

uptq “ δ0 `

ˆ t

t0

u1psqds

|uptq| ď |δ0| `

ˇ

ˇ

ˇ

ˇ

ˆ t

0

|u1psq|ds

ˇ

ˇ

ˇ

ˇ

ď ε`

ˇ

ˇ

ˇ

ˇ

ˆ t

t0

L|upsq| ` εds

ˇ

ˇ

ˇ

ˇ

ď p1` |t´ t0|qε` L

ˇ

ˇ

ˇ

ˇ

ˆ t

t0

|upsq|ds

ˇ

ˇ

ˇ

ˇ

.

In order to conclude, we need the following result:

Lemma 19.4. (simplified Gromwall’s Lemma.) Let vptq ě 0 be a positive, continuous function on
I that satisfies the integral inequality

vptq ď A`B

ˆ t

t0

vpsqds, A,B ą 0.

Then vptq ď AeBpt´t0q for any t ě t0.

Proof. Define the function V ptq “ Be´Bpt´t0q
´ t
t0
vpsqds, then

V 1ptq “ B

„

vpsq ´B

ˆ t

t0

vpsqds



e´Bpt´t0q

ď ABe´Bpt´t0q,

88

where we have used the integral inequality. Furthermore, V pt0q “ 0 so that, integrating V 1 from
t0 to t,

V ptq “

ˆ t

t0

V 1psqds ď A

ˆ t

t0

Be´Bps´t0qdt “ A
“

1´ e´Bpt´t0q
‰

.

Recalling the definition of V ptq, this means

B

ˆ t

t0

vpsqds ď AeBpt´t0q ´ A,

and recalling the integral inequality vptq ď A`B
´ t
t0
vpsqds ď AeBpt´t0q, we have finished.

Let us resume our analysis of the perturbed solution. Let T “ maxtPI |t´t0|. If t ě t0, we conclude
from Gromwall’s lemma applied to vptq “ |uptq| with A “ p1` T qε and B “ L that

|uptq| ď p1` T qεeL|t´t0| ď p1` T qeLT ε,

and if t ă t0, we set t1 “ t0 ´ t ě t10 “ 0, and vpt1q “ |upt0 ´ t1q| such that

vpt1q “ |upt0 ´ t
1
q| ď p1` T qε` L

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ t0´t1

t0

|upsq|ds

ˇ

ˇ

ˇ

ˇ

ˇ

“ p1` T qε` L

ˆ t1

0

vpsqds.

Applying Gromwall’s lemma to vpt1q with t10 “ 0, A “ p1`T qε, B “ L yields the desired inequality

|uptq| “ vpt1q ď p1` T qeLT .

To conclude, we have found that for T “ maxtPI |t´ t0| and C “ p1` T qeLT , for any t P I,

|uptq| ď Cε.

We have proved:

Theorem 19.5. If f is continuous and satisfies the Lipschitz condition (19.2), then the Cauchy
problem is stable / well posed.

Remark 19.6. We have shown that the condition number of the problem is at most C “ p1`T qeLT ,
which grows exponentially fast in the interval width T . This means the problem may be quite
ill-posed on long intervals, depending on the properties of the problem, a result which should be
improved for particular problems to be really usable.

19.3 One-step numerical methods.

Fix T ą 0 and the integration interval I “ rt0, t0 ` T s. We seek to approximate the solution of
the Cauchy problem on I,

#

y1ptq “ fpt, yptqq, for all t P I,
ypt0q “ y0.

We form a set of regularly spaced nodes tn “ t0 ` nh, n “ 0, . . . , N with step size h “ T {N , and
we seek approximate solution values un « yptnq.
For convenience, we will denote

yn “ yptnq, fn “ fptn, unq.

89

19.3.1 Forward Euler method.

There are many ways to derive the following approach.

Using a forward finite difference formula. We seek that

un`1 ´ un
h

« y1ptnq “ fptn, ynq « fptn, unq,

Since we know u0 “ y0, this leads to the recurrence (Euler’s method):

u0 “ y0, un`1 “ un ` hfn, fn “ fptn, unq, for 0 ď n ď N ´ 1. (19.4)

Since we know the initial value exactly, we can understand the error committed during the first
step exactly!

u1 “ y0 ` hfpt0, y0q “ ypt0q ` hy
1
0pt0q « ypt0 ` hq “ ypt1q.

This corresponds to making a step of length h along the tangent of the curve yptq at t “ t0.

Using a Taylor expansion:

ypt1q “ ypt0 ` hq “ ypt0q ` hy
1
pt0q

looooooomooooooon

“u1

`
h2

2
y2pξq

leading to the error formula for the first step of Euler’s method:

y1 ´ u1 “
h2

2
y2pξq.

Integration and quadrature: Using the alternative integral formulation to the Cauchy prob-
lem:

ypt1q “ y0 `

ˆ t1

t0

fpt, yptqqdt

« y0 ` pt1 ´ t0qfpt0, ypt0qq
loooooooooomoooooooooon

leftrectanglerule

“ y0 ` hf0

“ u1.

These are three different interpretations of Euler’s method: using the forward finite difference
approximation to the derivatives of y at the nodes t0, . . . , tN ; and for the first step at least, a
Taylor expansion of order 1 of yptq around t0, or as an approximation of the integral formulation
using the left rectangle rule.

90

Algorithm 4 Forward Euler method.

Input: Function fpt, yq, initial data t0, y0, T , number of steps N .

Output: Approximate values u0, . . . , uN of the solution.

1: function ForwardEuler(f , t0, y0, N)
2: h “ T {N ;
3: u = zeros(N ` 1,1);
4: u0 “ y0;
5: for n “ 0 . . . N ´ 1 do
6: un`1 “ un ` fptn, unq;
7: end for
8: return u
9: end function

91

Lecture 20: Analysis of one-step methods, I. (Monday, Novem-
ber 2)

20.1 Some one-step methods

Remember that we are looking for approximations

un « yptnq,

where yptq is the solution to an initial value problem
#

y1ptq “ fpt, yptqq, for all t P rt0, t0 ` T s,
ypt0q “ y0.

(20.1)

Definition 20.1. A one-step numerical scheme for the approximation of (20.1) is one where
un`1 depends only on un.
If un`1 depends on un, un´1, . . . the scheme is multistep.

20.1.1 Forward Euler method

See the previous lecture.

20.1.2 Backwards Euler method

Instead of using a forward finite difference formula to approximate the derivatives y1ptnq, which
leads to the forward Euler method, one can use a backwards finite difference formula for y1ptn`1q,
and this leads to the backwards Euler method:

un`1 ´ un
h

« y1ptn`1q « fptn`1, un`1q.

This can be reformulated as the scheme:

un`1 “ un ` hfptn`1, un`1q.

Note that unlike the previous case, this equation does not define explicitely un`1,but rather defines
it implicitely as the solution of an equation (nonlinear, in general). In practice, a root-finding
scheme studied earlier in the semester, such as Newton’s method, may be used to find un`1.

92

Algorithm 5 Backwards Euler method.

Input: Function fpt, yq, initial data t0, y0, T , number of steps N .

Output: Approximate values u0, . . . , uN of the solution.

1: function BackwardsEuler(f , t0, y0, N)
2: h “ T {N ;
3: u = zeros(N ` 1,1);
4: u0 “ y0;
5: for n “ 0 . . . N ´ 1 do
6: SOLVE un`1 “ un ` hfptn`1, un`1q;
7: end for
8: return u
9: end function

20.1.3 Trapezoidal or Crank-Nicholson method

The forward and backwards Euler method can also be seen as left- and right-rectangle quadrature
rules applied to the integral formulation of the initial value problem:

yn`1 “ yn `

ˆ tn`1

tn

fpt, yptqqdt.

A more accurate approximation can be achieved by using a trapezoidal rule:

yn`1 « yn `
tn`1 ´ tn

2
rfptn, yptnqq ` fptn`1, yptn`1qqs ,

which leads to the Crank-Nicholson scheme:

un`1 “ un `
h

2
pfptn, unq ` fptn`1, un`1qq .

Just like the backwards Euler method, this formula defines un`1 only implicitely, as a solution to
a nonlinear equation.

20.1.4 Heun’s method

In order to avoid having to solve a nonlinear equation for un`1, we can replace its value on the
right-hand side of the Crank-Nicholson scheme by an approximation, obtained with one step of
the forward Euler method: un`1 « un ` hfptn, unq. This approximation yields Heun’s method:

un`1 “ un `
h

2
rfptn, unq ` f ptn`1, un ` hfptn, unqqs .

20.1.5 Explicit vs Implicit schemes

We have introduced four schemes so far. In two of them (the forward Euler and Heun’s method),
un`1 is given as an explicit formula in terms of un, while for the other two (backwards Euler and
Crank-Nicholson), un`1 is given as the solution of a nonlinear equation. This distinction can be
generalized to any scheme, including ones that are multistep.

93

Definition 20.2. A numerical method (or scheme) for the solution of the initial value prob-
lem (20.1) is called explicit if un`1 can be computed directly, as an explicit formula in terms of
the previous values uk, k ď n.
A scheme is called implicit if un`1 is given as the solution of an implicit, nonlinear equation.

20.2 Analysis of 1-step methods

Let us recall now the concepts introduced in the first chapter, when we investigated the general
idea of numerical schemes to solve equations or systems of equations for given data d of the form

F px, dq “ 0 with Fnpxn, dq “ 0,

where Fn is an equation than can be solved in practice for an approximate solution xn to the exact
solution x. In particular, we recall the general result that

CONSISTENCY + STABILITY ùñ CONVERGENCE.

20.2.1 Consistency.

We recall our original definition in Section 3.3:

Definition 20.3. A scheme is said to be consistent if

Fnpx, dq “ Fnpx, dq ´ F px, dq Ñ 0 as nÑ 8,

where x is the exact solution with exact data d.

We put this definition into action for one-step numerical schemes, which broadly take the form
un`1 “ Fhptn, unq. We can rewrite these as the set of equations:

u1 ´ Fhpt0, u0q “ 0,

u2 ´ Fhpt1, u1q “ 0,

...
un`1 ´ Fhptn, unq “ 0,

...
uN ´ FhptN´1, uN´1q “ 0.

To implement the idea of consistency, we plug in the exact solution yn “ yptnq into these equa-
tions, resulting in error terms on the right-hand side since the exact solution does not satisfy the
approximate scheme:

y1 ´ Fhpt0, y0q “ ε1,

y2 ´ Fhpt1, y1q “ ε2,

...
yn`1 ´ Fhptn, ynq “ εn`1,

...
yN ´ FhptN´1, yN´1q “ εN .

94

To sum up, consistency is concerned with the difference arising at each point tn`1 between yn`1 “

yptn`1q, the exact solution at tn`1, and ryn`1 “ Fhptn, ynq, the result of applying our numerical
scheme for one step only using the exact initial data yn “ yptnq:

εn`1 “ yptn`1q
loomoon

exact solution at tn`1

´ ryn`1
loomoon

result of 1 step of the numerical scheme with data yn “ yptnq

.

More precisely, by inspection of the schemes above we notice that one-step schemes broadly take
the form

un`1 “ Fhptn, unq “ un ` hΦptn, un, un`1;hq,

for n “ 0, . . . , N1, where the function Φptn, un, un`1;hq is called the increment function of the
time-stepping scheme. Note that Φ depends in practice on un`1 only for implicit schemes. In this
case, we can rearrange the equations above and divide by h on both sides:

un`1 ´ un
h

´ Φptn, un, un`1;hq “ 0 Ñ
yn`1 ´ yn

h
´ Φptn, yn, yn`1;hq “

εn`1

h
“ τn`1phq.

The new quantity τn`1phq measures the difference between the actual increment pyn`1´ ynq{h and
the approximate increment of the scheme Φptn, yn, yn`1;hq, both computed using values of the
exact solution yptq. We shall see that this definition of the consistency error is the relevant one in
the next sections.

Definition 20.4. The quantity τn`1phq “
εn`1

h
“

yn`1 ´ ryn`1

h
is called the local truncation

error or LTE.
The global truncation error is τphq “ max0ďnďN´1 |τn`1phq|.

Definition 20.5. • A one-step numerical scheme is called consistent if

lim
hÑ0

τphq “ 0,

i.e. the local truncation error converges to zero as hÑ 0, uniformly in n.

• A scheme has order p for p ě 1 if it is consistent and

|τn`1phq| ď Chp,

where C ą 0 is a constant independent of n, but which may depend on f , y0 and the scheme.

Applications: the forward Euler scheme. Here, we have un`1 “ un ` hfptn, unq, so ryn`1 “

yn ` fptn, ynq, so the difference reads

εn`1 “ yn`1 ´ ryn ` hfptn, ynqs .

Using a Talor expansion, we compute:

yn`1 “ yptn ` hq “ yptnq ` hy
1
ptnq

looooooomooooooon

“ryn`1

`
h2

2
y2pξnq,

such that we have the error formula
εn`1 “

h2

2
y2pξnq

95

for some ξn P ptn, tn`1q.
The local and global truncation errors of the forward Euler scheme thus read

τn`1phq “
h

2
y2pξnq, and τphq ď

h

2
max

ξPrt0,t0`T s
|y2pξq|.

The forward Euler scheme is consistent with order 1.

Backwards Euler scheme. The forward Euler scheme is consistent with order 1 (home-
work).

Crank-Nicholson scheme. Here, we have un`1 “ un `
h
2
rfptn, unq ` fptn`1, un`1qs, so the

increment function for this implicit scheme reads

ΦCNptn, un, un`1;hq “
1

2
rfptn, unq ` fptn`1, un`1qs .

Let us compute the difference between the exact pyn`1 ´ ynq{h and approximate increment Φ.
Using the integral formulation of the Cauchy problem and the error formula for the trapezoidal
rule, we have

yn`1 ´ yn
h

“
1

h

ˆ tn`1

tn

y1ptqdt

“
1

h

ˆ

tn`1 ´ tn
2

py1ptnq ` y
1
ptn`1qq ´

h3

12
y3pξnq

˙

“
1

h

ˆ

h

2
pfptn, ynq ` fptn`1, yn`1qq ´

h3

12
y3pξnq

˙

“ ΦCNptn, yn, yn`1;hq ´
h2

12
y3pξnq.

This computation gives us the local truncation error:

τn`1phq “
yn`1 ´ yn

h
´ ΦCNptn, yn, yn`1;hq “ ´

h2

12
y3pξnq, ξ P ptn, tn`1q,

such that τphq ď h2

12
}y3}8:

The Crank-Nicholson scheme is consistent with order 2.

Example: Heun’s method. Here, we have un`1 “ un`
h
2
rfptn, unq ` fptn`1, un ` hfptn, unqqs,

so the increment function for this explicit scheme reads

ΦHptn, un;hq “
1

2
rfptn, unq ` fptn`1, un ` hfptn, unqqs .

Heun’s method is consistent with order 2 (homework).

20.2.2 Zero-stability

The next concept on the road to convergence is the stability of the numerical scheme, that is its
resilience to perturbations of the data y0 and Φ. In parallel to the stability of the continuous
problem, we introduce the concept of zero-stability:

96

Definition 20.6. A one-step numerical scheme for the Cauchy problem (20.1) is called zero-
stable if, for h ă h0 small enough, there exists C ą 0 such that, for ε ą 0 small enough,
given perturbations |δn| ď ε for 0 ď n ď Nh “ T {h, then

|un ´ zn| ď Cε, n “ 0, . . . , Nh,

where un is the solution to the exact scheme
#

u0 “ y0,

un`1 “ un ` hΦptn, un, un`1;hq,
, n “ 0, . . . , Nh ´ 1, (20.2)

and zn is the solution to the perturbed iteration
#

z0 “ y0 ` δ0,

zn`1 “ zn ` h rΦptn, zn, zn`1;hq ` δn`1s , n “ 0, . . . , Nh ´ 1.
(20.3)

A zero-stable scheme is one that will keep under control the cumulative effect of errors occuring
at each step of the computation, such as rounding errors, errors due to solving approximately the
equations for implicit schemes, etc.
While the definition is quite complicated, it turns out that proving zero-stability is similar to
proving stability for the continuous Cauchy problem.

Theorem 20.7. Consider a one-step scheme with increment function Φptn, un, un`1;hq which is
Lipschitz-continuous w.r.t. un for h ă h0 small enough:

|Φptn, un, un`1;hq ´ Φptn, zn, zn`1;hq| ď Λ p|un ´ un`1| ` |un`1 ´ zn`1|q ,

where Λ is a constant independent of h, n and tn. Then the scheme is zero-stable.

Proof. Set wn “ zn ´ un, then by taking the difference between (20.3) and (20.2):

wn`1 “ wn ` h rΦptn, zn, zn`1;hq ` δn`1 ´ Φptn, un, un`1;hqs

“ wn ` h rΦptn, zn, zn`1;hq ´ Φptn, un, un`1;hqs ` hδn`1.

Using the Lipschitz condition from the theorem, we find that

|wn`1| ď |wn| ` hΛp|wn| ` |wn`1|q ` h|δn`1|,

hence if h ă h0 “ 1{2Λ, δn`1 ď ε, then

|wn`1| ď

ˆ

1` hΛ

1´ hΛ

˙

|wn| `
hε

1´ hΛ
.

Let us set e “ hε
1´hΛ

and K “ 2hΛ
1´hΛ

such that 1`K “ 1`hΛ
1´hΛ

, then we find by recursion,

|w0| “ |δ0|,

|w1| ď p1`Kq|w0| ` e “ p1`Kq|δ0| ` e,

|w2| ď p1`Kq|w1| ` e ď p1`Kq2|δ0| ` rp1`Kq ` 1s e,

|w3| ď p1`Kq|w2| ` e ď p1`Kq3|δ0| `
“

p1`Kq2 ` p1`Kq ` 1
‰

e,

...
|wn`1| ď p1`Kq|wn| ` e ď p1`Kqn`1

|δ0| ` rp1`Kq
n
` ¨ ¨ ¨ ` p1`Kq ` 1s e,

97

and using the geometric series formula, we find:

|wn`1| ď p1`Kq
n`1
|δ0| `

p1`Kqn`1 ´ 1

1`K ´ 1
e.

Since 1`K ď eK , we have the bound

|wn`1| ď eKpn`1q
|δ0| `

e

K

`

eKpn`1q
´ 1

˘

.

Re-inserting the values of the constants K, e, since tn`1 ´ t0 “ pn` 1qh we find

|wn`1| ď |δ0|e
2Λ

1´hΛ
ptn`1´t0q `

ε

2Λ

´

e
2Λ

1´hΛ
ptn`1´t0q ´ 1

¯

.

Finally, assuming δ0 ď ε, h ă h0 “ 1{2Λ and tn`1 ´ t0 ă T we obtain the desired zero-stability
bound:

|wn| ă

„

e4ΛT
`
e4ΛT ´ 1

2Λ



ε, n “ 0, . . . , N.

Note that, while this proves the desired result, the bound which is obtained is quite unsatisfying
- the constant grows exponentially fast with the length of the integration interval T , apparently
limiting the usefulness of the numerical methods to at most a few 1{Λ units of time before unac-
ceptable deviations from the exact solution.

Example. The forward Euler method is zero-stable provided fpt, yq satisfies the usual Lipschitz
condition (19.2) in y. Indeed, in this case

ΦFEptn, un, un`1;hq “ fptn, unq,

hence
|Φptn, un, un`1;hq ´ Φptn, zn, zn`1;hq| “ |fptn, unq ´ fptn, znq| ď L|un ´ zn|,

and the theorem applies with ΛFE “ L. The Crank-Nicholson method, indeed is also zero-stable

ΦCNptn, un, un`1;hq “
1

2
pfptn, unq ` fptn`1, un`1qq ,

hence

|Φptn, un, un`1;hq ´ Φptn, zn, zn`1;hq| ď
1

2
|fptn, unq ´ fptn, znq| `

1

2
|fptn`1, un`1q ´ fptn`1, zn`1q|

ď
L

2
p|un ´ zn| ` |un`1 ´ zn`1|q ,

so the theorem applies with ΛCN “ L{2. As an exercise, you can check that the backwards Euler
and Heun’s schemes are both zero-stable, and in general most numerical schemes are zero-stable
for reasonable functions fpt, yq.

98

Lecture 21: Analysis of One-Step Methods, II. (Wednesday,
November 4)

After defining and investigating in the previous section the consistency and zero-stability of one-
step numerical schemes for the Cauchy problem, we now turn to the convergence which results
from these two properties.

21.1 Convergence analysis

We use in this paragraph the notations from the previous lecture. Let us define the global error

en “ |yn ´ un|.

Definition 21.1. • A scheme is called convergent if

lim
hÑ0

„

max
0ďnďNh

|un ´ yn|



“ 0.

• It converges with order p if

|un ´ yn| ď Chp, n “ 0, . . . , Nh,

with a constant C ą 0 independent of h and n, but which may depend on the data f , y0, T
and the scheme itself.

Theorem 21.2 (Lax-Richtmeyer equivalence theorem.). A numerical scheme which is both con-
sistent and zero-stable is convergent.
Moreover, if |y0 ´ u0| “ Ophpq and the method has order p, then it converges with order p.

The global error thus has the same order Ophpq as the local truncation error.

Proof. We make the observation that, by definition of the local truncation error, the values of
the exact solution yn “ yptnq are in fact obtained by the following perturbation of our numerical
scheme:

#

y0 “ u0 ` py0 ´ u0q,

yn`1 “ yn ` hΦptn, yn, yn`1;hq ` τn`1phq, n “ 0, . . . , Nh ´ 1.

Now, if we define perturbations δn`1 “ τn`1phq and δ0 “ y0 ´ u0, this system has exactly the
form (20.3). Hence, if the scheme is zero stable, then for h ą 0 small enough such that h ă
h0 and |δn`1| “ |τn`1phq| ď ε “ max pτphq, |y0 ´ u0|q is small enough (which is possible since
limhÑ0 τphq “ 0) then

|un ´ zn| ă C max pτphq, |y0 ´ u0|q .

Hence, if the scheme is consistent and u0 Ñ y0, the scheme is also convergent. Furthermore, if the
scheme has order p and |y0 ´ u0| “ Ophpq we obtain

|un ´ zn| ď C pC 1hp `Ophpqq ď C2hp

for h small enough, so the scheme converges with order p and the second assertion is proved.

99

21.2 Analysis of the forward Euler scheme.

To see once more the steps of the convergence proof, let us show the convergence of the forward
Euler method without using the theorem above. We define

u0 “ y0, un`1 “ un ` hfptn, unq, yn “ yptnq,

and we set ryn`1 “ yn ` hfptn, ynq obtained with one step of Euler’s method with initial data yn.
The global error may be expanded as

en`1 “ |yn`1 ´ un`1| perror at tn`1q

ď |yn`1 ´ ryn`1|
loooooomoooooon

Local truncation error

` |ryn`1 ´ un`1|
loooooomoooooon

Propagated error

.

Now we consider each part of the error separately. First, the local truncation error

yn`1 ´ ryn`1 “ hτn`1phq,

which we computed earlier as τn`1phq “
h
2
y2pξnq, and second the propagated error

ryn`1 ´ un`1 “ yn ` hfptn, ynq ´ un ´ hfptn, unq

“ pyn ´ unq ` hpfptn, ynq ´ fptn, unqq,

which we bound using the Lipschitz condition on f ,

|ryn`1 ´ un`1| ď en ` hLen,

such that finally
en`1 ď hτphq ` p1` hLqen.

Now, we show by recursion on n,

e0 “ 0,

e1 ď hτphq ` p1` hLqe0 “ hτphq,

e2 ď hτphq ` p1` hLqe1 “ p1` p1` hLqqhτphq,

e3 ď hτphq ` p1` hLqe2 “ p1` p1` hLq ` p1` hLq2qhτphq,

en`1 ď hτphq ` p1` hLqen “ p1` p1` hLq ` ¨ ¨ ¨ ` p1` hLqnqhτphq

ď
p1` hLqn`1 ´ 1

1` hL´ 1
hτphq

ď
ehLpn`1q ´ 1

L
τphq.

Since hpn` 1q ď T and

τphq ď
Mh

2
where M “ max

t0ďξďt0`T
|y2pξq|,

we conclude with the bound

|yn ´ un| ď
eLT ´ 1

L

M

2
h, @n ě 0,

which shows that the Euler method converges (but the constant grows exponentially with L and
T).

100

Remark. If we further account for the possibility of rounding or approximation errors at each
step, leading to a perturbed solution:

ū0 “ y0 ` ε0, ūn`1 “ ūn ` hfptn, ūnq ` εn`1,

where ε0, . . . , εN are the errors, then zero-stability allows us to bound the deviation from the
numerical solution un in exact arithmetic, provided δn`1 “ εn`1{h is small enough. In particular,
we get a bound of the form

|ūn`1 ´ un`1| ď |ε0|e
Lptn`1´t0q `

ε

hL

`

eLptn`1´t0q ´ 1
˘

,

where ε “ maxjě1 |εj|. In conjunction to the error formula for |yn`1´un`1|, the triangle inequality
yields

|ūn`1 ´ yn`1| ď |ε0|e
Lptn`1´t0q `

ˆ

Mh

2
`
ε

h

˙

eLptn`1´t0q ´ 1

L
.

This shows that for h too small, the error will actually start to increase due to the accumulation
of small rounding errors at each step.

21.3 Absolute Stability

The notion of zero-stability introduced in the previous sections is a useful one in theory, since it
ensures robustness with regard to perturbations and convergence of the scheme, however it comes
with a caveat: the exponential dependence of the condition number on the length of the integration
interval, T , which persists even as h Ñ 0. In practice, one will be using a fixed time-step h ą 0,
and may want to compute solutions over a long time interval. We investigate in this paragraph
the behavior of numerical schemes in this regime, starting with the following.

Definition 21.3. The following linear Cauchy problem is called the test problem:
#

y1ptq “ λyptq, λ P C,
yp0q “ 1,

(21.1)

with the exact solution yptq “ eλt.

Now, if the real part of λ is strictly negative, then limtÑ8 yptq “ 0. This is not necessarily true
for the numerical approximation!

Definition 21.4. A numerical method is absolutely stable if |un| Ñ 0 as tn Ñ 8 when applied
to problem (21.1).

A method will be absolutely stable for certain values of h, λ and not for others.

Definition 21.5. The region of absolute stability is the subset of the complex plane

A “ tz “ hλ P C | lim
nÑ8

|un| “ 0u.

Examples

101

21.3.1 Forward Euler scheme.

Applied to problem (21.1), the forward Euler scheme yields
#

u0 “ 1,

un“1 “ un ` hfptn, unq “ un ` hλun “ p1` hλqun.

By recurrence, the numerical solution is given by the formula

un “ p1` hλq
n, @n ě 0,

and thus un Ñ 0 if and only if |1` hλ| ă 1, i.e. hλ lies within the open disk of center p´1, 0q and
radius 1.

Application. For a more general problem of the form y1 “ fpt, yq such that λ ď fy ă 0, the
forward Euler scheme will be unstable, i.e. develop oscillations of exponentially large amplitude,
unless we pick a timestep h ă 2{|λ|.

21.3.2 Backwards Euler scheme.

Applied to problem (21.1), the backwards Euler scheme yields
#

u0 “ 1,

un“1 “ un ` hfptn`1, un`1q “ un ` hλun`1 or un`1 “ p1´ hλq
´1un.

By recurrence, the numerical solution is given by the formula

un “ p1´ hλq
´n, @n ě 0,

and thus un Ñ 0 if and only if |1 ´ hλ| ą 1, i.e. hλ does not lie within the closed disk of center
p1, 0q and radius 1.

102

Lecture 22: Absolute Stability. Multistep Methods. (Mon-
day, November 9)

22.1 Absolute stability: some more examples.

Recall that we investigate the behavior of our numerical methods applied to the test Cauchy
problem

#

y1ptq “ λyptq,

yp0q “ 1,

which has exact solution yptq “ eλt. In particular, the region of absolute stability is the set
A “ thλ P C such that |un| Ñ 0u.

22.1.1 Trapezoidal or Crank-Nicholson scheme.

We find here the recurrence relation

u0 “ 1, un`1 “ un `
h

2
pλun ` λun`1q ,

leading to
`

1´ hλ
2

˘

un`1 “
`

1` hλ
2

˘

un, and by immediate induction, for hλ ‰ 2,

un “

˜

1` hλ
2

1´ hλ
2

¸n

.

Now, we observe that for any complex number z “ x` iy ‰ 2,
ˇ

ˇ

ˇ

ˇ

1` z

1´ z

ˇ

ˇ

ˇ

ˇ

ă 1 ô |1` z2
|
2
ă |1´ z2

|
2

ô x ă 0,

so the region of absolute stability is the entire left half-plane Rephλq ă 0. Note that this matches
exactly the set of parameters λ for which the exact solution also converges to zero.

22.1.2 Heun’s method

For this last example, we have the recurrence

u0 “ 1, un`1 “ un `
h

2
pλun ` λpun ` hλunqq ,

leading to un`1 “

´

1` hλ` phλq2

2

¯

un, and by immediate induction,

un “

ˆ

1` hλ`
phλq2

2

˙n

.

Hence the region of absolute stability is the set

AHeun
"

hλ P C such that
ˇ

ˇ

ˇ

ˇ

1` p1` hλq2

2

ˇ

ˇ

ˇ

ˇ

ă 1

*

.

The shape of this set is a somewhat elliptic set containing the disk centered at ´1 with radius 1
and contained in the rectangle with ´2 ď Rephλq ď 0 and ´1.75 ď Imphλq ď 1.75.

103

22.1.3 A-stability

Definition 22.1. A method is called A-stable if its region of absolute stability contains the entire
left half-plane C´ “ Repzq ă 0, i.e. the method is absolutely stable whenever Repλq ă 0.
If a method is not absolutely stable, it is called conditionally stable.

22.1.4 Summary

Order Type A-stable? Stability region
Forward Euler 1 Explicit No |1` hλ| ă 1
Backwards Euler 1 Implicit Yes |1´ hλ| ă 1
Crank-Nicholson 2 Implicit Yes Rephλq ă 1

Heun’s method 2 Explicit No |1` hλ` phλq2

2
| ă 1

Remark 22.2. • There are no A-stable (or unconditionnally stable) explicit schemes.

• Not all implicit methods are A-stable. There are also consistent yet unstable or conditionally
stable implicit schemes.

22.2 Multistep methods.

Previous methods are limited in the order of convergence because we only used values un, un`1

and fn “ fptn, unq, fn`1 “ fptn`1, un`1q. In order to gain accuracy, we may use the idea behind
interpolation: to gain accuracy, we can use more nodes. In particular, we can use some of the
previous values generated by the scheme: un, but also un´1, un´2, etc.

Notation In this entire section, we will use the notation

fn :“ fptn, unq.

Definition 22.3. A numerical scheme called q-step is a method where un`1 depends only on the
values un, . . . , un`1´q.

Examples.

• The midpoint method, based on the centered finite difference:

y1ptnq «
un`1 ´ un´1

2h
Ñ un`1 “ un´1 ` 2hfptn, unq, for all n ě 2.

This is an explicit 2-step scheme, since un`1 depends only on un and un´1.

• The Simpson method, based on the Simpson quadrature rule:

yptn`1q “ ytn´1 `

ˆ tn`1

tn´1

y1ptqdt « ytn´1 `
2h

6
rfptn´1, yn´1q ` 4fptn, ynq ` fptn`1, yn`1qs

leading to the scheme

un`1 “ un´1 `
h

3
rfn´1 ` 4fn ` fn`1s , for all n ě 2.

This is an implicit 2-step scheme, since un`1 depends only on un and un´1.

104

Remark 22.4. Any q-step method needs q initial values to take off:

u0, . . . , uq´1.

Since the initial value problem provides only one starting value u0 “ y0, one way to compute these
starting values is to resort to an explicit one-step method of the same order. For high-order multi-
step methods like the Adams method introduced below, this cannot be achieved with the schemes
of order 1 or 2 we have seen so far, but higher-order Runge-Kutta schemes can be used for this
purpose.

22.3 Explicit Adams-Bashforth schemes

Idea. To build a family of q “ p`1-step schemes, we use the nodes tn´p, . . . , tn to construct and
interpolatory quadrature approximating the integral

yn`1 ´ yn “

ˆ tn`1

tn

y1ptqdt “

ˆ tn`1

tn

fpt, yptqqdt.

To achieve this, we build a polynomial interpolating the values fptn´p, yn´pq, . . . , fptn, ynq at the
nodes tn´p, . . . , tn:

Ppptq “
p
ÿ

j“0

fptn´j, yn´jq`jptq,

where `jptq is the elementary Lagrange polynomial:

`jptq “
p
ź

k“0, k‰j

ˆ

t´ tn´k
tn´j ´ tn´k

˙

.

This allows us to build an interpolatory quadrature rule:
ˆ tn`1

tn

fpt, yptqqdt «

ˆ tn`1

tn

Ppptqdt “
p
ÿ

j“0

αjfptn´j, yn´jq, where αj “
ˆ tn`1

tn

`jptqdt.

Let us compute the coefficients αj more precisely. Introduce the change of variables t “ tn ` hs,
dt “ hds, and recall tn´j “ tn ´ jh, then

`jptq “
ź

k‰j

ptn ` hsq ´ ptn ´ khq

ptn ´ jhq ´ ptn ´ khq
“
ź

k‰j

k ` s

k ´ j
,

such that

αj “

ˆ tn`1

tn

`jptqdt “ h

ˆ 1

0

p
ź

k“0, k‰j

k ` s

k ´ j
ds

looooooooooomooooooooooon

“wj

.

Note that the coefficients wj only depend on j and p.
Replacing above the exact values yn´j by their approximation un´j, we obtain:

Definition 22.5. For any p ě 0, we define the pp` 1q-step Adams-Bashforth scheme:

un`1 “ un ` h
p
ÿ

j“0

wj fptn´j, un´jq
loooooomoooooon

:“fn´j

.

This relation defines an explicit scheme.

105

Examples.

• Case p “ 0: here, we interpolate at the single node tn, with P0ptq “ fptn, ynq. The result is
the forward Euler scheme:

un`1 “ un ` hfptn, unq.

• Case p “ 1: we build a linear interpolant at tn´1, tn: using the Newton formula,

P1ptq “ fptn, ynq `
fptn´1, yn´1q ´ fptn, ynq

tn´1 ´ tn
pt´ tnq,

and in particular

P1ptn`1q “ fptn, ynq ´ pfptn´1, yn´1q ´ fptn, ynqq “ 2fptn, ynq ´ fptn´1, yn´1q.

Because the trapezoidal rule integrates exactly polynomials of order 1, we have
ˆ tn`1

tn

P1ptqdt “
h

2
pP1ptnq ` P1ptn`1qq “

h

2
r3fptn, ynq ´ fptn´1, yn´1qs .

This leads to the two-step Adams-Bashforth scheme

un`1 “ un `
h

2
p3fn ´ fn´1q.

• Formulae for the 3-step (p “ 2) and 4-step (p “ 3) Adams-Bashforth schemes can be found
in the textbook.

Consistency analysis. Because these schemes are based on an interpolatory quadrature for
y1ptq, we may use the Lagrange interpolation error formula:

y1ptq “ Ppptq `
ypp`2qpξptqq

pp` 1q!
pt´ tn´pq ¨ ¨ ¨ pt´ tnq
loooooooooooomoooooooooooon

“ωp`1ptq

dt.

Integrating this formula from tn to tn`1 leads to the identity

yn`1 “ yn `

ˆ tn`1

tn

y1ptqdt “ yn `

ˆ tn`1

tn

Ppptqdt`

ˆ tn`1

tn

ypp`2qpξptqq

pp` 1q!
ωp`1ptqdt.

For the first term, we note that by the construction above,

yn `

ˆ tn`1

tn

Ppptqdt “ yn ` h
p
ÿ

j“0

wjfptn´j, yn´jq “ ryn`1,

where ryn`1 is the result of one step of the Adams-Bashforth scheme with exact initial values
yn´p, . . . , yn. Now for the second term, let t “ tn ` hs, we compute

ωp`1ptq “ pt´ tn´pq ¨ ¨ ¨ pt´ tn´1qpt´ tnq

“ rtn ` hs´ ptn ´ hpqs ¨ ¨ ¨ rtn ` hs´ ptn ´ hqr rtn ` hs´ tns

“ hp“1
ps` pq ¨ ¨ ¨ ps` 1qs.

106

In particular ωp`1ptq is positive on the interval rtn, tn`1s, so we can use the mean value theorem:
ˆ tn`1

tn

ypp`2qpξptqq

pp` 1q!
ωp`1ptqdt “

ypp`2qpξnq

pp` 1q!

ˆ tn`1

tn

ωp`1ptqdt

“
ypp`2qpξnq

pp` 1q!
hp`2

ˆ 1

0

ps` pq ¨ ¨ ¨ ps` 1qsds.

for some ξn P ptn, tn`1q. Define the constant

Cp`1 :“
1

pp` 1q!

ˆ 1

0

sps` 1q ¨ ¨ ¨ ps` pqds ě 0,

then we have shown that the local truncation error satisfies

yn`1 ´ ryn`1 “ Cp`1y
pp`2q

pξnqh
p`2 or τn`1phq “

yn`1 ´ ryn`1

h
“ Cp`1y

pp`2q
pξnqh

p`1.

This shows that the q “ p ` 1-step Adams-Bashforth schemes are consistent for any p ě 0, and
furthermore have order q.

107

Lecture 23: Multi-step methods: Adams-Moulton schemes and
analysis. (Monday, November 16)

23.1 Implicit Adams-Moulton schemes.

Using a similar idea as for the Adams-Bashforth schemes in the last lecture, we can use the nodes
tn´p, . . . , tn, tn`1 to construct an interpolatory quadrature rule approximating

yn`1 “ yn `

ˆ tn`1

tn

fpt, yptqqdt.

By writing an interpolant Qp`1ptq “
řp
j“´1 fptn´j, yn´jq, we find weights wj such that

yn`1 « yn ` h
p
ÿ

j“´1

w̄jfptn´j, yn´jq,

which are given by the formula

w̄j “

ˆ 1

0

p
ź

k“´1, k‰j

ˆ

k ` s

k ´ j

˙

ds.

Using the approximate values un « yn yields a numerical scheme:

Definition 23.1. For any p ě ´1, we define the pp ` 1q-step (for p ě 0) or 1-step (for p “ ´1)
Adams-Moulton scheme:

un`1 “ un ` h
p
ÿ

j“0

w̄jfn´j ` hw̄´1fn`1.

This relation defines an implicit scheme.

In general, a q-step Adams-Moulton method corresponding to p ě 0 has order q` 1. An exception
to this rule is made for p “ ´1, which corresponds to the backwards Euler scheme, an implicit
1-step scheme with order p` 2 “ 1.

Example

• Case p “ 0: we find the Crank-Nicholson scheme, which has order 2.

• Case p “ 1:

un`1 “ un `
h

12
p5fn`1 ` 8fn ´ fn´1q .

23.2 Stability and Convergence Analysis

The general formula for a linear p` 1-step method takes the form

un`1 “

p
ÿ

j“0

ajun´j

loooomoooon

linear combination of past u values

` h
p
ÿ

j“0

bjfn´j

looooomooooon

linear combination of past f values

`hb´1fn`1
looomooon

if implicit

. (23.1)

We define in general the local truncation error

τn`1phq “
yn`1 ´ ryn`1

h
, ryn`1 “

p
ÿ

j“0

ajyn´j ` h
p
ÿ

j“´1

bjfptn´j, yn´jq.

108

Example: the Adams scheme share the coefficients a0 “ 1, a1 “ ¨ ¨ ¨ “ ap “ 0.

• We have shown in the previous lecture that the explicit Adams-Bashforth scheme with q “
p` 1 step, with coefficients

b´1 “ 0, bj “ wj “

ˆ 1

0

p
ź

k“0, k‰j

ˆ

k ` s

k ´ j

˙

ds, j “ 0, . . . , p,

are consistent with order q.

• We can show that the implicit Adams-Moulton scheme with q “ p` 1 step, with coefficients

bj “ w̄j “

ˆ 1

0

p
ź

k“´1, k‰j

ˆ

k ` s

k ´ j

˙

ds, j “ ´1, . . . , p,

are consistent with order q ` 1.

23.2.1 What about stability?

Definition 23.2. A linear q-step method like (23.1) is called zero-stable if there exists K ą 0 such
that, given two sequences tununě0, tznuně0 generated by the scheme with different starting values
u0, . . . , up´1 and z0, . . . , zp´1, then

|un ´ zn| ď K max t|u0 ` z0| ` ¨ ¨ ¨ ` |up´1 ´ zp´1|u ,

for all n such that t0 ď tn ď t0 ` T , with K independent of h as hÑ 0.

Remark 23.3. This is a simplified version of the zero-stability notion introduced for one-step
methods; we could also include perturbations δn representing errors commited at each step of the
scheme (23.1) for n ě p.

This is a difficult property to check a priori. However, we may use results from the theory of
sequences generated by multi-step recurrence relations like (23.1). Let us introduce the charac-
teristic polynomials:

$

’

’

’

’

&

’

’

’

’

%

ρpzq “ zp`1
´

p
ÿ

j“0

ajz
p´j,

σpzq “ b´1z
p`1

`

p
ÿ

j“0

bjz
p´j.

(23.2)

We study the special case where fpt, yq “ 0 in the Cauchy problem, which as we will see is the
key to understanding (and justifies the name of) zero-stability. The values of the sequence tunu
are then generated from the recurrence relation

un`1 “

p
ÿ

j“0

ajuj “ a0un ` ¨ ¨ ¨ ` apun´p for n ě p,

given a set of initial values u0, . . . , up. In particular, we are interested in the behavior of this
sequence as nÑ 8.

109

Lemma 23.4. Consider the q “ p ` 1-th order homogeneous linear recurrence relation given by
coefficients a0, . . . , ap:

un`1 “

p
ÿ

j“0

ajuj,

where we assume ap ‰ 0, and its characteristic polynomial

ρpzq “ zp`1
´

p
ÿ

j“0

ajz
p´j.

Let z1, . . . , zl be the distinct (complex) roots of ρ with multiplicity m1, . . . ,ml such that m1` ¨ ¨ ¨ `

ml “ q. Then, for any set of initial values u0, . . . , up there exists polynomials prpnq of degree at
most mr ´ 1 for r “ 1, . . . , l such that

un “
l
ÿ

r“1

prpnqz
n
r , for all n ě 0.

In the particular case where mr “ 1 (the root zr is simple), then pr is a constant.

Proof. We only sketch the proof. Assume that the polynomial ρprq has q distinct, simple roots
z1, . . . , zq different from zero (since ap ‰ 0 and thus ρprq ‰ 0).
Clearly, any sequence of the form u

prq
n “ pzrq

n satisfies

zn`1
r ´

p
ÿ

j“0

ajz
n´j
r “ zn´pr

˜

zp`1
r ´

p
ÿ

j“0

ajz
p´j
r

¸

“ zn´pr ρpzrq “ 0.

Hence it satisfies the recurence relation. Furthermore, by linearity any linear combination of such
sequences

řq
r“1Crz

n
r also satisfies the recurrence relation. To show that any sequence satisfying

the recurrence relation and generated from initial values u0, . . . , up has this form, we may solve
the linear system

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

C1 ` ¨ ¨ ¨ ` Cq “ u0,

C1z1 ` ¨ ¨ ¨ ` Cqzq “ u1,

C1z
2
1 ` ¨ ¨ ¨ ` Cqz

2
q “ u2,

...
C1z

p
1 ` ¨ ¨ ¨ ` Cqz

p
q “ up.

The coefficient matrix has the specific Vandermonde form, and its determinant is the Vandermonde
determinant ∣∣∣∣∣∣∣∣∣

1 ¨ ¨ ¨ 1
z1 ¨ ¨ ¨ zq
...

...
zq´1

1 ¨ ¨ ¨ zq´1
q

∣∣∣∣∣∣∣∣∣ “
ź

răs

pzs ´ zrq ‰ 0.

Hence the system has a unique solution C1, . . . , Cq, showing that any sequence generated by initial
values u0, . . . , up and the recurrence relation writes as

uprqn “

q
ÿ

r“1

Crz
n
r .

110

If the polynomial has one (or several) roots with multiplicity mr ą 1, then the construction above
does not work since there are only l ă q distinct sequences of the form tpzrq

nuně0 where zr is a
root of ρpzq. To fix this, we include in the basis for each r “ 1, . . . , l the mr sequences:

upr,0qn “ znr , upr,1qn “ nznr , , . . . , upr,mr´1q
n “ npn´ 1q ¨ ¨ ¨ pn´mr ` 2qznr .

In total, this is a set of
řl
r“1mr “ q sequences. Some more complex computations show that

each such sequence satisfies the recurrence relation, and that the linear system allowing to find the
coefficients Cr,j for r “ 1, . . . , l and j “ 0, . . . ,mr from the initial values u0, . . . , up is well-posed.
Finally, we note that each linear combination

mr´1
ÿ

j“0

Cr,ju
pr,jq
n “ rCr,0 ` Cr,1n` ¨ ¨ ¨ ` Cr,mr´1npn´ 1q ¨ ¨ ¨ pn´mr ` 2qs znr

is of the form prpnqz
n
r with prpnq a polynomial in n of degree at most mr ´ 1.

Now that we understand the behavior of sequences generated by recurrence relations of the form
above, it follows that the roots of the characteristic polynomial ρpzq are critical for the zero-stability
property.

Theorem 23.5. (Root condition)
A linear multi-step method applied to a Cauchy problem where f satisfies a Lipschitz condition is
zero-stable if and only if all roots of the first characteristic polynomial are inside the closed unit
disk of C, with any lying on the unit circle being simple, i.e.

Zero-stability ô (Root condition): if ρpzq “ 0, then

$

’

&

’

%

|z| ď 1

and
ρ1pzq ‰ 0 if |z| “ 1.

Proof. Again, we sketch the proof, and in particular the necessary component of the equivalence
above. Consider the homogeneous case y1 “ 0 and ap ‰ 0. By Lemma 23.4, any numerical solution
of the scheme takes the form

un “
l
ÿ

r“1

prpnqz
n
r ,

with prpnq a polynomial of degree mr ´ 1 at most. Then |zr| ą 1, then for some choice of the
starting values, prpnq ‰ 0 and the sequence will grow to infinity like |zr|n. If |zr| “ 1 and mr ą 1
(the root is not simple), then the sequence will grow to infinity like nmr´1. Thus, as h Ñ 0 such
solutions will grow to infinity as tn “ t0 ` nh is fixed and the scheme is not zero-stable.
It is easy to extend this analysis to the case where ap “ 0 and z “ 0 is a (possibly multiple) root
of the characteristic polynomial. The other direction (sufficient) is quite technical, and we skip
the rest of the proof.

Examples

• The Euler methods are example of 1-step linear multistep methods: un`1 “ un ` hfn or
un`1 “ un ` hfn`1. In this case, p “ 0 and the characteristic polynomial is ρpzq “ z ´ 1.
It has a simple root z “ 1, and hence satisfies the root condition: the Euler methods are
zero-stable.

111

• The Adams methods are p` 1-step linear multistep methods of the form

un`1 “ un ` h
p
ÿ

j“0{´1

wjfn´j,

which have the characteristic polynomials

ρpzq “ zp`1
´ zp “ zppz ´ 1q,

which have a simple root at z “ 1 and a root at z “ 0 with multiplicity m “ p. The methods
hence satisfy the root condition, and they are zero-stable when applied to a Cauchy problem
with f satisfying a Lipschitz condition.

• The midpoint method: un`1 “ un´1`2hfn and the Simpson method: un`1 “ un´1`
h
3
pfn´1`

4fn ` fn`1q are both 2-step linear multistep methods with the characteristic polynomial

ρpzq “ z2
´ 1 “ pz ´ 1qpz ` 1q.

Both roots z “ ´1 and z “ 1 are simple, hence the methods satisfy the root condition and
they are zero-stable.

• Finally, consider the three-step method

un`1 “ un´2 ` un´1 ´ un ` 2hpfn´1 ` fnq,

which has the characteristic polynomial ρpzq “ z3 ` z2 ´ z ´ 1 “ pz ` 1q2pz ´ 1q. There is
a simple root at z “ 1 and a double root at z “ ´1, so the method is not zero-stable (and
hence practically useless).

112

Lecture 24: Multistep methods (the conclusion). Runge-Kutta
methods. (Wednesday, November 18)

24.1 Consistency for multistep methods.

Recall

Definition 24.1. We define the local truncation error

τn`1phq “
yn`1 ´

”

řp
j“0 ajyj ` h

řp
j“´1 bjfptn´j, yn´j

ı

h
whereyk “ yptkq,

and the global truncation error
τphq “ max

0ďtn`1´t0ďT
τn`1phq.

Theorem 24.2. The p`1-step linear multistep method (23.1) is consistent, i.e. limhÑ0 τphq “ 0
if the exact solution yptq is twice continuously differentiable on rt0, t0`T s and the coefficients satisfy
the algebraic conditions

p
ÿ

j“0

aj “ 1, b´1 `

p
ÿ

j“0

pbj ´ jajq “ 1,

or in terms of the characteristic polynomials ρpzq “ zp`1 ´
řp
j“0 ajz

p´j and σpzq “
řp
j“´1 bjz

p´j,

ρp1q “ 0, σp1q “ ρ1p1q.

Remark 24.3. Note that 1 must be a root of the first characteristic polynomial to achieve consis-
tency. To satisfy the root condition (and the method to be zero-stable), this root must be simple,
meaning that

σp1q “ ρ1p1q ‰ 0.

Proof. Let us expand yptq and y1ptq in Taylor expansions of order 1 and 0 respectively around tn:

yn´j “ yptn ´ jhq “ yn ´ jhy
1
n `Oph

2
q,

y1n´j “ y1n `Ophq ` fptn, ynq `Ophq.

Hence, since fptn´j, yn´jq “ y1ptn´jq “ y1n´j,

ryn`1 “

p
ÿ

j“0

ajyn´j ` h
p
ÿ

j“´1

bjy
1
n´j “

p
ÿ

j“0

ajpyn ´ jhy
1
nq ` h

p
ÿ

j“´1

bjy
1
n `Oph

2
q,

yn`1 “ yn ` hy
1
n `Oph

2
q,

such that, grouping terms with like powers of h,

τn`1phq “
yn`1 ´ ryn`1

h
“

1

h

˜

1´
p
ÿ

j“0

aj

¸

yn `

˜

1´

«

p
ÿ

j“´1

bj ´
p
ÿ

j“0

jaj

ff¸

y1n `Ophq.

To obtain τn`1phq Ñ 0, we thus need
řp
j“0 aj “ 1 and

řp
j“´1 bj ´

řp
j“0 jaj “ 1, which are the two

algebraic conditions of the theorem.

Remark 24.4. By taking Taylor expansions of higher order, one finds further algebraic conditions
which are necessary to increase the order of the method.

113

24.2 Dahlquist’s Theorems

To conclude this section on the analysis of multistep methods, the following two theorems give
necessary and sufficient conditions about convergence and order of accuracy of the methods.

Theorem 24.5 (Dahlquist Equivalence Theorem). For a consistent method of the form (23.1),
zero-stability is equivalent to convergence.
Furthermore, if the solution has p` 1 continuous derivatives, the truncation error satisfies τphq “
Ophpq and the initial conditions satisfy |uj ´ yj| “ Ophpq for j “ 0, . . . , p´ 1 then the global error
satisfies en “ |un ´ yn| “ Ophpq, i.e. the method is convergent with order p.

Theorem 24.6 (Dahlquist Barrier Theorem). The order of accuracy of a zero-stable q-step method
cannot exceed q ` 1 if q is odd, and q ` 2 if q is even.

Examples.

• The Crank-Nicholson method achieves the highest order of accuracy (2) for a 1-step method.

• The Simpson method achives the highest order of accuracy (4) for a 2-step method.

Remark 24.7. To be useful in practice, each method need also fulfill absolute stability for small
enough time-steps. We do not study this topic in detail, but refer to the textbook for more details.

24.3 Higher-order single-step methods.

24.3.1 The Taylor methods.

The first idea to make a one-step method more accurate is to exploit the Taylor expansion around
tn:

yptn`1q “ yptn ` hq

“ yptnq ` hy
1
ptnq `

h2

2
y2ptnq ` ¨ ¨ ¨ `

hp

p!
yppqptnq ` . . .

We know how to approximate yn with un, y1n with fptn, unq but what about the higher order
derivatives? Using the multi-variate chain rule, we have the sequence

yptq

y1ptq “ fpt, yptqq

y2ptq “
d

dt
fpt, yptqq “

Bf

Bt
pt, yptqq ` y1ptq

Bf

By
pt, yptqq “

:“Dp1qf
hkkkkikkkkj

pft ` ffyqpt, yptqq

y3ptq “
d

dt
rpft ` ffyqpt, yptqqs “

“

ftt ` ftfyffty ` fpfty ` f
2
y ` ffyyq

‰

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

:“Dp2qf

pt, yptqq
...

We can thus define expressions Dp1qf , Dp2qf , Dp3qf , . . . , Dppqf of any order, in terms of f and its
partial derivatives only, such that ypp`1qptq “ Dppqfpt, yptqq. This allows to build a method:

un`1 “ un ` hfptn, unq `
h2

2
Dp1qfptn, unq ` ¨ ¨ ¨ `

hp

p!
Dpp´1qfptn, unq

114

which has by construction the local truncation error

yn`1 “ ryn`1 `
hp`1

pp` 1q!
yp`1

pξnq, tn ă ξn ă tn`1,

and thus satisfies τn`1phq “ Ophpq.

Issues: While this construction allows to build methods that have any order, they suffer from
some disadvantages:

• Requires to compute high-order derivatives of f ;

• Formulae are very complex;

• Hard to generalize to systems of equations.

24.3.2 Runge-Kutta methods.

Goal: we seek to achieve high-order approximation without the use of derivatives of f .

Main idea: build a quadrature using s nodes tn`c1h, . . . , tn`csh with 0 ď c1 ď c2 ď ... ď cs ď 1
to approximate ˆ tn`1

tn

y1ptqdt « hb1y
1
ptn ` c1hq ` ¨ ¨ ¨ ` hbsy

1
ptn ` cshq,

with quadrature weights a1, . . . , as. Since the values y1ptn ` ckhq are not known or approximated
by the values uj, we will construct appropriate approximations

Kj « y1ptn ` cjhq “ fptn ` cjh, yptn ` cjhqq for j “ 1, . . . , s.

Remark 24.8. In most cases, we have c1 “ 0 such that K1 “ fptn, unq.

General Runge-Kutta scheme. From the construction above, we expect to write the scheme
as

un`1 “ un ` hF ptn, un, h; fq,

where F is an increment function built as
$

’

’

’

’

&

’

’

’

’

%

F ptn, un, h; fq “
s
ÿ

j“1

bjKj,

Ki “ f

˜

tn ` cih, un ` h
s
ÿ

j“1

aijKj

¸

for i “ 1, . . . , s.

s is called the number of stages of the Runge-Kutta method.

115

Butcher tableau / array. The Runge-Kutta method above is fully specified by the knowledge
of the coefficients c1, . . . , cs (the nodes of the quadrature), b1, . . . , bs (the weights of the quadrature),
and aij for i, j “ 1, . . . , s, the coefficients of the linear combinations such that un`h

řs
j“1 aijKj «

yptn ` cihq. We organize these sps` 2q coefficients in the shape of the following Butcher tableau:

c A
bT

c1 a11 a12 ¨ ¨ ¨ a1s

c2 a21 a22 ¨ ¨ ¨ a2s
...

...
...

...
cs as1 as2 ¨ ¨ ¨ ass

b1 b2 ¨ ¨ ¨ bs

Note that by consistency, we expect the following conditions on the rows of the tableau to hold:

• ci “
řs
j“1 aij for all i “ 1, . . . , s,

•
řs
j“1 bj “ 1

Such methods are in general implicit, in the sense that the coefficients Ki have to be computed by
solving (coupled) systems of nonlinear equations. However, if aij “ 0 for any j ě i, then each Ki

may be computed in terms of K1, . . . , Ki´1 only, and the method is explicit. This corresponds to
a strictly lower triangular Butcher tableau.

116

Lecture 25: Runge-Kutta methods: conclusion. (Monday, Novem-
ber 23)

Recall the general form of a Runge-Kutta scheme associated to a Butcher tableau

c A
bT

c1 a11 a12 ¨ ¨ ¨ a1s

c2 a21 a22 ¨ ¨ ¨ a2s
...

...
...

...
cs as1 as2 ¨ ¨ ¨ ass

b1 b2 ¨ ¨ ¨ bs

• First, we compute the values Ki satisfying,

Ki “ f

˜

tn ` cih, un `
s
ÿ

j“1

aijKj

¸

, j “ 1, . . . , s,

• Next, we compute the next iterate,

un`1 “ un ` h
s
ÿ

j“1

bjKj.

25.1 Second-order, two-stage explicit Runge-Kutta schemes

We base these methods on a quadrature rule
ˆ tn`1

tn

y1ptqdt « h rb1y
1
ptnq ` b2y

1
ptn ` c2hqs .

(Note that we fixed the first node, c1 “ 0.)
The method of undetermined coefficients can be applied to find appropriate values of b1, b2, c2 such
that the quadrature above has degree of exactness 1. This means

ˆ tn`1

tn

1dt “ h “ h rb1 ¨ 1` b2 ¨ 1s “ hpb1 ` b2q, or b1 ` b2 “ 1;

and
ˆ tn`1

tn

tdt “
t2n`1 ´ t

2
n

2
“ htn `

h2

2
“ h pb1tn ` b2ptn ` c2hqq “ hpb1 ` b2qtn ` b2c2h

2,

so b1 “ 1 ´ b2 and c2 “ 1{p2b2q. Let us define β “ b2 “
1

2c2
, such that β ě 1

2
. We have found a

family of quadrature rules:
ˆ tn`1

tn

y1ptqdt “ h

„

p1´ βqy1ptnq ` βy
1

ˆ

tn `
h

2β

˙

.

Next, we have
$

&

%

y1ptnq “ fptn, ynq,

y1
ˆ

tn `
h

2β

˙

“ f

ˆ

tn `
h

2β
, y

ˆ

tn `
h

2β

˙˙

.

117

such that these values may be approximated, using Euler’s method for the second one:
$

&

%

y1ptnq « fptn, unq,

y1
ˆ

tn `
h

2β

˙

« f

ˆ

tn `
h

2β
, un `

h

2β
fptn, unq

˙

.

This construction amounts to the following Runge-Kutta scheme:
$

&

%

K1 “ fptn, unq,

K2 “ f

ˆ

tn `
h

2β
, un `

h

2β
K1

˙

,

and then
un`1 “ un ` h rp1´ βqK1 ` βK2s .

This defines a family of two-stage, order 2 Runge-Kutta methods for any choice of β ě 1{2. The
Butcher tableau for these methods writes:

0
1

2β
1

2β

1´ β β

(Note that an empty cell in the tableau indicates a zero value.)
Some popular choices of β are:

Examples.

• Case β “ 1, or c2 “ 1{2: here

0
1
2

1
2

0 1

This creates the scheme
$

&

%

K1 “ fptn, unq,

K2 “ f

ˆ

tn `
h

2
, un `

h

2
K1

˙

, un`1 “ un ` hK2,

or in a single line,

un`1 “ un ` hf

ˆ

tn `
h

2
, un `

h

2
fptn, unq

˙

.

This is another ’midpoint method’.

• Case β “ 3{4 or c2 “ 2{3:

0
2
3

2
3
1
4

3
4

118

such that
$

&

%

K1 “ fptn, unq,

K2 “ f

ˆ

tn `
2h

3
, un `

2h

3
K1

˙

, un`1 “ un `
h

4
pK1 ` 3K2q,

or in a single line,

un`1 “ un `
h

4

ˆ

fptn, unq ` 3f

ˆ

tn `
2h

3
, un `

2h

3
fptn, unq

˙˙

.

• Case β “ 1{2 or c2 “ 1:

0
1 1

1
2

1
2

such that
$

&

%

K1 “ fptn, unq,

K2 “ f ptn ` h, un ` hK1q , un`1 “ un `
h

2
pK1 `K2q,

or in a single line,

un`1 “ un `
h

2
pfptn, unq ` f ptn ` h, un ` hfptn, unqqq .

This is just Heun’s method!

25.2 Analysis of Runge-Kutta methods

We can use the one-step formalism here to find most answers.

Zero-stability: By Theorem 20.7, this is equivalent to the increment function F ptn, un, h; fq
satisfying a Lipschitz condition. Because any finite combination of Lipschitz functions (sum,
product, composition) also satisfies a Lipschitz condition, this is usually OK, hence Runge-Kutta
methods will be zero-stable.

Consistency: This is usually studied case by case, using multivariate Taylor series. As an
example, let us investigate the midpoint method

$

&

%

K1 “ fptn, unq,

K2 “ f

ˆ

tn `
h

2
, un `

h

2
K1

˙

, un`1 “ un ` hK2,

Let us expand to the 3rd order yptq around tn, using the formulae derived above in the Taylor
methods section:

yn`1 “ yptn ` hq “ yn ` hy
1
n `

h2

2
y2n `

h3

6
y3n `Oph

4
q

“ yn ` hf `
h2

2
pft ` ffyq `

h3

6
pftt ` ftfy ` 2ffty ` ff

2
y ` f

2fyyq `Oph
4
q,

119

where all functions are implicitely evaluated at the point ptn, ynq. On the other hand, plugging
into the scheme the exact value yn, we find

K1 “ f,

K2 “ f `
h

2
ft `

hK1

2
fy `

1

2

ˆ

h

2

˙2

ftt `
h

2

hK1

2
fty `

1

2

ˆ

hK1

2

˙2

fyy `Oph
3
q

“ f `
h

2
pft ` ffyq `

h2

8

`

ftt ` 2ffty ` f
2fyy

˘

`Oph3
q.

Hence,

ryn`1 “ yn ` hf `
h2

2
pft ` ffyq `

h3

8

`

ftt ` 2ffty ` f
2fyy

˘

`Oph4
q.

Taking the difference between this expansion and that of yn`1, we find

yn`1 ´ ryn`1 “yn ` hf `
h2

2
pft ` ffyq `

h3

6

`

ftt ` ftfy ` 2ffty ` ff
2
y ` f

2fyy
˘

´ yn ´ hf ´
h2

2
pft ` ffyq ´

h3

8

`

ftt ` 2ffty ` f
2fyy

˘

`Oph4
q

“
h3

24

`

ftt ` 2ffty ` f
2fyy

˘

`
h3

6

`

ftfy ` ff
2
y

˘

`Oph4
q.

This yields the leading term in the local truncation error:

τn`1phq “
yn`1 ´ ryn`1

h
“
h2

24

`

ftt ` 2ffty ` f
2fyy

˘

`
h2

6

`

ftfy ` ff
2
y

˘

`Oph3
q.

In particular, the method is consistent of order 2.

Convergence: Runge-Kutta methods are convergent as a by product of their zero-stability and
consistency, per the Lax-Richtmeyer Theorem 21.2.

25.2.1 Classical Fourth-Order Runge-Kutta Method

One of the most useful Runge-Kutta methods is given by the Butcher tableau:

0
1{2 1{2
1{2 0 1{2
1 0 0 1

1{6 2{6 2{6 1{6

This corresponds to the 4-stage explicit Runge-Kutta scheme:
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

K1 “ fptn, unq,

K2 “ f

ˆ

tn `
h

2
, un `

h

2
K1

˙

,

K3 “ f

ˆ

tn `
h

2
, un `

h

2
K2

˙

,

K4 “ f ptn ` h, un ` hK3q ,

un`1 “ un `
h

6
pK1 ` 2K2 ` 2K3 `K4q.

120

	Introduction. (Monday, August 24)
	Basics of error analysis.
	Generic form of a problem.
	Absolute and relative errors.

	Machine representation of Numbers: Floating-point systems.
	Decimal system.
	General floating-point system:
	Finite number systems

	IEEE Format: Rounding errors and floating-point arithmetic. (Wednesday, August 26)
	IEEE standard.
	Rounding of real numbers.
	Machine arithmetic.

	Conditioning, Stability, Convergence. (Monday, August 31)
	Condition number
	Errors in a practical situation.
	Concepts of consistency, stability, and convergence

	Rate and Order of Convergence. (Wednesday, September 2)
	Asymptotic rate of convergence
	Order notation
	Order notation for functions.
	Root of a function

	Rootfinding (continued). (Monday, September 7)
	Root conditioning.
	Geometrical Rootfinding Methods
	Bisection method
	Newton's method

	Rootfinding (continued, again). Fixed Points. (Wednesday, September 9)
	Newton's method; methods of the Secant, chord and Regula Falsi.
	Newton's method
	Secant method.
	Chord method
	Regula Falsi.

	Analysis framework: the fixed-point iterations.
	Fixed points.
	Fixed point iterations.

	Analysis of Rootfinding Methods. (Monday, September 14)
	Convergence analysis of fixed-point iterations (cont.)
	Application of fixed-point iteration analysis to 1-point rootfinding methods.
	Analysis of two-point rootfinding methods
	Discussion: stopping criteria.

	Analysis of the Secant method. (Wednesday, September 16)
	Polynomial Interpolation. (Monday, September 21)
	Motivation. Horner's method
	Polynomial interpolation.
	Lagrange representation.

	Polynomial Interpolation II. (Wednesday, September 23)
	Error in the Lagrange formulation.
	An example.
	Newton representation
	Properties of the Newton divided differences.

	Interpolation Error. Piecewise interpolation. (Monday, September 28)
	Interpolation error and divided differences.
	Error investigation: Equidistant points.
	Piecewise Lagrange interpolation.
	Cubic Splines
	Properties of Cubic Spline Interpolants

	Hermite Interpolation. (Monday, October 5)
	Lagrange-type formula.
	Newton-type formula.
	Example.

	Numerical Integration. (Wednesday, October 7)
	Closed Newton-Côtes quadrature rules.

	Open Newton-Côtes and Composite Rules. (Monday, October 12)
	Open Newton-Côtes Quadrature Rules
	Example: the midpoint rule.
	Error analysis.
	Composite Quadrature Rules.
	Composite Trapezoidal Rule.
	Composite Simpson's Rule.

	Composite Rules (cont.) Approximation theory, Orthogonal Polynomials. (Wednesday, October 14)
	Last comments on composite rules
	Composite Midpoint Rule.
	General Composite Newton-Côtes Rule

	Approximation of Functions
	The Weierstrass approximation theorem
	Scalar product. Generalized Fourier Series on (-1,1)

	Families of orthogonal polynomials.

	Chebyshev and Legendre polynomials; Gaussian Quadrature. (Monday, October 19)
	Chebyshev polynomials.
	Legendre polynomials.
	Gaussian quadrature

	Numerical Quadrature: the Conclusion. (Wednesday, October 21)
	Integration over arbitrary intervals.
	Examples
	Case n = 0.
	Case n = 1.

	Numerical Differentiation. (Monday, October 25)
	Classical Finite Difference Schemes
	Method of Undetermined Coefficients
	Difference formulae for the second derivative.
	Application:
	Pseudo-spectral differentiation (Chebfun).

	Numerical Solution of ODEs. (Wednesday, October 27)
	The Cauchy problem.
	Stability.
	One-step numerical methods.
	Forward Euler method.

	Analysis of one-step methods, I. (Monday, November 2)
	Some one-step methods
	Forward Euler method
	Backwards Euler method
	Trapezoidal or Crank-Nicholson method
	Heun's method
	Explicit vs Implicit schemes

	Analysis of 1-step methods
	Consistency.
	Zero-stability

	Analysis of One-Step Methods, II. (Wednesday, November 4)
	Convergence analysis
	Analysis of the forward Euler scheme.
	Absolute Stability
	Forward Euler scheme.
	Backwards Euler scheme.

	Absolute Stability. Multistep Methods. (Monday, November 9)
	Absolute stability: some more examples.
	Trapezoidal or Crank-Nicholson scheme.
	Heun's method
	A-stability
	Summary

	Multistep methods.
	Explicit Adams-Bashforth schemes

	Multi-step methods: Adams-Moulton schemes and analysis. (Monday, November 16)
	Implicit Adams-Moulton schemes.
	Stability and Convergence Analysis
	What about stability?

	Multistep methods (the conclusion). Runge-Kutta methods. (Wednesday, November 18)
	Consistency for multistep methods.
	Dahlquist's Theorems
	Higher-order single-step methods.
	The Taylor methods.
	Runge-Kutta methods.

	Runge-Kutta methods: conclusion. (Monday, November 23)
	Second-order, two-stage explicit Runge-Kutta schemes
	Analysis of Runge-Kutta methods
	Classical Fourth-Order Runge-Kutta Method

