Lecture 1: Introduction. (Monday, August 24)

1.1 Basics of error analysis.

1.1.1 Generic form of a problem.

Most problems can be cast into the form

F(z,d) =0, (1.1)

where
e [is a functional relation,
e 1 are the variables,
e (is the data.

Both z and d could be numbers, vectors, or even functions (where could be an ODE or a
PDE). The distinction between the variables and the data is usually one depending on context and
physics (e.g. data could be coefficients such as mass, local speed of sound or light, etc; variables
would usually be position, velocity, electric or magnetic fields...)

A direct problem is one where F' and the data d are given, and the goal is to find the variables
x.

Conversely, an inverse problem is one where F' and x are given, and the goal is to recover the
data d.

Examples.

1. Ohm’s law:
U=RI —~U—-RI=0

Knowing the data U and R allows to predict the current intensity I.

2. Mass-spring system:
mii+ ku — F(t) =0

Knowing the data m, k, F'(t) allows to predict the motion u(t).

3. Solve a polynomial equation:
5

2’ — 2> +a=0
Note how the first two problems can be solved explicitely with a little work, however the last
one cannot be solved explicitely - there is no formula for the solution z(a).

Definition 1.1. A problem of the form (1.1) is well-posed, or stable, if it admits a unique
solution x depending continuously on the data d.

A central question for mathematicians, especially in analysis, the determination of whether a
problem is well-posed may sometimes seem fruitless - after all, it does not imply any actionable
knowledge about the solution! However, in practice a problem which is ill-posed indicates a
pathology in the model which numerical methods will not cure, and at worst leads to wrong
predictions.

1.1.2 Absolute and relative errors.

Let = be some number, vector, or object in a vector space V equipped with a norm || - |, and

some approximation of x in V.
Definition 1.2. e The error is defined as the quantity éx = T — x.
e The absolute error is the positive number
[oz] = |2 — .
o [fx # 0, the relative error is the strictly positive number

[0x] _ |& = x|
]]

Example. Take the numbers p = 0.2 x 107, p = 0.15 x 1074, Then

bx = —5 x 1079, |62 =5 x 1079,

(1.2)

Notice how the absolute error is quite small, yet the relative error is large! The converse can also

happen.

1.2 Machine representation of Numbers: Floating-point systems.

1.2.1 Decimal system.

A standardized way to write a number, using the usual decimal notation:
Tr = (—1)8 X (Odldg .. .dt ..) X]_Oe,
where

e s¢€{0,1} determines the sign of z,

e The significant digits dy,... are such that the first d; € {1,...,9} cannot be zero, and

dy€{0,...,9} for t > 2.

e The exponent e € Z is a signed integer.
Example. /2 = (—1)° x (.14142135...) x 10'.

1.2.2 General floating-point system:

The above notation can be generalized in a straightforward way to accomodate for a general basis

£ = 2: we write

v=(=1)"x (0didy...dp...) x B° = (=1)"x > dip
=1

where

e 3 > 2 is an integer: the base.

1.2.3 Finite number systems

Computers must allow a finite amount of memory, and cannot store infinite numbers of digits (e.g.
7). Only a fixed number of digits can be stored; usually the base used is 2 (except in that Russian
ternary computer). The standard format is then

exponent

—— t
= (=1)* x(0.dyds...d € = (—1)* d; 37, 1.4
= (-1 x(0.didy...dy) x 3 ()Xgﬁ (1.4)
sign mantissa base

where
e t is the precision, the number of digits stored;
e ¢, the exponent, must be in the interval L <e < U.

Each combination of sign, digits and exponent corresponds to a unique real number; all such
combinations, plus zero, form a finite number system F of real numbers, determined by 3, t, L,
and U.

Remark 1.3. Note that the number zero needs a special representation in this system, because the
constraint dy # 0 prevents a number x of the form (1.4]) to take the value 0.

Cardinality. The set F(8,t, L,U) < R is finite, and the number of its elements is

2x (B—1)x B x (U-L+1)+1.

Largest positive number. The largest element in F(5,t, L, U) is

M= 301 % B = (s) = P =

Smallest positive number. The smallest positive element in F(5,t, L,U) is

m = +(.100...0)5 x ¥ = g,
t

Range. The finite number system defined above is therefore contained in the three intervals:
F(3,t,L,U) < [-(1 =787, =p*] u {0y u [B*71, (1 = p79)6"].

Distribution. Fixing s = 0 and e = 1, and taking all combinations of digits yields all numbers
in F(B,t, L,U) in the interval [1, 8), which read

L1+ 6%t ..., 8—p""

This is a total of (8 — 1)8%~Y numbers, evenly distributed in [1, 3) with gap size 3.
Similarly, there are (3 —1)3""! numbers distributed in each interval [3¢~!, 8¢) for L < e < U, with
gap size ¢! increasing as the exponent e increases.

Definition 1.4. The machine epsilon c); = 37 is the distance between 1 and the next floating-
point number, or equivalently the gap size in the interval [1,f3).
The unit roundoff or machine precision is u = %5M = %51_t.

Remark 1.5. When using a binary system (6 = 2), the formulae above simplify to:

Cardinality: |F(2,t,L,U)| = (U — L +1)2" + 1,

Extreme numbers: M = (1 — 2742V, m = 2L=1

e Gap size in the interval [1,2): 27,

Unit roundoff: u = 27

Lecture 2: IEEE Format: Rounding errors and floating-point
arithmetic. (Wednesday, August 26)

2.1 IEEE standard.

Computers typically use a standardized single-precision or double-precision IEEE representa-
tion:

Single-precision format.

|s (1 bit) | e (8 bits) | mantissa (23(+1) bits)

Total of 32 bits.

1 bit is for the sign,

8 bits for the exponent ranging from (in base 2) 00000001 to 11111110,
i.e. from 1 to 27 4+ 26 4+ ... 4 2! + 0 = 254. This number is shifted by a fixed value of —127
resulting in the effective range of values for the exponents:

L=-126<e<U =127,

23 bits for the mantissa, with the leading digit d; = 1 hidden, so an effective precision or
number of binary digits t = 24.

Double-precision format.

| s (1bit) | e (11 bits) | mantissa (52(+1) bits)

e Total of 64 bits.
e 1 bit is for the sign,

e 11 bits for the exponent ranging from (in base 2) 00000000001 to 11111111110,
i.e. from 1 to 210+2% +---+ 214+ 0 = 2046. This number is shifted by a fixed value of —1022
resulting in the effective range of values for the exponents:

L=-1021 <e<U =1024,

e 52 bits for the mantissa, with the leading digit d; = 1 hidden, so an effective precision or
number of binary digits ¢ = 53.

Special numbers:
e +0 with exponent 0...0 (all zeros) and mantissa 1...1 (all ones),
e +0o with exponent 1...1 (all ones) and mantissa 0...0 (all zeros),

e NaN with exponent 1...1 (all ones) and at least one nonzero mantissa digit.

t L U U m M
Summary: Single 24 | —126 | 127 | 27% ~6-107% | 5.88-107%7 | 1.7-10%
Double | 2 | 53 | —1021 | 1024 | 273~ 1-10710 | 2.2.1072% | 1.8 - 10398

[N ReN

Relative error and distribution of floating-point numbers. We can compute the absolute
and relative distance between one floating point number and the next largest. This is easiest seen
by writing
x = (=1)*m(z)p ", (2.1)
h h i i i ki lues f; =1 i 1
where m(z), the mantissa, is an integer taking values from 5'~' (corresponding to (100000000)s
t

and 3! — 1.

e Absolute: for x in the form (2.1, it is clear that the next largest floating-point number is
located at Az = (—1)3°*. Hence

|Az| = g
depends only on the exponent e.
e Relative: we find
Ar| gt 1
x| mx)set m(z)

which depends only on the mantissa, decreasing in each interval from 3'~* to roughly 3.

2.2 Rounding of real numbers.

Consider a system of numbers F(5,¢, L, U). Given a real number x = (—1)*(0.d; ... didiy1 ...)5 55,
how to best represent this number in F?
One reasonable option is to round to the nearest number in F: assuming L < e < U, we define

(—1)5(0.dy ... dy)g- B°, ifdy < B/2,
fl(x) = Y (=1)*(0.dy .. dy +0.0...01)5- 85, if dyyy > B/2. (2.2)

t

This rounding introduces an absolute error:

p

o fifa)] < Do = Lot
and a relative error: o — Fila) Pge-th
T <2 Be-1 - §Bl_t —u
Property 2.1. If z € R is such that m < |x| < M, then
fl(z) =z (1+9) with 0] < u, (2.3)

where we recall u = %,@1*'5 = %5M 1s the round-off unit.

Remark 2.2. An alternative policy, at the cost of greater rounding error, would be to define
rounding by simple chopping of the extra digits:

flchop<~r) = (—1)8(0d1 N dt)ﬁ . 56.

6

Overflow: if |z| > M or e > U, then the rounding operation fl(x) is not yet defined. Typically,
this is handled by an interruption, or by setting

fl(z) {—Foo x> M,

-0 < —M.

Underflow: if 0 < |z| < m, or e < L, then underflow happens (unless sub-normal numbers are

included.) Usually, we set
+0 O0<z<m
l(z) = ’
fi@) {—O -m <z <0.

2.3 Machine arithmetic.

We next need operations that will approximate exact arithmetic within the finite number systems
defined above. For example, suppose

x= (0. ..2)5 - B, y=0y1...y)5 B

Assume that e, > e,. In order to perform the addition x + y or substraction — y, need to align
exponents, by shifting y:

ezfey
Next, we carry out addition on the mantissa:

r+y=0z...2¢4+0.0...0y...y¢)5 - B,

ex—ey

but since the sum usually has more than ¢ nonzero digits, one will round the end result to the
nearest floating-point number:

r®y = fl(z +y).

Remark 2.3. If z,y > 0 the + operation can then be carrier out by just simply chopping y
to its first t digits after shifting the exponent; otherwise, or for the — operation, the machine
implementation needs a so-called extra rounding digit to perform an accurate rounding.

Definition 2.4. The approximate floating point operations will be denoted respectively @, O, ®,
®. They are defined respectively using the model above: for - being any of the operations +, —, X
or =,

FozOQy=flz-y), forxyecF(tLU),
or more generally for any real numbers x,y by

FBJ,’@y:fl(fl(l’)fl(y)), fO’/’l’,yER.
The considerations above show that the following property holds:

Proposition 2.5. Error model. If - is one of the operations above, and no overflow occurs then

rQy=(z-y)(1+59), forz,yeF(B,t,L,U), [0 <u.

Remark 2.6. For any 0 < 6 < u, we have 1® 0 = 1, whereas 1® 6 > 1 for § > u.
What happens for 6 = u depends on the precise rounding policy: with the choice above (2.2)) we get
1®u > 1, whereas on most computer systems one would obtain 1 ®u = 1.

Proposition 2.7.
o Commutativity: we have a®@b=bDa, aOb=bO0a anda®b=b®a.

e Non-associativity: in general, a® (bDc) # (a®b)@Dc and a® (b®c¢) # (a®b) R c.

Example. Takez =27% y = 1and z = —1 in a binary floating-point system with t = 3, L = —3
and U = 2. The floating-point representation of =, y and z is

x = +(.100)y x 27, y = +(.100)y x 2, z = —(.100), x 2!,
and one computes directly

@y = fl(+(.0000100); x 2" + (.100)2 x 2") = fI (+(.10001)3 x 2') = (.100), x 2",
(z@y)®z = fl(+(.100 — .100), x 2') = 0.

On the other hand,
y®z = fl(+(.100 —.100)5 x 2") = 0,
@ (y®z) = fl(+(.100)s x 272 +0) = +(.100), x 27,
Thus (z@y) Dz #2® (YD 2).

Additional rules:

(£0) ® (%) = +oo; (£0) © (F0) = +o0;
(£0) @ (Foo) = Nal; (£0) & (+w0) = NaN;
(£20) ® (%) = +o0; (+90) ® (Foo) = Foo;
a® (£0) = +oo; (a® (+o0) = £0 (a > 0);
0©0= NalN; w®w = NalN;
NaN ©a = NaN.

Lecture 3: Conditioning, Stability, Convergence. (Monday,
August 31)

3.1 Condition number
We remember the general abstract form of an model or problem to solve:
F(x,d) = 0. (3.1)

We will assume that this problem is well-posed: for any data d, there exists a unique solution .
This implies the existence of the resolvent map, an (a priori) unknown but continuous function
x = G(d) mapping the data to the corresponding solution. Given some relevant data, we seek to
investigate the behavior of the problem in its vicinity, i.e. with hopefully small perturbations dd
and dx of the data and variables, respectively:

F(x + dx,d + éd) = 0. (3.2)

Assumption 3.1. We will assume that the resolvent map is Lipschitz continuous in the neighbor-
hood of some interesting data d, i.e. there is no(d) > 0 and Ko(d) > 0 such that

[0d]| < €0 = |6z] < Koldd].
Under this condition, we may define two condition numbers:

Definition 3.2. The absolute condition number is the quantity

: [ox] _ . |G(d) - G(d)]
Kaps(d) = lim sup —- = lim sup - : (3.3)
sa—o [0d] iy |d —d|
Definition 3.3. The relative condition number is the quantity
K(d) = timeup 1PVE] 16 — GG 5

= p ~
sa—o [0dll/[d] 4, |d —dl/ldl

The condition number measures how much a perturbation in the data d propagates to the variables
x. A problem is said to be ill-conditioned if K(d) is infinite or big for some relevant data d ("big"
being a subjective, problem-dependent qualification). In the case where G is differentiable at d,
the condition numbers can be expressed in terms of the derivative of G with respect to d, defined
as
G(d +dd) — G(d) = G'(d) - 6d + o(|od)).
Then we have
ld]

Kasld) = [G'@] and K(d) = rorm

|G ()] (3.5)

Example. Let us study the conditioning of the root of a polynomial as a function of the coeffi-
cients. Let p(x) = a9 + a1z + - - - + a,2™, with a simple root A, such that p(z) = (z — A)q(z) with
some polynomial ¢(x) such that g(\) # 0. We see A as a function of one of the coefficients,

A= flas),

and we want to compute the corresponding conditioning numbers K,(a;) and K (a;). Solution.
The map f(a;) is our resolvent map, so we need to compute f’(a;). We know that p(\) = 0, so

=1 g . i
=p'(A)
” X A
f/ a;) = — and Kabs a;) =
@) =% () = 1]
The relative condition number is then
ag [N

K(al) = |ai|/|)‘|Kab8(ai) - ‘p’()\)‘ :

3.2 Errors in a practical situation.

Given a difficult problem of the form (3.1]), one usually sets up a sequence of more approachable
problems,

F.(dy,z,) =0 (3.6)
with the expectation that the x,’s can be used as approximations to the exact solution x because
T, — T as d, — d.

It is sometimes useful to categorize errors:

e The absolute backward error (data) ||d,, — d|,

e the absolute forward error (solution) ||x,, — x|, which can be further decomposed into

T, —r = Gu(d,)—-Gd) = Gud,) -G, + G(d,) —G(d)
. ~- J %{_/
computational error propagated data error

9
&

10

Note that the propagated data error can be measured using the condition number of the problem,
since

|G(dn) = G(d)| 5 K(d)|dy —d].

3.3 Concepts of consistency, stability, and convergence

In this section, we introduce in a very general setting the three most important concepts for the
rigorous analysis of numerical methods.

Definition 3.4. A scheme of the form (3.6)) is said to be consistent if
F.(z,d) = F,(x,d) — F(xz,d) —> 0 as n— o,

where x is the exact solution to the problem (3.1) with exact data d.

Example. Faced with the problem of computing the integral I of some function f(t) over an
interval (a,b), which can be cast into the form ([3.1]) with

FUJ7=I*/wﬂﬂﬁ=Q

one can decompose the interval into n uniformly smaller intervals a = t; <ty <--- <t, = b and
use the midpoint rule to compute a numerical approximation I,, of the integral over each piece
with a finite number of function evaluations:

n—1
Fy(L /)= L—HY f (M) ,

k=1 2

where H = =% and ty =a+ (k — 1)H.
Because it is known that the midpoint rule’s accuracy is of order H? over each small interval of
size H, one can show that I,, — I as n — 0. As a result, one easily checks that

FN(Imf)_F([?f)_)O?

where [is the exact integral of the function over (a, b), as long as f is continuous, i.e. this numerical
integration method is consistent for continuous functions.

Definition 3.5. A scheme of the form (3.6) is said to be stable if it admits finite condition
numbers:

K,(d,) = limsup-—->-—- = limsup ,
sdn—0 |10 |/]dy 5dn—0 [od,|| |Gr(d)]
and
- ezl . |G\.(d + 0d,,) — G (d)|
Kopsn(dy, = limsup-—— = limsu ,
o) = s T T lod,]

which are bounded as n — o0, such that asymptotically we define

K™™(d) = limsup K,(d) and e (d) = lim sup Kops 5 (d).

abs
n—o0 n—00

11

Remark 3.6. A numerical scheme can unstable even if the underlying problem is itself stable
(well-conditioned)!

Definition 3.7. A scheme of the form (3.6)) is said to be convergent if the computed sequence of
solutions converges to the exact solution:

lim lim G,(d + dd,) = G(d)

n—00 §,—0
or more formally, for any € > 0 there exists ny(e) and do(ng,e) > 0 s.t.

¥n > no(e), Vod, s.t. [0d,| < So(no,e), |G(d) — Gu(d + 6,)] <e.

Relations between stability and convergence Convergence is clearly the main criterion
for a numerical method to be useful, as it ensures that the result of an simulation is indeed an
approximation of the exact solution, which can be improved with additional computational power.
The usefulness of the stability concept is that it is usually much easier to investigate and prove, and
stability is a necessary condition in order for a numerical method to be convergent. In addition,
one of the most useful observations in numerical analysis is the statement

STABILITY + CONSISTENCY = CONVERGENCE.

The following non-rigorous reasoning is the template for a "proof" of this fundamental statement,
which can be made more precise for specific methods - in particular for the numerical solution of
ODEs:

"Proof." Our goal is to control the absolute error |z(d) — z,(d + dd,)|. Using the triange
inequality, we decompose it as:

|#(d) = xn(d + 0dy) | < |2(d) — 2n(d)| + [2n(d) — 20 (d + 0dy)] (3.7)

and we observe that the first term on the right-hand side of (3.7) can be controlled thanks to the
stability assumption:
|z (d) — n(d + ddy)| < Kabs,n(d)[0n]-

Thus it remains to control the second term on the right-hand side of (3.7). We will assume that
F(z,d) is locally differentiable:

Fua(d),) — Fyn(d),d) = 2

IRCORENC)

where £ is "between" x and x,,. Assuming that the derivative % is an invertible linear map (which
is reasonable, as the problem should be stable and hence well-conditioned) leads to the identity

o)) = (G

)_ (Fu(e(d).d) — Fu(aa(d). d))

(&d)

Passing to the norms, and using the fact that F),(z,(d),d) = F(z(d),d) = 0 leads to the identity

-1
(ﬁ,d))

12

2(d) = za(d)] = H (a{i

| Fn(x(d), d) = F(x(d),)|

Now consistency ensures that this last term goes to zero as n — oo, which completes the proof.
Formally, given £ > 0, using consistency we may choose ny(¢) such that

ox l(e,d)

Then, given K (ng, d) = sup,,>,,, Kavsn(d) we select dg(no,) such that K (ng, d)dy < €/2. Then (3.7)
yields

| Fn(x(d), d) — F(x(d), d)]| < /2

for all n = ne(e).

|x(d) — z,(d + 6d,,)| < e. O

13

Lecture 4: Rate and Order of Convergence. (Wednesday, Septem-
ber 2)

While convergence is an important notion, the usefulness of a numerical method really depends on
how fast convergence happens. We introduce in this lecture a formalism to quantify the accuracy
and efficiency of a numerical method.

First we recall:

Definition 4.1. If o, is a given numerical sequence, we define the limsup and liminf as

limsup o, = lim (sup{a,; n = N})eRuU {xown}, (4.1)
n—00 N—aw
and
liminf o, = lim (inf{a,; n > N})eRuU {fow}. (4.2)
n—o N—0

4.1 Asymptotic rate of convergence

Definition 4.2. Suppose we generate a sequence xy indexed by k = 0, such that limg_, z) = a.
Such a sequence is said to converge to a with order p > 1 if
Tpe1 —
M <0, Yk > ko,
| — af?
for some fixed real number C' > 0 and ko large enough. In this case, we define

. ’xk+1 — Oé’
r = limsup ———

9

and we classify the sequence as follows:

p=... ‘ r=... ‘ the sequence (or method) convergence rate is...
1 r=1 Sub-linear.
1 0<r<l1 Linear.
r s called the convergence factor.
l<p<?2 |0<r<ow Super-linear.
2 0<r<ow Quadratic.
2<p<3 |0<r<ow Super-quadratic.
3 O<r<ow Cubic.
2<p<3 0<r<ow Super-cubic.
integer p>1|0<r <o " order.

Some examples.
e Let s >0 and consider the sequence {u,}n=0 = {n~*}. We have u,, — 0, and

Uny1 — 0] nP® nP—1)s

lu, — 0P (n+1)5 (1L+1/n)s

For p > 1, this expression converges to +o0, but for p =1 we have

hmw — lim ; -1
|u, — 0] n—w (1+1/n)°

Thus the sequence u,, converges sublinearly with convergence factor 1.

14

e Consider the sequence {v,}n,=0 = {e "}. Again v, — 0, and

[Vns1 — 0] e+

_ 6pn—(n-i—l) _ e(p—l)n—l.
v, — 0]P e~pn

For p > 1, the expression converges to +o0, and for p = 1 it converges to e~!. Hence the
sequence v, converges linearly (order 1) with convergence factor 1/e.

o Let {w,}n=0 be a sequence defined by the relations

1

Wy, +w,
wo = a > 0, wnﬂz% form = 0.
It can be shown that w, — 1 asn — o0, for any value of the initial term o > 0. Furthermore,
one has
w?:—2w, +1 (w, —1)?
Wp+1 — 1= =
2w, 2w,
% 1 1 1
w —
f Wnn =1y L1

n—00 |wn — 1|2 n—00 2wn 2

The convergence rate of the sequence wy, is thus quadratic (order 2).

4.2 Order notation

Definition 4.3. Let r, be a given numerical sequence of strictly positive numbers converging to
zero: T, > 0 and lim, ., r, = 0. Given another sequence {c,}n=0 with lim, ., a, = « in some
normed space.
If the quantity

lim su —”Oén — OCH
p
n—oo Tn

=K (4.3)
is finite (0 < K < o), we say that

e «, converges to « at the same rate as r, (more precisely, if K > 0);

e «, —« is of order 1, or O(ry,) [big O of r,,/, denoted

a, —a=0(r,) or a,=a+O0(r,).

If K =0 in (4.3) then we use the same notation o, = o+ o(ry,) [small O of r,,[, meaning that the
order of convergence of a,, to «v is higher than the convergence order of r,,.

2
Example. Let o, = L Then @ — 1 and
n+en

2—e ™ 2
lay, — 1] = ——— < —.
n+em n
So we have the following bound:

n_l . n_l
u <2 and lim sup [|

—F < 2.
1/n o0 1/n

Hence oy, = 1+ O(1/n).

15

Order and asymptotic rate. A sequence {a,},>0 converging to « and such that
|on, — a ~ 7" meaning |a, — af = e,
where 0 < r < 1 and the sequence ¢, is bounded uniformly from above and below:
0O<c<c, <C for two numbers ¢, C' independent of n,

then clearly
a, =a+0(").

. . Cn+t1
Furthermore, if lim,, ,,, =

Similarly, if

= 1 then the convergence rate is linear.

loy — al| ~rP" meaning |o, — af = ¢,

with the same assumptions 0 < r < 1 and the sequence ¢, is bounded uniformly from above and
below, then
a, =a+ O0@r?") and the convergence order is p.

4.3 Order notation for functions.

Definition 4.4. Let F', G be two functions defined in a neighborhood of zero taking values in some
normed space with limy,_,o F'(h) — G(h) = 0, and a rate function r(h) defined in a neighborhood of
zero with r(h) > 0 and lim,_,or(h) = 0. Then we say

[E'(h) — G(h)]

F(h) =G(h) + O (r(h)) = lirl?jgp) < .

Note that typically, r(h) is some power h? with p > 0.

Example This notation is convenient for the remainder term with Taylor series. Let F'(h) =
cos(h) and G(h) = 1 — h%/2, then applying the Taylor formula for cos(h) near zero yields:

h* Rt
cos(h) =1— = T cos(§), for some ¢ € [0, h],
and thus F(h) — G|) 12
A -V« -1 4
i < o and cos(h) =1 5t O(h%).

4.4 Root of a function
In this chapter, we want to find the roots of some continuously differentiable function f : I — R,

where [is a given finite interval of R.

Notation. C"™(I) is the set of functions, defined on an interval I < R, whose derivatives up to
order m exist and are all continuous.
C(I) := C°(I) is then the set of continuous functions.

Theorem 4.5. Given some function f € C™(I) and some point p € I such that

fo)=Ffp) =-=f"Dp), M) =0,

then f(x) = (x —p)™h(zx) for some continuous function h(z) such that h(p) = % # 0.

16

Proof. Using the Taylor expansion of f at p with exact remainder, for x € I, x # p, we find

m=l ¢j o f(m)
flz) = Z fj—(‘m(x —p) —i—f m'(g) (x —p)™, with & € [p, x],

/

v

=0

and therefore we can define a function h(z) for = # p, continuous on I\{p}, satisfying the identity

. (m)
h(z) = (xf—(p))m _J m'<§) for &£(x) € [p, x].

Now since f(™(p) is continuous at p, and by the squeeze theorem, lim,_,, () = p, we find that

(m)
lim h(z) = / (p)
z—p m)!
By defining h(p) := % # 0, we have built a continuous function h over the whole interval [

such that f(z) = (z — p)™h(x), and the theorem is proved.
[

Definition 4.6. For f satisfying the conditions of Theorem i.e. feC™I) andp e I such
that the first (m — 1)-th derivatives of f vanish at p and the m-th derivative does not, we say that
p s a root of f with multiplicity m.

17

Lecture 5: Rootfinding (continued). (Monday, September 7)

5.1 Root conditioning.

Problem. We want to study practical methods aiming to find (approximations to) solutions of
nonlinear equations such as

f(@) = ¢(x) —d = 0.
This problem is well-posed in general if ¢ is an invertible map: in this case we may write p = ¢~1(d).

Let us investigate the conditioning of this problem as a function of data d. Thanks to the chain
rule,

o(¢~1(d)) — (¢71)'(d) =)
so the condition number reads
|d| 1

K(d) = PO Kaps(d) =

for a simple root (multiplicity 1) such that f/(p) # 0.
For higher multiplicities, we compute explicitely

(op)™
|

flp+op)=d+ + 0 ((6p)™) = d + dd,

hence if m > 1, Kys(d) = limsupg,_,q % = +00.

In conclusion, rootfinding is generally ill-conditionned if the root is not simple, or if | f'(p)| is small
or zero. In such cases, care has to be taken as the usual methods will fail to converge or converge
more slowly than usual.

5.2 Geometrical Rootfinding Methods

5.2.1 Bisection method

The very first result showing existence of a root is the following theorem:

Theorem 5.1 (Bolzano’s theorem). Let f € C([a,b]) and f(a)f(b) <0, then there exists p € (a, b)
such that f(p) = 0.

Remark 5.2. One also calls such a pair a,b such that f(a), f(b) have opposite signs a bracket as
this ensures the existence of a root in the segment [a,b].

Bisection method This simple result inspires the following rootfinding method. Given a,b as
above, we can check one point inside the interval and use the same test to select a smaller interval,
either to the left or right of this point, where a root will necessarily exist. The most natural
candidate for this is the midpoint of the interval. In this way, the original interval is halved, and
the process may continue until the remaining interval is small enough to satisfy some prescribed
error tolerance.

18

I =la)]

Practically, this process writes as the following algorithm:

Initialization: Let a; = a, by = b, the midpoint x; = “T“’

1. Compute f(x1).
2. If...

e f(z1)=0: z is a root, done.
a1+by

o f(CLl)f 2

(1
o f(z1)f(b1) <O0: we set ag = x1, by = by and 5 = %

) < 0: we set ag = ay, by = x1 and xy =

3. Repeat steps 1-2, generating as, b3, T3, ..., A, by Ty, - o ..
This process generates a sequence of nested intervals
[a1,b1] D [ag,ba] D+ D [an,bp] D -+

such that there is at least one zero p, € [a,,b,] for any n > 1 per the bracketing property.
Furthermore, the sequence {p,} is Cauchy and has a limit:

p = lim p, is a root of f.
n—0o0

In fact, we have p = lim,, .4 a, = lim, ., b,, and the midpoint sequence also converges to p by
the squeeze theorem, such that

p = lim x,.
n—0oo

We use this sequence to approximate the root p.

Spped of convergence. The length of the search interval [, is halved at each step. Hence
1| = |L]/2" = (b—a)/2" ",
Denoting by e,, = x,, — p the absolute error at step n, it follows that
len| < [In]/2 = (b—a)/2",

and we check again that lim,,_, |ex| = 0.

19

Theorem 5.3. The bisection method is globally convergent: it converges unconditionally of the
starting interval, provided that a,b satisfy the bracketing property:

fla)f(b) <0.
More precisely, the absolute error between the midpoint sequence and the root obeys
Ip— x| < 27%(b—a) or 1w, =p+0O(1/2").

Remark 5.4. Because we cannot guarantee a monotone reduction in the error, the method is
technically not of order 1 as defined above.

Property 5.5. To achieve a desired accuracy €, one needs at most

m = {logg (b ; a)} —1 iterations.

b—a b—a
len| < —— <e¢ < n>log2< .)

Proof.

Algorithm 1 Bisection method.

Input: Function f, a,b such that f(a)f(b) <0, and a desired accuracy e.

Output: Approximate value p € (a,b).

1: function BISECTION(f, a,b, €)
2 N = flog, (22)] - 1

3 fa= f(a);

4 forn=1...N do

5: T = ((I + b)/?;

6 fz = f(2);

7 if fp == 0 then

8 Break

9: else if fa = fp <0 then
10: b=p;

11: else

12: a = p;

13: end if

14: end for

15: return p

16: end function

20

Observations

e The bisection method is rather slow to converge: it needs around 2.3 steps to gain one
decimal significant digit of accuracy.

e The computational bottleneck is usually the computation of the function f(p), which is
needed once per iteration.

e This is one of very few methods with guaranteed global convergence. That there is no
equivalent for systems of equations is all the more sad.

e A few variations:

1. One may prefer (for floating-point accuracy) to compute the quantity e, = b"%“”, form
the midpoint as x, = a, + b”_T“" and use e, < ¢ in the loop as a stopping criterion

instead of computing N beforehand.

2. A different stopping criterion altogether, similarly to that used in Newton or secant
methods, reads |fp| < tol where tol is a prescribed error tolerance. For the bisection
method however, this is not necessary as we control directly the absolute error on the
root (a unique feature), and in fact this modification would unnecessarily lose a key
advantage of the bisection method: it is not sensitive to ill-conditioning of the root
when |f'(p)| ~ 0.

5.2.2 Newton’s method

A common factor to a different class of methods is to build a linear approximation of the problem
at each step, which can be solved easily to get a (hopefully) better approximation based on the
current one. Based on the Taylor expansion

f(p) = fz) + [— =)

between the root p and some approximation z with £ € [p, z], the idea is to use an approximation
of the unknown slope f’().

Iteration idea: given a current approximation xy of the root p and ¢ of the slope f'(£), we can
solve the linear equation

flxp) + qr(xper —) =0 to obtain g1 = xp — f(ak)/qk-

Newton’s method A most prominent member of this class of methods is the so-called Newton-
Raphson iteration, where we take the slope ¢ = f’(xy). This leads to the Newton method:

T = — f(z) " f), k= 0.

The idea behind the method is to approximate the graph of the function around z; by its best
linear approximant: the tangent, and use it to construct the next approximation to the root.

21

YansenV 4r (xa, f(;cg))

X

v

P
Q
i o

Property 5.6. If f € C?(I), given x, close enough to a root p the Newton method constructs a
sequence converging quadratically to p (order 2) if p is a simple root and linearly if it has multiplicity
m > 1.

The proof of this result is reserved for next week’s lecture!

Cost analysis. FEach iteration of Newton’s method costs two function evaluations (f and f’)
and a few additional floating-point operations, which usually add a negligible cost.

22

Lecture 6: Rootfinding (continued, again). Fixed Points. (Wednes-
day, September 9)

6.1 Newton’s method; methods of the Secant, chord and Regula Falsi.

We continue our exploration of rootfinding methods based on the common idea

T)~ T + k T — T
flz) ~ f() q ()
approximation to the root approximation to the slope

where solving for the root on the right-hand side leads to the iteration idea
Tr1 = o — f(2n)/ Q-

6.1.1 Newton’s method
The idea is here to take g, = f’(xy). This leads to the algorithm:

Algorithm 2 Newton method.

Input: Function f, derivative f’, x,4, desired accuracy tol, maximum number of iterations
Nmazx.

Output: Approximate value p.

1: function NEWTON(f, f’, xua, tol, Nmax)

2 forn=1... Nmax do

3 Tnew = Lold — f(xold)/f/<xold>;

4 if |Zpew — Towa| < tol then return .,

5: end if

6: Told = Tnew

7 end for

8 return Error(’Method failed after Nmax iterations.’)
9: end function

6.1.2 Secant method.

Similar to the bisection, we use here two initial points xy and z; to construct an approximation
to the slope with the rule:
flar) = flap)

k= , Vk > 1.

T — Tk—1

This leads to the two-point iteration:

T — Tk
foe) — fp-1)

Geometrically, this corresponds to the following scheme:

f ().

Tpi1 = Tk +

23

Property 6.1. Given f € C*(I) and two initial points xo, T, close enough to a oot p € I, the

secant method converges superlinearly with order ® = %5

Proof. Future lecture. m

Cost analysis. Each iteration of secant method costs one function evaluation of f and a few
additional floating-point operations, which usually add a negligible cost. This means the secant
method may well be faster (in wall-clock time) than the Newton method, since one can run almost
2 iterations of the secant method (e354™ ~ (e2°*)**) in the same time one runs a single iteration
of the Newton method (eley™n ~ (eNewtor)2) _and since ? ~ 2.6 > 2, the secant method may
emerge as the winner of the race (provided round-off errors, etc. do not diminish the effective

convergence rate).

6.1.3 Chord method

Here, we keep a fixed value of the slope all along, using the slope from the chord between (a, f(a))

and (b, f(b)):

leading to the iteration

PRI E0) = f(a)

24

Property 6.2. The chord method exhibits locally linear convergence.

6.1.4 Regula Falsi.

This is a very old method, that we can see as a hybrid of the secant and bisection method. The
idea is to keep the bracketing property of the bisection method by forming a sequence of pairs of
points at which the function takes opposite signs. Formally, this writes as

f(xy) — flaw)

qx = , Vk > 1.
T — Tt

where £’ is the largest index such that f(z)f(zr) < 0.

Another way to formulate this method is to see it as a bisection method where, instead of checking
the midpoint =z, = % we check the intersection of the secant between a, and b, with the
horizontal axis:

Initialization: Let a; = a, by = b such that f(a1)f(b;) < 0.
Compute the root z; of the secant, z — f(by) + L= (5).

b1—ay

bl—a,l

f(b1) — f(al)

a1

fbr) =

J]lzbl—

f(b1) = b f(ar)
f(br) = flar)
1. Compute f(z).

2. If...

e f(z1)=0: z; is a root, done.

(a1)f

(1
(x1)f(b1) < 0: we set as = x1 and by = b;.

Clzf(bz) - bzf(%)
f(b2) — f(az)

4. Repeat steps 1-3, generating as, bs, ..., Gy, by,

) < 0: we set as = a; and by = 7.

.
.

3. Compute x5 =

25

This method has global convergence, and it is sometimes faster than the bisection method because
it uses some information about the function to guess where the root might be. However, it can
also be slower than the bisection method in some cases, limiting its usefulness in practice.

N
K9

A 74

Xg

or

W

26

6.2 Analysis framework: the fixed-point iterations.

6.2.1 Fixed points.

Definition 6.3. Given a function g(x), a point p such that g(p) = p is a fized point of g.

Example. Let g(z) = 2% — 2. Fixed points of g are solutions of
gx) ==z < ?¥-2-2=0 = (z—-2)(z+1)=0.
Hence g has two fixed points: 2 and —1.

A fundamental observation is that a fixed point problem can always be transformed into a root-
finding problem and vice-versa. Indeed,

p fixed point of g(x) <« proot of f(z) =z — g(x).

Theorem 6.4 (Existence of fixed points.). Suppose g(x) € C([a,b]) such that a < g(z) < b for
any z € |a,b]. Then g has at least one fixed point on |a,b].

Proof. Let f(x) = x — g(z), then f(a) =a—g(a) <0 and f(b) =b— g(b) > 0 since a < g(x) < b.
Hence, by the Intermediate Value Theorem, there exists a root p of f(z) in (a,b), that ia a fixed
point of g. O]

Definition 6.5. A function g : [a,b] — [a,b], Lipschitz continuous with constant 0 < K < 1:

l9(z) — g(y)| < K|z —y],
15 called a contraction mapping.

Proposition 6.6. If g : [a,b] — [a,b] with g € C'([a,b]) and |¢'(x)| < K < 1 for all x € [a,b],
then g 1s a contraction mapping.

Proof. Fix any z,y € [a,b]. By Taylor expansion:

fl@) = fy) + f(€)(@—y) forsome ¢ € [z,y].

Hence
[f(x) = fW)| = [(Ol -yl < K|z —y.
O

Theorem 6.7. Let g : [a,b] — [a,b] be a contraction mapping. Then g has a unique fized point p.
Proof. e Existence: OK by the previous theorem.
e Uniqueness: by contradiction. Assume p; # po are two different fixed points of g. Then
Ip1 = p2| = [g(p1) — 9(p2)| < K|pr — p2| < |p1 — pal.

This is not possible; hence p; = p, and g has a unique fixed point.

27

6.2.2 Fixed point iterations.

Contraction mappings further yield a practical, constructive method for a sequence approaching
their fixed point. In general, given a map ¢ and an initial value zy, we generate a fixed-point
iteration

Tni1 = g(xn), forn = 0.

One property of such iterations is that if the sequence (x,) converges, it must be to a fixed point
p: Indeed, we check that since g is continuous,

lim p, =p implies lim p,y1 =p = lim g(p,) = g(p).
n—0o0 n—o0 n—0o0
The sequence is in fact guaranteed to converge if the mapping is a contraction:

Theorem 6.8. Suppose g(x) is a contraction mapping on [a,b]. For any xq € |a,b], the sequence
generated by the fized-point iteration

Tt = 9(Tn) forn =0

converges to the unique fixed point p of g(x). Moreoever, we have the error bounds

n

1-K

p— 2] < |z — x0], Vn > 1,

and
Ip — z,| < K" max(zg — a,b — zy), Vn > 1.

Proof. We know that for n > 1,
01 — ol = l9(zn) — 9(P)| < l2n —pl,
so by induction, we obtain immediately
|z, —p| < K™|xg — p for n = 0.

Since 0 < K < 1, this shows already that lim, . p, = p.

Furthermore,
|zo — p| < |zo — 21| + |21 — pllT0 — 1|+ < K21 — 20
so that)
w0 — pl < 1_ K|$1 — o).
This shows that the first error bound holds:
|z, —p| < K" |z — 20| for n > 0.

1-K
Similarly, because |p — x¢| < max(p — a,b — p) we have

|z, — p| < K" max(z¢ — a,b — x9) forn > 0.

28

Lecture 7: Analysis of Rootfinding Methods. (Monday, Septem-
ber 14)

7.1 Convergence analysis of fixed-point iterations (cont.)

The theorem proved at the end of the previous lecture shows that fixed-point iterations generated by
contraction mappings x — g(x) converge at least linearly to a unique fized point p, with convergence
factor K ~ ¢'(p). Let us now investigate and quantify the higher order of convergence expected
when ¢'(p) = 0.

Proposition 7.1. Let g be a contraction mapping on I = [a,b] with fixed point p. Assume
ge C™(I), m =2 with I a suitable neighborhood of p with

dP(p) =0, 1<i<m and g™ (p) # 0,
then the fized-point iteration process converges to p with order m, and

i Tgy1— P g(m) (p)
11m = .

Proof. We know that the fixed-point iteration generates a sequence xj; converging to p. Further-
more, we write a Taylor expansion about p:

’ 9" (&)

g' 9" (&)

m—1)(
_ _ p) 7 m _ m
Thi —p = g(a) — g(p) = 2 (k=)+ T (g =)" = T ()
with & € (p, zx). Thus
_ (m) (m)

i S =P 97 (&) 9™ ()

k—o (T —p)™ k> ml m/!
since &, — p and ¢(™ is a continuous function. O

Recap. Suppose that p is the unique fixed-point of a function g (not necessarily a contraction)
with ¢’ continuous in the neighborhood of p. Let us summarize the properties of the fixed-point
iteration sequence z,41 = g(x,) with initial value x.

1. If |¢'(p)| > 1 and x,, # p Vn, then the sequence {x,} diverges in general since g is not a
contraction around the fixed point.

2. If |¢’(p)| = 1, the situation is underdetermined - the sequence may or may not converge to p.

3. If |¢'(p)| < 1, then x,, — p if zq is close enough to p since g is locally a contraction around
p. Furthermore, the sequence converges...

e exactly linearly if ¢'(p) # 0,

e with order m if ¢’(p) = --- = ¢/ 1) (p) = 0 and g™ # 0 with g € C™ in a neighborhood
of p.

29

Algorithm 3 Fixed-point iteration.

Input: Function g(x), x4, desired accuracy tol, maximum number of iterations Nmaz.

Output: Approximate value of fixed-point p, or an error message.

1: function FIXEDPOINT(g, x4, tol, Nmaz)

2 forn=1... Nmax do

3 Tpew = g(mold);

4 if |Zpew — Toa| < tol then return .,

5: end if

6: Told = Tnew

7 end for

8 return Error(’Method failed after Nmax iterations.”)
9: end function

Examples. Let us investigate the behavior of fixed-point iterations around the fixed point p = 1
for all three functions below.

1. g1(x) = 1/x on the interval [1/2,2]. Here ¢;(1) =1, ¢{(1) = 1 and we do not know whether
fixed-point iterations converge or not. In practice, they do not unless xy = 1 - the sequence
repeats the cycle xg, 1/xq, zo, 1/x,

2. g2(z) = 2%+ 2 —1 on the interval [1/2,2]. Here go(1) = 1, g5(3) = 1 and fixed-point iterations
will diverge.

3. g3(x) = x/2 + 1/2x on the interval (0,00). Here g3(1) = 1, g4(1) = 0, g5(1) = 1 so the
fixed-point iterations will converge quadratically if the starting point is close enough to 1.

In fact, we can go further:
gy(x) =1/2—-1/22> <1 and gj(z) > -1 < 1/22° <3/2 = x> 1/V3.

so |g4(x)] < 1 for 1//3 < o < co. Hence g is a contraction on any interval [a,b] with
1/v/3 < a < b and the fixed-point iteration will converge for any zo > 1/4/3. Actually, g is
decreasing from 0 to 1 so for any 0 < z9 < 1/4/3 < 1 we can check that z; = g(zo) > g(1) =1
so the fixed-point iteration converges.

In conclusion, for this function the fixed-point iteration generates a sequence converging
quadratically to 1 for any 0 < zg < 0.

7.2 Application of fixed-point iteration analysis to 1-point rootfinding
methods.

Many rootfinding methods can be cast into the model
Tpy1 = g(xg) (7.1)

where the next iterate depends in some way on the previous one. Note that this is not the case
for the secant method, which relies on the previous two iterates. We call methods following the
model (7.1)) 1-point rootfinding methods.

30

Chord method. The iteration for the chord method follows the model

o = o Kﬁ)f(xk>,

v~

qfl

with a, b two points chosen at the start. This can be seen as the fixed-point iteration with iteration
function g(x) = = — ¢~ ' f(x), which satisfies g(p) = p iff f(p) = 0. Then

g =1-q"f(p),
so the convergence is guaranteed (locally) if
“1<dp) <1 = 0<q'f(p)<2

Hence the slope approximation ¢ must have the same sign as f’(p) and

f(b) = f(a)
]<2’ . |

Newton method. The iteration for the Newton method follows the model

Trpr = 2 — f(an) /[(z1),

which is a fixed-point iteration with function g(x) = x — f(z)/f’(x). Assuming that p is a simple
root of f,i.e. f'(p) # 0, we compute

PP @) @
N (F@) o) =0

Furthermore
ey @) f(@) + (@) f (@) (f (@) = fl@)f" (@) (2f" (@) ' (2))
7= (F@)
_ f@)f @) f"(@) + (f (@) " (@) — 2f () (f"(2)) —) = /"(p)
(f"(2))? f'(p)
Assuming p is a simple root, that is f'(p) # 0, the Newton method will have quadratic order of
convergence if f”(p) # 0, at higher order of convergence (at least 3) if f”(p) = 0.

On the other hand, if the root has multiplicity m > 1, then the convergence is only linear (Home-
work). However, we can recover quadratic convergence (at least) with the modified iteration

Ty = 2 —mf(x)/f'(z),

which assumes advance knowledge of the multiplicity m.

7.3 Analysis of two-point rootfinding methods

The proof of convergence for the Secant method is postponed to the next lecture.

31

7.4 Discussion: stopping criteria.

We often have to decide, based on computed or computable quantities, if the iteration has con-
verged. Optimally, we would like to know whether a certain accuracy has been reached, that is
given a prescribed tolerance £ > 0 we have reached

|z — p| = |ex| < e.

Option 1. Rarely, the method gives direct control over the absolute error e, = x, — p, a.k.a.
yields a computable quantity €, which satisfies

|€k| < €.

The bisection method is such an example, since |xx — p| < € := |by — ax|/2. In such as case, we
can terminate the iteration at the first step where

cr <E.

Option 2. Direct control of the residual. We may choose to terminate at the first step
where

|f(zn)| <e.

@ Simple test, straightforward to implement. Seems reasonable.
© This test may be too optimistic (if the problem is ill-posed) or pessimistic.

More precisely, assuming that p is a root of order m, we know that

(m)
7 = 1) = TP ey ol),

so since f(p) = 0 and f(™(p) # 0, we have

1/m

| f ()™

el ‘ m!
ep| ~ |[——
fm(p)

e For multiple roots m > 2, the residual test is very misleading about the actual order of
magnitude of the error.

e For a simple root, we have

|f($k)\-

lex| ~

1
1F/()]
— If |f'(p)| = 1, then |ex| ~ |f(xk)|. The residual test works great.

— If |f'(p)| « 1, then |ex| » |f(xx)|. Hence the test is unreliable and too optimistic.

— If |f'(p)| » 1, then |ex| « |f(zx)|. Hence the test is too pessimistic and will lead to
more iterations than necessary.

32

Option 3. Control of the increment size. We may choose to terminate at the first step
where
‘xk-i-l — Z’k‘ <e.

As it turns out, this test is better conditioned than the previous one, despite not involving the
actual residual f(xy). Let us analyze this test in the context of the fixed-point iteration analysis
with

Tre1 = g(Tn),

which can be applied to all 1-point rootfinding methods. Then
er+1 = Thp1 — P = g(zx) — 9(p) = 9'(&) (v — p) = ¢'(&)er
Now zy1 —xp = epr1—ex = (¢'(§) — 1)eg. Since & — p as k — o0 and ¢ is continuous, we obtain

|$k+1 - $k|
l9'(p) — 1

Remember that convergence is expected iff —1 < ¢’(p) < 1. Hence,

|ex| ~

e The test is unreliable (too optimistic) if ¢’(p) ~ 1, however in this case the convergence is
very slow anyway.

e The test is optimal if ¢’(p) = 0 since in this case |ex| ~ |rg41 — xx|. This is the case of
quadratically converging methods such as the Newton method. This is also independent of
the root conditioning.

e The test is satisfactory if —1 < ¢’(p) < 1/2, in which case 1/2|zp 1 —zx| S |ex| S 2|Tpr1 — k|-

33

Lecture 8: Analysis of the Secant method. (Wednesday, Septem-
ber 16)

The secant method is an example of Quasi-Newton method, i.e. it avoids to compute the derivative
yet approximates it along the iteration, more and more accurately. Remember the scheme,

T — Tk—1

TR T T) —)

Alternatively, we have the equivalent formula

e f(2r) — o f (0—1)
flog) = flor—a)

Such a method, which relies on the last two iterates to construct the next one, does not fit into
the framework of fixed-point iterations we have relied on to understand Newton’s method. It is
more difficult to analyze!

In this lecture, we will prove the following result.

S (k). (8.1)

Lyl =

Theorem 8.1. Let I be an open interval of R, and assume that f € C*(I) has a simple root p € I.
Then if xo, 1 are close enough to p, the sequence {xy} generated by (8.1)) converges to p asn — o,
and setting e, = xp — p we have
I €k+1 f"(p)
im = S5
k—00 €per_1 2f (p)

1++/5

Furthermore, the convergence rate of the sequence xy to p is superlinear with order p = —5

We will divide the proof of this Theorem in four pieces. First, we prove a result showing that the
slope of the secant of any two points close enough to the root is an approximation that is as good
as desired to the slope of the tangent at any point also close enough to the root:

Lemma 8.2. For any 0 < ¢ < 1, there exists § > 0 such that in the interval Is = {x € I s.t. |x —

p| <o}, .
(=) o~

<c

for all x,y,& € Is with x # y.

Proof. As 6 — 0, by the squeeze theorem we have x,y,£ — p so

. f(m)_f(?/)_ e\ g
zlil—%x——y = (lsl_f}%f (&) = f'(p) #0.
Hence for any ¢ > 0, we can find d small enough to ensure the desired result. O]

Armed with this result, we next show that the sequence {z,} generated by the secant method
converges.

Lemma 8.3. Fiz 0 <c <1, > 0 and Is as per Lemma 1. Then if xg,x1 € Is, xp € Is for all
k>0, and

lim zj = p.
k—o0

34

Notation. To facilitate some proofs, we use the shorthand fr = f(zx), fi. = f'(zx), ..., and
€ = T — P.

Proof. By Taylor’s formula applied at x; about p with exact remainder, there exists & € (p, xx)
such that (remember f(p) = 0):

flxr) = fp) + f' &) —p) = fu=f(&)ex

Lk — Tk—1 . Tk — Tk-1 / _
(fk - fkl) fi = (@ —p) = [(fk - fkl) &) 1] *

fe—fr—1

—€ry1 = l(?ﬁ:—ﬁj) (&) — 1] ek

By lemma 1, whenever zy, zx_1 € Iy, since & € (p, zx) < Is, we have then

hence

Now we note that xyp,1 = x5 — () fx, so we have shown that

|Tpe1 — pllexs1| < clex| < cd.

Since ¢ < 1 this shows that x,,.; € I5, and by recurrence, whenever xg,x; € I, then x; € Is for
all k > 0. Furthermore, the error satisfies |ex| < c¥leg| < ¢*§ for all k = 1 and converges to zero.
Hence we have shown that the secant method produces a linearly (at least) convergent sequence:

li = p.
Jimg ok =
Next, we show that a particular ratio of the errors converges to a simple quantity.

Lemma 8.4. Fizr 0 <c< 1,6 >0 and Is as per Lemma 1. Then if xo,z1 € I,

2 f"(p)
11m = ; .
k—w epep—1 2f'(p)

Proof. We start by recalling the alternative iteration formula

o Tr—1Sk — ThSr—1
k1 =
fo—foor

and similarly the sequence of errors satisfies

ek—1Jr — erfr-1

T — Jr1

Now, using a 2nd order Taylor expansion about p, we find

€k+1 = Tk4+1 — P =

fr = f(P) +f/(p>€k + %f”(fk)eiv fro1 = f(P) + f/(p)ekﬂ + %f”(fkl)ei_p
—
=0

35

where & € (p, zx), and we compute

1

ek—1fx — exfr-1 = f,(p)(ek—lek — €Cr—1) +5 (f"(&)en—€r — ["(Eh—r€}_ek)

v

=0
_ CKCr—1

9 (f”(fk)ek - f”(fkfl)ekfl)
Continuing this computation and using the identity x; — xp_1 = ex — er_1:

ee1fe —enfor _ S'(0) L (&) — S (p))ew — (f"(Er-1) — [(P))er—

eres—1(Tp — xpo1) 2 " 2 €L — €r_1
f ! (p) 1 n" " €k ” " Cr—
= t3 [(f (&) — f (p))m — (f"(&k—1) = f (p))ek_—e;_l] :

Let us study the terms in the right-hand side of this equality. First, we note that
lim f"(&) = f"(p) = lim f"(&—1) — f"(p) = 0,
k—o0 k—00

since f” is continuous and limg_,. & = p. Because |eg| < c|ex—_1| (see Lemma 1’s proof),

e er/er—1 c €h_1 1 1
= and = <)
e —er — 1 er/ex—1 — 1 1—c €r — Ch_1 er/ex—1 — 1 1-c
As a consequence, we have the limit
i ek—1fx — erfr1 f"(p)
im =)
k—ao0 ek€k71<xk — :ck,l) 2
To conclude, we now take a look at the desired quantity:
Cr+1 1k — exfr1 Tk — Tp1 N f"(p) % 1
exeh-1 exlh-1(Th — Tho1) fo — feo1 2 f'(p)

36

1+/5
2

The final piece of the puzzle will now show the error goes down with order ¢ = , the golden

ratio.

Lemma 8.5. iz 0 < ¢ < 1,0 > 0 and I5 as per Lemma 1. Then e, = xp — p — 0 with order

) [
b = %5 and convergence factor | — as k — 0.
2f'(p)
Proof. Taking the log on the ratio ’ei’é—i we obtain from the previous limit
ag+1 = ap + ap—1 + C + o(1), (8.2)
/l<p)

2'(p)
Observe that the (a;) forms an approximate Fibonacci sequence, and also ay — —oo since e — 0.
Let us assume for a moment that

where a5, = log |ex|, C' = log , and o(1) is a term going to zero as k — 0.

agr1 = Pag + 4+ o(1), (8.3)

with constants ®, 5 to be determined. Plugging this formula into the earlier relation (8.2) we
compute

ag ag
O (Dajp_1 + B+ 0(1)) +8 + o(1) = (Pag_, + B + o(1)) +as_1 + o(1).
Ak+1

Rearranging the terms, we find
(@2 — o — 1)@]6,1 + (I)ﬁ —C = 0(1)

In order for the left-hand side to form a sequence converging to zero even as a;_; — —00, we must
have the two equalities
P —d—-1=0 and o5 —-C =0.

1+4/5
_2[, but since ® must be positive for (8.3) to hold true

even as ay and aj_; converge to —oo, we deduce

1
+2\/3 and 5:%.

In conclusion, if we can prove (8.3) then we have concluded our proof: indeed taking the exponential
yields

This leaves two possible values ® =

@:

1o

f//<p)
2f"(p)
We must now verify the assumption (8.3]), which is the most technical part of the proof. Let us
consider the residual

log |exy1| = ®loglex| + B + o(1) = lim @ =ef = ‘
k—0o0 ’ek‘

Ep = Q) — (@ak_l + ﬁ),
we need to prove that e, — 0, which is equivalent to (8.3]). Using the known relation (8.2 we find

€ht1 = a1 — (Pag +)
=(1-=®)ag + a1+ (P—-1)5+ o(1)

% (ar, — Pag_1 — B) + o(1),

37

where we have used the relations ® — 1 = 1/® and C' = ®3. Hence we have

Ek+1 = Eé‘k + 0(1).
Since ® > 1, one expects a sequence satisfying such a relation to go to zero, unless the small o(1)
term on the right-hand side adds up to enough along the way to perturb convergence. We prove
that convergence happens using the definition of the limit. Fix ¢ > 0. By definition of the notation
o(1), since £/2®? > (there exists ko > 0 large enough such that for k£ > ky, we have

1
Ek+1 T 651@

< SO B |<|€k|+€
242’ MU T T 292

Let us prove by induction that for n > 0, we have

’6160’ €
+ —.
ol 2

|5k‘0+n| <

Indeed, this is obviously true for n = 0, and then if it is true for n > 0, the following computation
shows it also holds true for n + 1:

|€k0+n| € 1 |5k0| € € |5k0’ P+1) e |8k0|
| < ——+ = <=-|—+2]+ = + == +
Sl < g T og <G e T2) T e T e ®2)2 ontl

3
27

where we have used the relation ®* = ® + 1. By the induction principle, we have shown the
€ €
recurrence hypothesis. Now for ng large enough such that LD%J < v e find for all £ > ko + ng
(and n =k — ko = nyg),
|5k| = |5k:0+n| < €.

This shows that £, — 0 and ends the proof of Theorem

38

Lecture 9: Polynomial Interpolation. (Monday, September
21)

9.1 Motivation. Horner’s method
An interpolation problem starts with some data pairs
(i, v5), fori=10...m.
This data may come either
e some experimental data,
e a complex, closed-form function f(z) which may be expensive to evaluate.
Definition 9.1. A function ¢(x) interpolates {y;} at the nodes {x;} if
o(z) = i, Vi=0...m.

We seek such a function, which should be simple to understand and cheap to evaluate. A natural
candidate: polynomials!

P(z) = apz™ + ap 12"t + -+ a1 + a, a, # 0.

Why are polynomials so nice? Let us take a detour and think about how to evaluate polynomials
in the cheapest manner (in terms of floating-point operations).

Evaluation of polynomials. Horner’s method Naive way: we could simply use the natural
order, computing in turn

n multiplications
A

r Y
P(z) = anx" + apz™t 4+ a1 x + ao
~— —_——— —— ~—
n multiplications n-1 multiplications 1 multiplication 0 multiplications

In total, this approach needs 0 + 1+ --- 4+ n = @ multiplications and n additions.

Better way: the most expensive part of the computation above is the separate computations of
the monomial terms x*, which seems wasteful since 2**! = 2 x 2* can be obtained without much
more work from the value of 2*. We could thus compute the powers of x first,

1, at=z, 22=zxxz', 2P=xx2?. . . 2" =xxa" L
The computation of these terms amounts to n — 1 total multiplications. Then we need another
n + 1 multiplications to form the terms ayz* and n additions to form P(x). Hence we account in
total for 2n multiplications and n additions.
Better-er way: Horner’s method. Let us rewrite by factoring x recursively:

Px)=ap+z(ay+x(ag+ - +z(ap1+x a,)---)).

bn,
- >
Y
bn—l
- >
Y
bo
- /
Y
b1
. >

39

Grouping the terms inside parenthesis, we form the nested multiplications:

bn = Ap,

bnfl = Qp-1+ .CCbn,

bo = ag + ZEbl,

and we observe that by = P(z).
The computation can be summed up as the synthetic division algorithm for evaluating P at xq:

b, = a,, b = ap + bry1xg, fork=n—1,n—2,...,0.

e This algorithm allows us to compute P(xg) efficiently, using only n multiplications and n
additions.

e If we form the polynomial Q(z;z¢) = by + byx + - -+ + b,z "1, then we observe
P(z) = by + (z — x0)Q(z; z0).

Formally,) is the result of dividing the polynomial P by the term (z — xy), which justifies
the name of the algorithm.

e The algorithm provides also for fast evaluation of derivatives at xg, for example P'(zq) =
Q(xo; zp): this can be achieved by forming another backwards recursion,

Cn = by, cx = by + cpy1vg, fork=n—-1,n-2,...,1.

9.2 Polynomial interpolation.

Let’s go back to the matter of interpolating data, in the form of m + 1 pairs (x;,y;) indexed by
1=0...m.

Interpolation problem: find a polynomial of degree n interpolating {y;} at the nodes {z;}.
A polynomial of degree at most n has n + 1 free coefficients, ay, ..., a,, while the interpolation
constraints P(x;) = y; form m + 1 equations.

e If m # n, the problem is over or under-determined, and there might be zero or an infinity of
solutions.

e if m = n, then the problem is well-posed: there exists a unique interpolating polynomial of
degree n, as we shall see.

Notation. We shall write P,, = { polynomials of degree < n}.

Theorem 9.2. Given n+ 1 distinct nodes, say o < r1 < --- < x,, and n+1 corresponding values
Yo, - - -, Yn, there exists a unique polynomial P € P, such that

40

Proof 1. The monomials 2° = 1, 2' = z, 2%, ..., 2" form a basis of IP,,. The above conditions form
a linear system for the coefficients of the interpolating polynomial ay, ..., a,:

2
ap+ To- a1 +x5-ax+ -+ g - an = Yo,

ag+xy-a1+t-ay+ -+t a, =y,

2
g+ Tp -1 + T, -G+ -+ T - Ay = Yp,

or in matrix form,
2 n

1z x5 ... i ag Yo
1 = x% coooxt ai Y1
1 z, 22 2| |a
n nooc n n Yn
Ty al
2 1.117,

Now a Vandermonde matrix like X =

1 i
Loz 2 : . : . .
. is a very special object in Matrix
1 x, 22
t:

theory, which has an explicit determinan

det(X) = [[(zi — ;) # 0.

1>7]

As a result, the linear system has a unique solution ay, ..., a, and there is a unique interpolating
polynomial. O]

Remark 9.3. Vandermonde matrices are usually very ill-conditionned. The solution of the linear
system is thus very sensitive to errors, noise in the data, etc. This indicates that this is not the
right way to look at the problem.

Proof 2. Let us try again by setting up a more appropriate basis for P,,. Let us define

L) = T if‘__xj e P,

joojzi 1T
1 ifi=j,
We notice in particular ¢;(z;) = 6;; = 0 ifi j
if ¢ # J.

Let P(z) = X" o yili(x) € P, then clearly P(z;) = " vi0i; = y;-.
This already shows that there exists an interpolating polynomial for the data. Next, we want to
show its uniqueness. This can be inferred from the standard result:

Proposition 9.4. If P € P, vanishes at n + 1 distinct points, then P vanishes uniformly.

Proof. This result is proved by recurrence on n. It is trivial for n = 0, corresponding for constants
P(z) = C which vanish at some point, P(zy) = C = 0. Then for n > 0, the polynomial P(z)
vanishing at n + 1 points xg < - -+ < x,, has a derivative P'(x) € IP,_; which vanishes at n distinct
points t; € (z;,x;11). By recurrence, we find that P'(z) = 0. Thus P is a constant, which vanishes
at some point so is identically zero. O]

Then, if P, () are two polynomials interpolating the data, R = P — () vanishes at the n + 1 distinct
points xg,...,x, so R =0 or P, () are in fact the same polynomial. O

41

9.3 Lagrange representation.

From the previous proof, we extract a good way to represent the interpolating polynomial. Let us
recall the useful basis:

Definition 9.5. Given distinct nodes x, . .., x,, we define Lagrange interpolation basis functions:

(o) = 1—[@ Wn1(2)

Ty — T (v — xk)w’;l-‘rl(xk)

where w1 () = (x —x0) -+ (& — x) = [[1o(@ — 25).
Proof of this expression: exercise.

Proposition 9.6 (Lagrange Formula). The unique interpolating polynomial P, € P, for the data
(xi,yi), 1 =0...n is given by:

P(z) = Z yili(z).

42

Lecture 10: Polynomial Interpolation II. (Wednesday, Septem-
ber 23)

We continue our exploration of the properties of interpolating polynomials. As a first step, we are
interested in estimating the error between a given function and its interpolant at a set of nodes.
10.1 Error in the Lagrange formulation.

Given a function f € C""!(I), can we measure how close to f(z) is an interpolant of the data

(@i, f(xi)), i=0...n,
for a given set of nodes xq, ..., z,.

Definition 10.1 (Interpolation operator.). If the data is specified by a function, y; = f(x;) for
some function f, then we denote the corresponding interpolating polynomaial 11, f € P,,, given by

I f(z) = Z fl)li(x) Py

Theorem 10.2 (Error formula, Lagrange.). Let f € C"*1(I) with I = R some interval containing

n + 1 distinct nodes xq,...,x, and x € I. Then the interpolation error at x is given by
Fr(E)
E,(x)=f(x)-1II,f(x) = —wpi1(x),
(@) = f(@) = (@) = oS (@)

where x € I, wyy1(z) = (£ —x0) - (2 — x,) = [[[o(z — x;), and § is some point in the smallest
interval containing all the points xg, ..., x, and x.
Proof. First, the statement is clearly true if + = x;, since E,(x;) = f(x;) — II,f(z;) = 0 by
construction of the interpolating polynomial, and w,,+1(z;) =0 for i =0, ..., n.
Next, we assume that x # x; for any i = 0,...,n. Define the function g(¢) on the interval I such
that

g9(t) = En(t) = Awnga (1),
where A is a constant defined as A\ = E,(z)/wp41(x).
Now, g(x;) =0 for i =0,...,n and g(x) = 0. Hence g(t) has n + 2 distinct zeros, forming n + 1
pairs spanning as many disjoint open intervals, such that by Rolle’s theorem ¢’ has at least n + 1
distinct zeros. Continuing the argument for ¢”, etc. we find that ¢+ has at least one zero

¢ € [min(xg,..., T, x), max(zg,. .., Ty, T)] such that g™+ (&) = 0.
Now we observe that I, f is a polynomial of degree n, hence its n+ 1-th derivative vanishes. Hence
E{0(6) = Fo0(9).
Moreover, we also have
n+1
wh () = (n + 1)!
SO
gIE) = fOHIE) = A+ 1) =0,

or using the definition of A\ and reordering,

A3

E,(z) = mwnﬂ (x).

43

10.2 An example.

Given data pairs (2,—1), (—1,2) and (1,—6), let us assemble the corresponding interpolating
polynomial.

e First, we form the Lagrange basis functions:

(- (=D)z-1) (+D@E-1)

Sl) B B
f (LL’)— (ZE—(—Q))(ZE—l) :_(ZL'-FQ)(ZL’—l)
Al gy sy 2
)~ T D= (D) @2
=TTy () 6

e Next, we assemble the interpolating polynomial:

(x+ 1)(z—1) (x+2)(x—1) (x+2)(z+1)

+2x — + (—6) x :

Py(z) =1 x 3 5 G

10.3 Newton representation
Motivation We already have two representations of the interpolating polynomial already.

e In the standard, monomial basis:
P,(x) = apx"™ + -+ + ay,

where aq, ..., a, are computed by solving a Vandermonde system. This form would be easy
to evaluate using Horner’s method, but it is not advisable due to ill-conditioning of the
coefficients with respect to the data, which induces in particular huge round-off errors when
computing the coefficients or evaluating the polynomial.

e In the Lagrange basis:
Pn(x) = yﬂé()(x) +ooe+ yn£n<x)

This expression is mathematically simple, without the need to compute the coefficients
through a linear system. However, it is expensive to evaluate, with O(n?) floating-point
operations (although this can be amended by using the barycentric formula).

Because both representations have drawbacks, we introduce a third representation: Newton’s
formula. It is grounded in the new basis:

{1, (r—20), (x—x))(xz—21), ... (x—x0)(x—21)...(T —2p_1)}

Each element of the basis is denoted, consistent with the notation introduced before,

wr(z) = (x —x0) -+ (. — x2)_1) = ﬁ(az — ;).

1=0

We can then expand the interpolating polynomial in this new basis:
n
P,(x) = Z Crwi ().
k=0

44

Once the coefficients ¢, of the expansion are obtained, this expression can be evaluated efficiently
using the generalized Horner’s method:

Pyx)=co+ (x—x0) (c1+(x —x1)(ca+ (o1 + (T —Tp_1) by)--+))

bn
N ~ y
N . .
. - y
leading to the algorithm
b, = cn, bp = cp + (v — zp)bgry, fork=n—1,n-2,...,0.

The feasibility of this approach hinges on the availability of a stable method for the computation
of the coefficient ¢, of the expansion, which we present now. First, let us notice that if we write

P.(z) = Py_1(x) + cpwn(x), (10.1)
where P,_1(z) = ZZ;& cxwi(z) € Pp,_q, then
Pn—l(l‘l)zpn(xz):yz fori:()a"wn_la

since wy(x;) = 0 for i < n by design. Hence, P,_; is a polynomial of degree n — 1 interpolating the

values v, . . ., Yn—1 at the n nodes zy, ..., x,_1: by uniqueness, it is the interpolating polynomial on
these nodes. Hence c,w, () is just the correction needed to transform the interpolating polynomial
on the nodes x, ..., x,_1 into the interpolating polynomial on the nodes xy, ..., z,, a process we

can call adding a node to an existing set.
As a consequence, we notice that

e ¢, is the leading coefficient (i.e., the coefficient in front of 2™ in the monomial basis) of the

polynomial P, interpolating on the nodes xy, ..., z,,
e ¢, 1 is the leading coefficient of the polynomial P,_; interpolating on the nodes xy, ..., z,_1,
® ¢, - is the leading coefficient of the polynomial P, 5 interpolating on the nodes xq, ..., z, o,
etc.

This leads us to the definition:
Definition 10.3. The k — th Newton divided difference, denoted

Cr = f[:EOa"'axk]a
is the leading coefficient of the interpolating polynomial Py through the nodes xg,. .., xg.

Note that the expression "divided difference" for these coefficients will be explained below. In the
meantime, a trivial recurrence on the expression above leads to:

Theorem 10.4. Newton’s formula for the polynomial interpolating a function f at distinct nodes
Lo, ..., Ty 1S
Pu(x) = flzo] + flzo, 21](x — 20) + flm0, 21, 22| (¥ — 20) (T — 21) (10.2)
f[l'o, C. ,xk]wk(:c).
=0

++ flro, @] (e — o) - (2 —) =

45

10.4 Properties of the Newton divided differences.

Invariance with respect to index permutations: Since P, does not depend on the order
of the points x, ..., x,, neither does its leading coefficient ¢, = f[zo,...,z,]. Hence given a
permutation of the nodes, {ig,...,i,} = {0,...,n}, we have

flxo, -y xn] = flzigs - -4, |-

Recursive definition: First, we note that for n = 0, we have P(z) = f(zo) the constant
polynomial interpolating f at the node xq. Its leading coefficient is f(xg), thus

flwo] = f(x0).

This is a general formula for any 1-point divided difference. Next, let us compute a formula for
the 2-point (first-order) divided difference. We find from the Lagrange formula,

TP . N LGV b ACO TN

Top — X1 T1 — Zo X1 — To

r — T

Pi(x) = fl(xo)

We read its leading coefficient:

J(x1) — f(zo
flao, 2] = L&) =S (@)
1 — 2o
It turns out that this formula can be extended to all higher-order Newton finite differences, taking
the form of the following recursion formula allowing to compute each n + 1-point finite differences

using two n-point ones:

flet, - wn] —f[xo,...,xn_l]‘

Tp — o

fla] = flzi), flzo, ... xn] = (10.3)

Thus the coefficients may be efficiently computed by forming a lower triangular table, with the

first column being the values f(xo),. .., f(x,) of the function at the nodes, and each column after
that being computed from the values in the previous one using :
zo | f[wo]
N
x| flz] = flzo, 1]
N N
Ty | flea] — flzr2e] — flwo, 21, 23]
N\ N\ N
N N N\
Tn f[xn] - f[xn—laxn] - f['rn—ann—laIn] - f[x07 cee 73771]

The coefficients of the Newton expansion (|10.2)) are then retrieved from the diagonal of this table:

flxol, flzo, x1], - -, flxo, -, zn)-

46

Proof. Let us now prove the recursive formula ((10.3). Given the nodes zy, ..., z,, we define two
polynomials of degree n — 1:

e P, 1(z) interpolates f over the nodes xg, ..., z, 1. Hence its leading coefficient is
flzos -y xn_1l;
° 13,1,1(1:) interpolates f over the nodes z1, ..., x,. Hence its leading coefficient is
flen, .o @)

The polynomial P, = II,f interpolating f over the nodes o, ...,z, can be formed by adding
respectively the node x,, to P,_1, and g to P,_1. By uniqueness and the formula (10.1]), reordering
the nodes if necessary, we have the identity

P,(z) = P,_1(x) + flxo, .-y Tp—1, xp](z — o) -+ (& — 2pp—1)
= IBn_l(x) + flx1, ooy 2, o] (2 — 21) -+ (2 —).

The coefficients in the monomial basis on both sides are equal. The leading term a,z" is the same
on both sides, that is

an = flxo,...,xn] = flo1, ..., 20, x0] :

this is the permutation invariance mentioned above. We are more interested in the next coefficient

a,_ 12" 1 since

n—1

(x—z0) - (x —xp_1) = 2" — (kg + -+ Tp_1)x" " + lower order terms,

n—1

(x—x1) - (x —xy) =2" — (1 + -+ + x,)2" " + lower order terms,

the coefficient of P, in front of 2"~ ! equals

Ap—1 = f[.fo, Ce ,.Cljn_l] — f[xo, N ,.Clﬁn](.ilﬁo +x1+ - +.’L’n_1)
= flx1, ..y xn] — flzo, s xn](xy + - + 20 + 1,).

Reordering terms, we find

fleo, - sxp)(zr + -+ Xp g+ 2y —20— 21 — - — Tp1) = fla1, - x0] — flzos - X1,
or
f[xo’”"mn] _ f[xla"wxn] _f[l'Oa"'axnfl]‘
Tn — X0
This is the formula you are looking for.]

47

Lecture 11: Interpolation Error. Piecewise interpolation. (Mon-
day, September 28)

Let us now try to understand the interpolation error better. Does the Newton approach help in
this regard?

11.1 Interpolation error and divided differences.

We have the two following results.

Theorem 11.1. Assuming f € C"*(I) with I some interval, fix distinct nodes xo, ...z, and
xel. Then

Eo(@) = flz0r- o Jinan (2).,
where E,(x) = f(x) — P,(x) is the interpolation error and w,i1(x) = [[[_o(z — z;).

Proof. Interpolating at the n 4+ 2 nodes zg, ..., x,,z using the Newton formula, we obtain using
the notation from the previous lecture,

Poi1(t) = Py(t) + flzo, .-+ Tn,]wni1(t),

where P,(t) is the polynomial interpolating f at the n + 1 nodes xy, ..., x, and w,1(t) = (t —
x0)(t — 1)+ (t — x,). Taking t = z, we know that P, 1(z) = f(x) since x is an interpolation
node for P, 1, hence

f(x) = P,y(x) = flzo, .-, Tn, T]wni1(x).
]

Corollary 11.2. Given f € C"(I) with I some interval, fix distinct nodes g, ...z, € I. Then

f()

n!

flzo, ..., xn] =

for some & € [min(z, ..., x,), max(zg, ..., x,)].

Proof. We apply the previous result with the m + 1 = n nodes zp,...,2, = Zg,...,ZT,_1 and
2z = x,. Then using the Lagrange interpolation result, Theorem [10.2}

Fr ()

(m+ 1) W1 (2),

En(2) = flzo,- -+ Zm, 2]wme1(2) =

where £ € [min(z,..., 2, 1,2), max(zo, ..., zZm, 2)] and wy,1(2) = (2 — 29) -+ (2 — zm). Since
x, = z is distinct from all the other nodes, wy,+1(2) # 0, and we identify

Fm(E)
n!

as desired. O]

flzo, .. xn] =

These two results clarify how divided differences are related to the derivatives of f. On the other
hand, they do not shine much light on the behavior of the interpolation error F,(z), and we must
use another approach to understand it.

48

11.2 Error investigation: Equidistant points.
The classical counter-example is Runge’s function,

1
14 a2

f(z) with z € [-5,5].

It is clear from the plots below that increasing the order of the interpolating polynomial, instead
of increasing the accuracy of the approximation as expected, leads to large oscillations of the
interpolating polynomial near the ends of the interval, x ~ —5,5. This is not due to inaccuracies
of the numerical implementation, but a fundamental difficulty in the interpolation process, which
may not ensure 11, f(z) — f(z) uniformly on [—5,5].

-1
o Data
P,(%)
—P,®
P,

Property 11.3. For a given set of nodes X = {xq, ..., z,}, the interpolation error can be compared
to the best possible approximation by a polynomial with the following estimate:

I =T fllo < (14 Aa(X)) min | = Pl

where the best possible constant A, (X) = HZLO |€£n)|

of interpolation nodes xq, ..., T,.

‘ 18 called the Lebesgue constant of the set
o0

It can be shown that for any set of interpolation nodes,
A (X) =2/mlog(n+1) - C,

where C' > 0 is some constant. In particular, this implies that A,,(X) — co. In fact, one can show
that there exists always some continuous function such that, for any sequence of interpolating

49

nodes X1, X, ..., the corresponding sequence of interpolating polynomials II,, f does not converge
uniformly to f, meaning ||f — II,, f|s + 0.
For the particular case of equidistant points, the Lebesgue constant grows much faster than the

lower bound above:
2n+1

A(X)x —.
n(X) enlog(n)

Interpolation on equidistant nodes is thus very unstable for even moderate values of n, and unlikely

to converge unless f(z) can be approximated exponentially well by polynomials in the first place

(e.g., if there is P, € P,, such that | f(z) — P,(z)|x < Cr™ with |r| < 1/2).

11.3 Piecewise Lagrange interpolation.

Since high-order interpolation schemes may not converge as n increases, one must seek a different
way to use interpolation in order to approximate functions accurately. The main idea in this
paragraph is to divide the interval of interest in small pieces, and use a low-order interpolant on
each piece.

Piecewise Interpolant: Ingredients.

e Interval of interest [a, b],

e Partition in K intervals I = [z, Tg11] with
a=To<T1 < - -<Tp=20b
with LT+l — T = |]k| =h= %.

Remark 11.4. The sub-intervals do not have to have the same length, but this makes the
presentation and analysis somewhat easier to follow.

e For n > 1, we define the piecewise polynomial space
Xy ={veC(la,b]); vl €ePn(lx), k=0,...,K}.

e For f € C([a,b]), we construct the piecewise interpolation polynomial II}f : [a,b] — R,
such that for x € Iy, i.e. xp < o < 241,
n
th|1k(‘r) = an’lk
v .
interpolant with equidistant nodes wio) zém, ;t,(;”):wk +ih/n

Because the ends of the sub-intervals are part of the interpolation nodes, we check that IT}! f|;, (zx) =
flxg) = 0 flr,_ (xg) for 1 < k < K — 1. Hence II} f(xy) = f(x) is well-defined and II} f(x) is
continuous across the interior points x; separating the intervals I}.

By construction, the piecewise interpolation polynomial I1" f thus belongs to the piecewise poly-
nomial space X}'. Using the Lagrange error result on [z, zx41] we obtain

(n+1)
)~ f(a)] = [

T))| < @

with z € Ij, such that |z — $,(;)| < h and ¢ € I, with C(n) some constant depending only on n.
Hence, on the whole interval we have the bound

|f(x) =TIV f(2)] < C(n)| £ Y| R

For a fixed order n, we can thus ensure convergence O(h"*!) = O(K~("*Y) by increasing the
number of sub-intervals, for any smooth function f(x).

20

11.4 Cubic Splines

Another widely employed scheme to ensure convergence of interpolating approximations, splines
seek to enforce smoothness of the interpolant by enforcing continuity of some derivatives on the
whole interval of interest. Note that this is not the case of the piecewise Lagrange interpolant
above, whose derivative is in general not continuous at the points xy.

Interpolatory Cubic Splines: Ingredients.

Interval of interest [a, b],
Partition in K intervals Iy = [z, xg11] with
a=To <11 < - -<XTp=20b
with xpy1 — xp = |Ix| = hy.
Cubic splines are functions S(z) : [a,b] — R such that
S e C*([a,b]), S|r, € Ps.

Since there are K intervals and dimP; = 4, each spline is uniquely determined by the
knowledge of 4K coefficients at most.

Interpolating splines are subject to the following set of contraints:

(1) First, the spline must interpolate the data at the nodes xy:

S(wo) = f(zo),
5’11%1(;616) = S’Ik(xk) = f(xk)u fork=1...K — I,
S(zk) = f(zk).

(2) Next, its first derivative must be continuous accross the nodes:
Sly, (xx) = S|} (x), fork=1...K—1.
(2) Finally, its second derivative must be continuous accross the nodes:

Sl () = S|7 (xx), fork=1...K—1.

Iy 1

The set (1) forms a total of 2K constraints, while (2) and (3) account together for 2K — 2
constraints. In order to obtain a well-posed problem for the 4K coefficients of S, we need an
additional 2 constraints. Two common ways to complete the system are:

(4a) Natural spline:
S"(xg) = S"(zk) = 0.
(4b) Clamped spline:

§'(wo) = f'(x0), S'(zx) = f'(2K).

o1

Construction of natural splines. A natural, but non-efficient way of constructing the interpo-
latory spline is to form the system of 4K linear constraints above and solve for the 4K coefficients
of the spline, e.g. using a monomial basis on each interval Ij.

A better approach is as follows. We form the unknowns

MkIS”(Ik>,]{?ZOK,
which are well-defined quantities because S € C?([a,b]), accounting for the set of constraints (3).
Since S is a cubic polynomial on each I, S” is linear and may be expressed as

Tkt1 — T T — Tg

4

S5, = Mkh— + Mk“h—
k k

Integrating twice leads to

M, — 2+ M —)3
Sy, = k(Thy1 — T) 64}; k1 (T — k) L CeiD,
k

where C, D are two integration constants to be determined. Rewriting

Tg+1 — X T — T
Cx+D=A B
T + I + I

and because of the constraints (1) the new constants A, B must be such that

M —zp)*+ M —)3 _ _
S’Ik(xk) _ f(fL'k) _ k}('rk?-‘rl xk) + k‘-‘rl(wk‘ xk‘) +A'rk3+1 Tk +Bxk’ T
hiM,
S el N
6
so that A = f(xy) — h?# and
M - S+ M, —x3)? - _
Slp (2rs1) = flans) = k(@hi1 — Tu1)” + Miga (@1 — p) 4oAT T T | p Tl T T
6h hy Iy
h3 M,
= DkTTRAL + B
6
so that B = f(zx41) — %. Thus, constraints (1) and (3) have led us to the expression for the
spline
S‘ (J;) :Mk‘(l‘k‘-‘rl - .ZU)?) + Mk-‘rl(x - ‘/L‘k‘)g
& Ghy,
hiMy\ (241 —) hiMiy) (x —)
+ —~ + - .
(1 - B0) =) (g - P)
It remains to compute the coefficients My, ..., My using the remaining constraints (2) and (4a)

or (4b). Continuity of the first derivative:
Sly_ (wx) = S|} (x), fork=1...K—1,
is implemented by computing the derivative of the expression above:

’ —Mk(xk - .T)Q + Mk (.T - ZEk>2 1 thk 1
Sy, (@) = B e () =5

02

hZM,
+ h_k <f(xk+1) - kaH>)

so after some manipulations,

f(@r) — f(a)
D,

so that by substituting indices £k — k — 1 we have
flw) = flepo1) | Pea

S’,Ik (Tht1) =

h
+ Ek(Mk + 2Mj41),

S‘/Ik,l (xk> = Mot + 6 (Mk,1 + 2Mk)
and also
T — f(zx h

Equality between these two quantities then means

f(or) — f(ar—1)
hy—1

f(@ri1) = f(a)
i

6 + hk—l(Mk:—l + 2Mk) =6 - hk(2Mk + Mk+1).

k hg—1

Defining b, = 6 (f(xk“h)_f(xk) — ﬂxk)_ﬂx’“”), we find that the coefficients My, ..., Mg must sat-
isfy:

h_1M_1 + Q(hk_l + hk)Mk + hp My = by, k=1,...,K —1.
Complementing these K — 2 linear equations are the final conditions (4). For the natural spline,
we have for example My = Mg = 0, which leads to the tri-diagonal "M-continuity" system

1 0 M, by
ho 2<h0 + h1> hq M, by
hy Q(hl + hg) ho M,y ba
hrg—2 2(hg-2+hx-1) hx_1| | Mg b1
| 0 1 11 My | i bi |

Solving this linear system can be done in O(N) operations, using Gaussian elimination! See Math
782 for more details.

11.5 Properties of Cubic Spline Interpolants

Theorem 11.5 (Error bound). Let f € C*([a,b]), M = |f¥|,. Let S(z) be an interpolatory

cubic spline at K + 1 equally space nodes xq, ..., xx with xp 1 —x = h = b’?‘l Then:
e Natural spline case:

[f(z) = S(2)]c < CH?,
where C' depends on f"(a), f"(b) and M;

o Clamped spline case:

1£(x) = S(@)] < %m.

We skip the proof of this result.

Property 11.6 (curvature minimization). Let f € C*([a,b]), and S(x) a natural cubic spline
interpolating f. Then
b b
[5@k < [1@

23

Lecture 12: Hermite Interpolation. (Monday, October 5)

In this lecture, we seek to generalize interpolation to the case where values of the derivative of f
are known at some or all of a set of distinct nodes:

(xz‘,f(k)(xi)), i=0...n, k=0...my,

where my, ... m, > are some natural integers. These data pairs form a total of N+1 = >7" ((1+m;)
constraints.

Property 12.1. There exists a unique polynomial Py € Py with N =n + >, ,m; such that
P(k)(x‘) = B () foralli=0...n, k=0...m;
N (X i), ...n, Sy

In order to compute this interpolant in practice, we can employ either a Lagrange- or a Newton-
type approach.

12.1 Lagrange-type formula.

In this approach, we find a basis such that

n m;

Py(x) =) 2 0 L),

=0 k=0

(k)

i

= f®(2;). The Hermite characteristic polynomials Hy(z) € P, need to satisfy

@il (z;) = {

where y

1, ifi=jandk = p,

dxP 0, else.

Let us define

polynomial of order < N

(x — x;)7 z—axp\ ™!
hij(x) = — 11 P eP,.
— i T

hE-?(m) =0,0<p<y, and hﬁﬁ)(m) =1

By construction, these polynomials have the right derivatives at all points xy for & # 7, and also
at x; up to order j included. If j < m,;, then we must "correct" the remaining derivatives of order
J+1...m; in order to satisfy all the constraints above, which we achieve by the following recursive
process.

e First, we set
Hipm, (2) = him, (), fori=0...n.

e Next, we set for j =m; —1,...,0, assuming that we have computed polynomials H;(x) with

the right properties for all j < k < mj,,

Hiy(e) = hig(e) — S b (@) Hao).

k=j+1

o4

One checks in particular that for p = 0, ..., m;, the resulting polynomial satisfies

0 ifo<p<y,
HP (z;) = B Z his () = Z W (@)0, =31 ifp=j,
k=j+1 k=j+1 0 ifj<p<m,.

By recurrence, the process thus leads to a set of polynomials functioning as advertised.

A particular case Let us work out this process in the case where mg = m; = --- = m, = 1:
we seek to match both values and first derivative of f(z) at the set of nodes z;. The degree of the
resulting polynomial should be N = 2n + 1.

2
e First, we have H; (7) = ha(z) = (v — 23) [[, (I_m’“> , so recalling the definition of the

T;—Tp
T—TL

Lagrange characteristic polynomials (;(z) =[], 7225,

Hy(z) = (z — 2)03(x), i=0,...,n.

e Next, we want to compute

and
Hio(z) = hio(x) — hig(z;)Hi (:U)

We have hjy(z) = 26;(x)l;(x), so hiy(x;) = 20;(x;) = 23, 7= Hence,
Hio(x) = [1 = 20)(:) (2 —)] £ ().

Definition 12.2. The following polynomaials form a basis of Hermite characteristic polyno-
mials for Po,,q:

Hi(x) = Hio(x) = [1 — 26i() (2 — 2:)] £ (),
Hi(z) = Hy(z) = (x — ;)03 (x), i=0,...,N,

where (i(x) =[]} =2 are the characteristic Lagrange polynomials.

Property 12.3 (Lagrange-type formula for the Hermite interpolant). The unique Hermite inter-
polation polynomial for f at the nodes xy, ..., x, writes

Poni(@) = f(xo)Ho(x) + -+ fon)Halw) + f'(wo)Ho(w) + - + f'(wn) Ha(x).

Furthermore, if f € C?*""2(I) with xy,...,T,,x € I then

(2n+2)
@) = Panali) = gt (0 = (2 =)
where £ € [min(xy, . .., Ty,), max(zo, . .., Ty, T)].

We skip the proof of this result. The general formula can be found in the textbook.

25

12.2 Newton-type formula.

Recall now the formula for divided differences:

f[l‘o,$1] _ f(x1) — f(20)

T1 — Zo
It is clear than when x; — z¢, the limit is well-defined allowing us to set

flzo, wo] = f'(w0).

This allows us to use the same Newton formula as before, but with a new set of nodes repeating
the original ones as needed: for example, if mg = --- =m,, = 1, we form the new set of nodes

for xo # 1.

{ZOJ Rly -5 R2n; 22n+1} = {x()? Zo, .-y Tn, '/L‘n}'
The the Hermite interpolant is simply
Popi1(x) = fl20]+ f[20, 21](x—20)+ f20, 21, 22] (v —20) (x—21) + - -+ f20, - - -, 22041 (¥ —20) -+ (T—220),
or in terms of the original nodes,

Pani1(z) = flo] + f[wo, o] (z — 20)
+ flxo, w0, 71](z — 70)?
+ ...
+ flzo, Tos - s Ty 2] (0 — 20)* - (T — 1) (T — 20),

where the divided differences are computed as before using the triangular table:

o | f(20)
zo | f(7o) f'(z0)
N
w1 | f(r1) -
N
L1 f($1) fx) — f[Io,$1,iU2]
N N
x| flza) — flo, 2] —
N N

A similar procedure can be employed to construct the general Hermite interpolant, using the
convention ®(z)
U (x
fl = ...,z |= o

—_——
repeated k + 1 times

12.3 Example.

Let us find the Hermite interpolant of f(z) = \/;?ﬁ at the nodes —1,0, 1.

We compute the derivative f'(z) = (I;}f)"; = and thus the data:

oy | fxx) | ()
—1] 1 1/2
0| 2 0

1 1| —1/2

26

Construction using the Lagrange-type formula: We know that
Hi(w) = [1 = 2(x —2)li(@))6(x), Hilx) = (@ = 2)E (2).

Hence we start by computing the elementary Lagrange polynomials and their derivatives.

lo(z) = @ 0(x) = —(z = 1)z + 1), la(z) = @

0y () =a:—%, 0 (z) = =2z, l5(x) =x+%,

thfaw) = 3, f(a) = 0,) =
This leads to the basis polynomials

Hy(z) = [1 —2(z + 1)(—3/2)] (@) = i(:ax + 4)z*(x — 1)%,

Hi(x) =[1—-2z(0)] ((x — 1)(x + 1)) 2 = (z—1)*(x +1)%

Hy(z) = [1 - 2(z — 1)(3/2)] ($<x+1 > - %(4—3x)x2(x+1)2,

and
Ho(z) = (x + 1)a?(z — 1),
Hy(z) = z(z — 1)%(z + 1)%,
Ho(z) = (z — Da(z + 1)%

Finally, we can assemble the Hermite interpolating polynomial:

Py(x) = Ho(w) + V2H, () + Ha () + %ﬁg(m) - % iy ()
_ 3(395)22(@ — 12 V2 — 12+ 1) + %(4 —30)2%(z 4 1) — 22z — 1)(z + 1).

Construction using the Newton formula: Here we first compute the table of divided differ-
ences:

—1| 1
—1|1 1/2

N N
0 |vV2 - vV2-1 — V2-3/2

N N

0 [+2 0 — 1-+2 — 5/2-22

N N\ N N
1|1 - 1-v2 - 1-V2 — 0 — 4/2-5/4

N N N N N
1|1 — 1/2 — 3/2-v2 — 22-5/2 — 2-5/4 — 0

Then we read directly on the diagonal the coefficients for the Newton expansion of the Hermite
interpolation polynomial:

P5(x)=1+%(x+1)+<\/§—;) (x+1)2+(g—2\@) (a:+1)2x++<\/§—g> (x + 1)

o7

Lecture 13: Numerical Integration. (Wednesday, October 7)

We want to develop methods to approximate definite integrals such as

10 = [st

where f(z) is a given function which typically does not have an explicit anti-derivative: for example,

2

flx)=e""".
Main idea: given an approximation f, ~ f which as a closed-form antiderivative, we compute

Ln(f) = 1(fn)-

Typically, f,(z) = IL,f(z) is an interpolating polynomial at well-chosen nodes. The error com-
mited by such an approach can be easily related to the error f,, — f in the function approximation,
since

Eu(f) = 1(f) — L(f) = / f(a) -

so that the absolute error can be bounded:

’En(f)’ = T| < (b_a)Hf_ anoo-

Interpolatory quadrature rules. Using the results from our previous sections about interpo-
lation, we have a natural way of constructing approximations to the function f which are easily

exactly integrable. Given distinct nodes z, ..., z, € [a, b], we form the interpolation polynomial
fn(x) = an(l') = f<x0)€0(x) ++ f(xn)£n<x>a
where (;(z) = [, & - fori=0,...,n is the elementary Lagrange polynomial. Then,

I(f)wfn<f)—/: I, f(z f (o / lo(x)dz + - f(xn)/ab€n(x)dx,

that is we have the Lagrange quadrature formula
= Z aif(xi>a
i=0

where the weights are given as «; = fj ¢;(x) and are independent of f.

Error analysis: since we have the formula

frD(E ()

(n+1) (z = 20) -+ (z =),

fla) =1 f(z) =

the error for the integrals writes

B = 1)~ 1) = oty [7D €N o =)
In general, we cannot simplify this expression further.

o8

Exactness: One remarkable property of interpolatory quadratures is that if f € P,, then the
quadrature is exact: E,(f) = 0.
Let us formalize the main concepts so far.

Definition 13.1. A quadrature formula is a weighted sum
i=0

with specified nodes x, ..., x, and weights ag, . .., a,.

Note that the interpolatory rules presented above are fully specified by the nodes xy, ..., z,, since
the weights are given by «; = fab li(z).

Definition 13.2. The degree of exactness of a quadrature rule is the largest integer r = 0 such
that
fePp, = I(f) = I(f).

Example: the interpolatory rule defined above using n + 1 nodes has degree of exactness at least
n.
Last comments:

e The reverse is true: is a rule with n + 1 points has degree of exactness equal or larger than
n, then the rule is interpolatory (i.e. the weights are given by the formula above).

e The degree of exactness of an interpolatory rule using n + 1 points can be as high as 2n + 1
- we will explore this phenomenon, called Gaussian quadrature, later on.

e Integration as well as numerical quadrature are linear maps on the space of functions:
I(af + Bg) = od(f) + BI(g), Li(af + Bg) = al,(f) + BLa(9),

for any pair of integrable functions f, g and real numbers «, 5.

13.1 Closed Newton-Coétes quadrature rules.

A special class of rules is obtained by choosing n > 1 and n + 1 equally spaced nodes x; = a + jh,

7 =0,...,n, with step size h = b’T‘l Such rules are called closed Newton-Cétes rules - ’closed’

because the end-points of the interval are part of the set of nodes.
We denote these rules

b
Qu(f) = ZAif(iEi), where A; = / li(x)dz.
Let us explore a few special cases.

Case n = 1: the trapezoidal rule.

e In this case, we have only 2 nodes: zy = a and x; = b.

e The corresponding interpolating polynomial IT; f(z) = f(a)lo(x) + f(b)¢1(x), with the ele-
mentary Lagrange polynomials

e The interpolatory rule is thus obtained as

Q) = [s = s [@i+ 50) [i,

whith the weights
b R —(b—x)?

o = /a lo(z)dx = /a e adx = —2(b s

b b2 —a (x —a)?

Oélz/a 61(1’)dl'=/a b_adl': m

We have thus derived the trapezoidal rule:

_b—a

2

Q1(f) (f(a) + f(b)) =

n

v

e Error analysis: we have from above

B - [1 D o a)(e — e

Now because (z — a)(z — b) < 0 does not change sign on the interval [a, b], we can use the
mean value theorem:

" b
E\(f) = fT(f/ (x —a)(x — b)dz, for some ¢ € [a, b].

We can compute explicitely this last expression:

b (b—a)?
[e-ae-y - L5,

so we obtain:
Property 13.3 (Error formula for the trapezoidal rule:).

(b—a)’

D 1"(&), for some € € [a, b].

El(f) ==

60

Case n = 2: Simpson’s rule.

b—a
5 -

e In this case, we have 3 nodes: zg = a, r1 = m = “ and x5 = b, and step size h =
’ 0) 2)

e The corresponding elementary Lagrange polynomials and weights are

lo(x) = iz : :;Ez:g - Ao = j lo(z)dw = ga
_ (@—a)(z—b) N I AR 1

l(x) = (m —a)(m =) Ay) ly(z)d 3
(@ a)e-m) o h

ly(x) = b= a)b=—m) — Ay =) ly(x)dx = 3

We have thus derived Simpson’s rule:

Qi) = 0 (@ + 47 (1) + 50)) = § (7@ + afm) +).

Property 13.4 (Error formula for Simpson’s rule:).

Ey(f) = -1 9 e), for some £ € [a,b].

The proof will be presented later. Note that the degree of exactness of Simpson’s rule is 3, which
is one more than we expect!

General remark on Closed Newton-Cotes Rules: The weights of Newton-Cotes rules de-
pend in general only on n and proportional to h, but not on a, b in particular. Indeed, using the
change of variables x = a + th, 0 <t < n, then we have

T — Xp (a +th) — (a + kh) t—k
i) Hk#xi—xk ki(a—mh)—(a—i—kh) Mk 9i(t)

Therefore the weights are given by

A = /ab (y(x)dz — /On bi(1)hdt = h (/On @(t)) |

The resulting quadrature rule is
Qn(f) = thif(xi)v w; = / ¢i(t)dt,
i=0 0

where the coefficients w; depend only on n and have usually been computed and assembled into
tables (see e.g. Table 9.2 in the textbook) for useful values of n.

61

Lecture 14: Open Newton-Co6tes and Composite Rules. (Mon-
day, October 12)

14.1 Open Newton-Cotes Quadrature Rules

We proceed similarly to the construction of closed Newton-Cotes rules. For a given n > 0, we
choose n + 1 equidistant nodes
b—a

=a+ (j+ 1)h, 1 =0,...,n, h =)
Tj=a (7) J n n+ 2

This leads to the open Newton-Céotes rules:
n b
Qulf) = 3 Aif (), Mm&z/a@mu
i=0 a
More precisely, using the change of variables ¢t = a + (¢t + 1)h, we find

T — Xp (a+ (t+1)h) — (a+ (k+ 1)h) t—k
Ei(w)ZH(%——%) :H< a+ (i+1)h—(a+ (k+1)h)) :Hi—k’_¢i<t)’

ki ket

we find that the quadrature weights take the form

n+1 n+1
-1 i=—1
Note that the coefficients wy, ..., w, only depend on n, and can generally be pre-computed and
tabulated.
14.2 Example: the midpoint rule.
a+b

e Here, we choose n = 0 such that we have a single node zy = *=,

e The corresponding weight is Ay = f; lo(z)dx = fab ldx = b— a.

This yields the midpoint rule:

The error formula reads

(b—a)? h3

Eo(f) = 1(D) = Qol) = “5-1"(€) = - "(6), a<€<b

The degree of exactness of the midpoint rule is 1.

Proof. Using the Newton formula,

b
I(f) — Qo(f) :/ flxo, z](z — x0)dz.

62

Let W(z) = [7(t — zo)dt = 1[(z — 30)* — (a — 20)*] = 3[(z — 0)® — h?] = L(z — a)(z — b), which

2
we note is strictly negative in the interval (a,b). Integrating by parts we have

b b
1) = Qulf) = Slao W), ~ [2 flooslWi@) == [5P (oo

We have used here the identity -L f[zg, 2] = f[zo,z,z] = 1f”(£(2)), and using the mean value
theorem now we obtain

I(f) = Qo(f) = f” / Wz for some ¢ € (a,b).

To conclude, we compute

/abW(fB)dSB = /ab /:(t—:xo)dtd$ =/ / t — xg)dxdt = /ab(b—t)(t—xo)dt
e[e (a-5) e

~~
t=b—hs, dt=hds

1\3|C’>

14.3 Error analysis.

Theorem 14.1. Let Q,(f) be an open or closed Newton-Cétes rule with n + 1 equidistant nodes
in [a,b] as defined above.

(a) If n is odd, the degree of precision is n and provided f € C™"([a,b]),

K,
(n+1)!

En(f) = I(f) — Qulf) = R D) for some € € (a,b),

where

K - {fon Tp+1(t)dt < 0, (closed rule),

_n1+1 Tns1(t)dt >0, (open rule),

with 7,1 (t) = [[7_(t — 7).
(b) If n is even, the degree of precision is n + 1 and provided f € C"2([a,b]),

M,
(n+ 2)!

En(f) = 1(f) = Qulf) = R FE(E) for some € € (a,b),

where

M ot (t)dt < 0, (closed rule),
" n+1 tmpy1(t)dt > 0, (open rule).

Proof. We only sketch the main arguments in the case of even n and a closed rule (ex: Simpson’s
rule). Using the Newton formula, we write the error

1(f) — Qu(f) = / Fl0r - -+ s i ().

Let W(z) = [wyy1(t)dt, we will accept the following (nontrivial) facts:

63

e W(a)=W(b) =0, and
o W(x)>0fora<ax<b.

Integrating by parts, we rewrite

b b £(n+2) (¢(g
1) = Q) == [Ao aWia)de = — [J“(T(g()!”mx)dx,

and using the mean value theorem,

I(f) = Qn(f) = — :122 /W for some a < £ < b.

Finally, using a change of variables we compute

b n
/ W(z)dx = —h”+3/ 711 (t)dt.
a 0

14.4 Composite Quadrature Rules.

In order to increase accuracy, we know that high-order interpolation should be avoided.
Instead, we proceed as for piecewise interpolation and divide the interval into many sub-intervals,
before applying one of the above rules on each one and combining the results.

14.4.1 Composite Trapezoidal Rule.

In this case, we divide the intervals using the equidistant nodes

b—a
—

a<rTo<ri<---<xp,=0> Wlthl'lza—Flh, h =

/ f(z dx—k/g:z f(x)dx—i—---—i—/;: f(z)dx
~3
ﬁ

Then we write

(F(ao) + (@) + o (Fan) + F(a2) %+ 2 () + F(2)
= o (f(@0) +2f(21) + 2f(22) + - + 2f (wn-1) + f(@n))
= Ql,n(f>

This is the composite trapezoidal rule.
Error analysis. If f € C?([a,b]), then we may write on each sub-interval

Ti41 . _)3
/. f(z)de — Qi(f) = —wf”(&), T <& <&t

64

and thus by summing over 7,

1)~ Quilf) =~ 3 16,

To proceed further, we need to use the following discrete Mean Value Theorem. Set &,,;, such that
" (&min) = min; f7(&;) and &qp such that f7(§nee) = max; f7(&;). Then,

Z”@ " (émaz)

§I>—‘

” fmzn ~

and thus by the intermediate value theorem, there exists £ € (a, b) such that

LY e = 1)
=0

Now, we rewrite

h?b—
El,n(f) = 12

-1
a " _ "

- §f@— TR

We have proved:

Theorem 14.2. Suppose f(x) € C*([a,b]), setn =1, h = =% 2, =a+ih, i =0,...,n. The
n-th composite trapezoidal rule writes

@Aﬁ=§<ﬂ@+22f@»+ﬂ§)

The error has the form

b—a
12

Eyn(f) = I(f) — Qin(f) = — 1 (&n, for some a < € < b.

The degree of precision of Q1,, s 1.

14.4.2 Composite Simpson’s Rule.

Similarly, we set h = l’z’—n“ and z; = a + th, i = 0,...,2n. Applying Simpson’s rule on each
sub-interval [z, 23], [%2, 4, ..., we have the approximation

/f da:—I—/f Ydx + - /f

(f(wo) +4f(z1) + flw2)) + 35 (f(wz) +4f(xs) + f2a)) + - + " (f (@n-2) + 4f (xn-1) + f(2n))

~3 3
= % (f(wo) +4f(w1) +2f (w2) +4f(x3) +2f(xa) + -+ + 2f(vp2) + 4f(xn_1) + f(70))
= Q2,n(f>

This is the n-th composite Simpson’s rule.

65

Error analysis. Similarly to the above computation, we start from the elementary error formula

Tit1 h5
/ f(x)dr — Qa(f) = _9_0f(4) (&), T < & < iy,

i

such that

5 n—1 43 n—l .
1) = Qunlf) = —g5 21 () = 572 2 1) = — W FO(E).
i=0 i=0

Theorem 14.3. Suppose f(x) € C*([a,b]), setn =1, h = b;—ﬂ“, x; =a+1th,i=0,...,2n. The
n-th composite Stmpson’s rule writes

Qonll) = o (f(a) S4Y flrn) +2) fl) + f(b)> .

The degree of precision of Q2. ts 3 and the error has the form

_b—a
180

Eon(f) = I(f) — Qan(f) = f@)R, for some a < £ < b.

66

Lecture 15: Composite Rules (cont.) Approximation theory,
Orthogonal Polynomials. (Wednesday, October
14)

15.1 Last comments on composite rules
15.1.1 Composite Midpoint Rule.

As a final example, we take n > 1, h = ,ti=a+1ih,i=0,....,nand x; = a+ (i + 1/2)h,
1=0,...,n—1. Applying the mldpomt rule on each sub-interval [tg,t1], [t1,%2], ..., we have the

approximation
/ f(z)dz + - / f(z

X hf LU()) -+ hf(xn 1
= QO,n(f)'

This is the n-th composite midpoint rule.

Theorem 15.1. Suppose f(z) € C*([a,b]), setn > 1, h = 2% 2, = a+(i+1/2)h, i =0,...,n—1.
The n-th composite Simpson’s rule writes

Qo,n(f) =h Z_: f (@)

The degree of precision of Qo ts 1, and the error has the form

b—a

o fren?, for some a < £ < b.

EO,n(f) = [(f) - QO,n(f> =

15.1.2 General Composite Newton-Cotes Rule

Taking n > 1 sub-intervals and a rule of order m on each one, we form the composite quadrature
rule

n—1 m
Quam(f) =D Y aif(wiy),
i=0 j=0
where the nodes are defined by setting y; = a +ih, j =0,...,n, h = b_T“, and
y; + h(j/m), j=0,...,m (closed rule),
T =
’ yi+h(j+1)/(m+2), j=0,...,m (open rule),

and the weights «; = hw; are defined as before. The error formula for even n behaves like O(h"*?)
(degree of exactness n + 1) and for odd n like O(h"™) (degree of exactness n.)

67

15.2 Approximation of Functions
15.2.1 The Weierstrass approximation theorem

We know that any continuous function f € C{[a,b]) may be approximated by polynomials: the
Weierstrass approximation theorem states that there exists a sequence of polynomials p,, such that
|f = pnlc — 0 as n — oo, where we can impose that p, € P,,. This result can be stated in the
following form:

I i — P(z)| = 0.
Jim min xfg[%]\f(x) ()]

The polynomial P, € P, realizing this minimum for a given n is called the minimax polynomial,
and is unique. It is in some sense the best approximation to the function for a given polynomial
degree, however it is hard to achieve - and as we saw in previous studies, interpolation is unstable
at high order and not a suitable method to approach the function. This is due in part to the
nature of the norm | - |, which is difficult to work with.

15.2.2 Scalar product. Generalized Fourier Series on (—1,1)

We introduce a more amenable structure by defining a scalar (or inner) product for integrable
functions on (—1,1): given a continuous weight w(z) > 0, defined for —1 < x < 1, such that

f,ll w(z)dr < o0, we set
(fs9)w = /_lf(x)g(x)w(x)dx.

This is a well-defined bilinear form for f, g continuous on [a,b|, which satisfies all the usual

1/2
conditions to be a scalar product - in particular, | f[. = (f, f)3* = (f_ll |f(:B)|2w(:v)d:E> is a

norm on functions on (—1,1): for example, |||, = 0 implies f(z) =0 for -1 <z < 1.
We further define the space of square-integrable functions

1
L2 =L2(-1,1)={f:(~1,1) - R, measurable, A (2)w(z)dx, o}
-1

This space contains all continuous functions on (—1,1): indeed,

< ([15000r) P (f wia) e

Since it is equipped with a scalar product, the Hilbert space L2 comes with a lot of useful notions
(orthogonality, etc) for approximation. In particular, we are interested in forming a orthogonal
basis, i.e. a set of functions pg, py, ... such that (py,p;), = 0 for any k # [and any function in L2
may be expanded as a series

0
f= S , feeR.
k=0

—

convergent series in L2 norm

Such an expansion is called a generalized Fourier series. The classical example is given by the
functions
par. = cos(kmx), pok—1 = sin(kmz),

which is an orthogonal basis for the weight w(z) = 1 for functions on the interval (—1,1).

68

Fundamental properties

e Fourier coefficients: the expansion coefficients may be computed explicitely: since

(f,Pe)w = <Z AlPth) = fk(pk,pk)w = ﬁc”pkH?ua
1=0

w

SO

T (f?pk)w
=

e Parseval identity:

Q0
L£1% = X5 Ul lpal
k=0

e For any n > 0, the truncated Fourier series

fn = Z ,;fpk
k=0

is the best approximation of f within P, = Span{py, ..., pn}:

Hf - fn”w = min Hf _p”w‘
peP,

Indeed, we know that f — f,, = >, +1 fkpk is orthogonal to any basis member po, ..., p,:

(f_fn7pk)w:0>]{?ZO,...,TL,

such that by linearity, (f — f.,p) = 0 for any p € P,. Then, we compute

||f_an12u = (f_fnvf_fn)w
€P,
= (f_fn7f_p)w+(f_fn7p_fn)w
= (f_fmf_p)w < ”f_anw”f_pHUJJ

o

~
Cauchy-Schwartz inequality.

Hence ||f — fulw < |f — pllw, which is the result we wanted to prove.

15.3 Families of orthogonal polynomials.

Here, we seek to form an orthogonal basis such that p, € P, is a polynomial. In particular,
Do, - - -, Pp Mmust be linearly independent and therefore a basis of P,. These polynomials should
satisfy the orthogonality relation

>0, k=1,

1

In general, the sequence of polynomials can be generated using the Gram-Schmidt orthogonaliza-
tion process starting with the standard basis {1,z,..., 2", ... }: the algorithm proceeds recursively,

69

setting pp = 1 and then once py, ..., p, are formed the next polynomial in the basis is obtained by
setting

n n+1
7pk
DPn E Pr\T).
nle =z pe()

This is an expensive process since at each step, all previously constructed polynomials are needed.
As the following result shows, this is not actually the case for families of orthogonal polynomials, for
which on the last two polynomials are needed to construct the next - a so-called 3-term recurrence.

Theorem 15.2. A monic orthogonal family {p,}n>o0 satisfies the relations

xpy = p1(x) + agpo,
xpn(x) = pn+1(x) + Oénpn(x) + ﬂnpnfl(x) fOT' n=1

with constants a,, 5, depending only on the weight w(x).

Proof. We notice that the scalar product defined above satisfies the shift property (xf,g), =
(f,29)w. Now, since p,, and p,; are assume to have leading coefficients equal to 1 (monic property)
we know that xp,(z) — pny1(z) has degree at most n, so it may be expanded in the orthogonal

basis po, ..., p, with the Fourier coefficients defined above:
(2P0, PE)w

Furthermore, we note that (zpn,pk)w = (Pn,ZPr)w per the property above; however, xpy(x) has
degree equal to k + 1, so it is orthogonal to p, if £+ 1 < n, implying that (xp,,pr), = 0 for
k + 1 < n. Hence,

(xpnvpn)w n() (mpnapn—l)w

Tpn () = Py () + 5 D 5 Pn—1(2)
Hg;@/ Ipn-1l2,
=Qn =PBn

]

This means that all orthogonal polynomial families are constructed by a 3-term recurrence of the
form

po(x) = Ay, Pl(af) = Az — By,
pn-i-l(x) = (Anx - Bn)pn(x) - Cnpn—l(x) for all n > 17

with some sequence of numbers A,, B,, C,, depending only on the weight w(x) and normalization

A,

70

Lecture 16: Chebyshev and Legendre polynomials; Gaussian
Quadrature. (Monday, October 19)

16.1 Chebyshev polynomials.
Consider the weight function w(x) = ﬁ, the Chebyshev polynomials of the first kind are
defined by the formula

T, (z) = cos(n arccos(x)).

This formula, which makes sense for —1 < < 1, can be shown to define a sequence of polynomials
by using trigonometric identities: in particular,

To(z) =1, Ti(z) = x.

Properties.
e Using the change of variables ¢ = arccos(z), one checks easily that
, ifk=1=0,

1 s
/ Ti(x) T (x)w(x) = / cos(kx) cos(lx)dr = S n/2, ifk=1>0,
-1 -
0, else.

Hence, the Chebyshev polynomials form an orthogonal basis for the weight w(x)

The cosine formula implies many nice properties, in particular
Tn(x)|] <1, for —1 <2z <1.
e T,(z) is an even (resp. odd) function of z if n is even (resp. odd).

e T, () has n distinct zeros in (—1, 1), which are explicitely:

27 +1 .
ij:_cos(w>’]:O”n_l
2n

Three-term recurrence: we have by a trigonometric identity

Tor(2) + Tyt (x) = 2co8 ((” Fh+(n-1) arccos(:v)) cos (<" h-(n-1 arccos(a:))

2 2
= 22T, (z),

which is the 3-term recurrence
Thi1(z) = 22T, (x) — Tpioq(x).

This is the cheapest and most stable way to compute the value of Chebyshev polynomials
for a given .

e The leading coefficient of T, (x) is 2"~ 1.

e The Chebyshev polynomials have the minimax property:
1 —n
|5 Tl = 27" < 1 Poo,

for all P € P, with leading coefficient equal to 1, i.e. p = 2™ + lower degree terms.

71

Application: for any f € L?(—1,1), the best approximation of f in P, in the |- |, norm is given
by the truncated generalized Fourier series:

Pa(e) = Y iTi(a),

with the expansion coefficients given by the explicit formula

2 —dko
™

1 dx
/jmnwﬁjﬁ

f =

16.2 Legendre polynomials.

Now, let us take the weight w(z) = 1, leading to the classical L? scalar product

(f.9) = /llf(:r)g(ff)d% [flz2 = (/llf(w)zdx) 1/2-

The orthogonal polynomials for this weight are the Legendre polynomials:

1 &

. — (2 1\ :)
j(z) = 27 dai (x*—1) (Rodrigues’ formula)

or recursively through the 3-term relation:

Lo(z) =1, Ly(z) = =,
U+ DLja(x) = (27 + Daly(x) = jLi(2).
Properties:
e The polynomial L;(x) is an even (resp. odd) function of z if j is even (resp. odd).
e The scalar product and L; and L; is

2

(]) 2j+1 J

Application: for any f € L?*(—1,1), the best approximation of f in P, in the | - || norm is given
by the truncated generalized Fourier series:

Po(w) = 3, FiL(a),

with the expansion coefficients given by the explicit formula

1

fi=0+1/2) @)L

72

16.3 Gaussian quadrature

We are interested in quadrature rules with maxximum order of exactness to approximate weighted
integrals:

L) = | f@pui)ds,

Given nodes xy, ..., x,, we know that the interpolatory quadrature rule

1

Lnw(f) = Zaif(il?i), a; = /_ li(z)w(x)dx,

will have degree of exactness at least n.

In order to extract the maximum accuracy from the quadrature, it is of interest to choose the
nodes xy, ..., T, to maximize the degree of exactness. To construct such rules, say with degree of
exactness n + m for m > 0, we rely on the following result:

Theorem 16.1. For m > 0, an interpolatory rule I, ., has degree of exactness at least n + m if
and only if the polynomaial
wni1(r) = (& = x0) -+ (2 —)

1s orthogonal to any polynomaial in P,_1, meaning that

/_ Wn1(2)p(x)w(x)de = 0, Vpe P, 1.

1

Proof. If f € P,,,,, we use polynomial division by w,,; to write

f(:E) = WnJrl(x)mel(x) + Tn(x>7 dm-1 € IP)nfly Th € Pn

Now we compute the quadrature. Since wy41(x;) = 0 for i = 0,...,n and I,, is exact for all
polynomials in P,

Sastw) = Sarte) = [ra@ueie = [s [wa@a @,

1=0 =0 J 1 J

~—

=0 (by assumption).

Since this must hold for all possible polynomials ¢,,_1(z) in P,,_1, the two propositions in the
theorem are in fact equivalent.]

Corollary 16.2. The maximum degree of exactness for an interpolatory quadrature formula is at
most 2n + 1.

Proof. Pick f(x) = w?_,(x), then the exact integral is I,(f) = f_ll w2 4 (z)w(z)dz > 0, but the
quadrature is I, ,,(f) = >, w2, (x;) = 0. Hence the rule cannot be exact for all polynomials
of degree 2n + 2.]

To achieve the maximum order of exactness 2n + 1, we thus want w,,.(z) to be orthogonal to all
polynomials of order at most n, i.e.

(Wnt1,P)w =0, VpeP,.

This implies that w,,; is proportional to p, .1, where {py(x)} is an orthogonal basis of polynomials
for L2 (—1,1).

73

Definition 16.3. Given n = 0, let p,1(x) be the (n + 1)-th order orthogonal polynomial with
respect to the weight w(z).

o The roots —1 < xg < -+ < x, < 1 of pny1 are the Gauss nodes associated with the weight
function w(zx).

o The weights «y, . .., a, defined by o; = f li(x)w(x)dx are the Gauss weights.

e The Gauss quadrature formula
f) = Z a; f(zi)
i=0

has degree of exactness 2n + 1, the highest possible (2n + 1) using n + 1 quadrature nodes.

Properties.
e The Gauss nodes are all internal to the interval: —1 <zxp <21 <--- <z, < 1.

e The Gauss weights are all positive: indeed o; = G, (¢?(x)) = L,(¢3(x)) > 0.

Gauss-Lobatto quadrature If including the end points is a desired property of the quadra-
ture, one can reduce slightly the order of exactness of the quadrature in order to do so. The
resulting quadrature rule is called Gauss-Lobatto. In order to achieve this result, we construct the
polynomial

Wnt1(x) = pp=1(2) + App(x) + Bpp_1(x)
with A, B chosen in such a way that @, ;1(—1) = @,11(1) = 0. Such a polynomial is orthogonal to
all polynomials of order n — 2, and includes as its roots the end points —1 and 1 by construction.

As a consequence, the roots of @, 1 () form a set of quadrature nodes ensuring degree of exactness
2n — 1.

Definition 16.4. Given n = 0, let W,1(x) be constructed as above.

e Theroots —1 =Tog<T1 < - < Ty <Tp=10fwW,r1 are the Gauss-Lobatto nodes associated
with the weight function w(x).

o The weights ay, . .., a, defined by a; = f li(z)w(z)dz are the Gauss-Lobatto weights.

e The Gauss-Lobatto quadrature formula

n
=)@
1=0

has degree of exactness 2n — 1, the highest possible using n + 1 quadrature nodes including
the end points of the interval.

Convergence of Gauss quadrature rules.

Theorem 16.5. For any continuous function f : [—1,1] — R, the Gauss quadrature rules converge
to I(f) asm — o0:
lim G, (f) = lim GL, . (f) = L,(f).

n—o0 n—0o0

Proof. Skipped. [

74

Error formula. One recalls the error formula for the Hermite interpolation polynomial at
T P

(x—x0)* - (. — 2)°.

FE2(E())
(2n + 2)!

Since P, 41 is integrated exactly by the Gauss quadrature rule and the error term vanishes at the
quadrature nodes, we compute

f(x) = Popir(x) +

L r(@n+2) (¢(
w(n) - Gunl) = [F 5

(2n+2) 1
L et -t

(x —20)? - (x — 2,)*w(x)dw

using the mean value theorem, with £ € (—1,1). The integral on the right is a constant independent
of f, which depends only on the weight and on the orthogonal polynomials: for example, in the
case of Chebyshev weight (w(z) = (1 — 22)7Y/2) one has T},,1(z) = 2"(x — x¢) - - - (x — ,), hence

1 1 -
/_l(iL' — ,CE0>2 .. (;1;’ — .CEn)Z’LU(.CE)d.CE = ﬁ(TnJ’_l, Tn-i—l)w = W

yielding the error formula for Chebyshev-Gauss quadrature

(2n + 2)

L) = Gualf) = gmsro—gri 2 2(6), ge(-1,1).

75

Lecture 17: Numerical Quadrature: the Conclusion. (Wednes-
day, October 21)

17.1 Integration over arbitrary intervals.

Any rule over [—1,1] may be apped onto an arbitrary interval of finite length [a,b] using the

change of variables

a+b b—a

P(s) = 5t s

since setting = = ¢(s) such that dz = ”_T“ds implies

b a1 R
[rwae =250 [sotonas ~ 5 Nauswie)

where ;, «; are respectively the nodes and weights of the quadrature rule over [—1, 1], for example
a Gauss quadrature rule obtained in the previous lecture. Hence, on [a, b] we have the new nodes
and weights

Remark 17.1. When the quadrature over [—1,1] corresponds to a weighted integral I,(f) =
f_ll f(s)w(s)ds, then the new quadrature over |a,b] approzimates fab f(z)W(x)dx, another weighted
integral with the weight W (z) = w(¢~'(z)) where ¢~ (z) = % (xz — L) is the inverse function
of ¢.

Error formulae An error formula follows also by change of variables. For example, let us
consider the Gauss-Legendre quadrature with error term

/_1 F(s)ds — Gy(F) = C,F®*2)(¢), Ee(—1,1),

1

where C),, = m f_ll(x — 20)%+ - (x — z,)?dz is a constant depending only on n. Then letting

F(s) = f(¢(s)), because ¢/(s) = 5% a trivial recurrence using the chain rule implies
b—a

2n+2
F(2n+2)(€) _ (T) f(2n+2) (gl)7 5/ — ¢(£) € (a,b)-

Hence

/ f)dz = 3 Auf () = 25 (IRICONLEDY mf(qb(&-)))

76

Composite rules The mapping above by change of variables allows us for example to build
composite rules based on Gaussian quadrature, which take advantage of their stability and high
accuracy. Given

e a Legendre-Gauss or Legendre-Gauss-Lobatto quadrature rule with n + 1 nodes &, ..., &,
and weights «y, ..., a, over [—1,1]:

- Naufe)~ [flads

e the partition a = yg < y1 - < Ym = b of a given interval [a,b], with equidistant nodes
yr = a + kh for step h = =2

m 7

we can build a composite Legendre-Gauss quadrature rule over [a, b]:

m§ Mg f),
k=0 =0

l\le‘

14+
with the quadrature nodes xz(k) =y +h 5 &)

The corresponding error term is of order O(h?"™2?) using the Gauss-Legendre, and O(h*") using
the Lobatto-Gauss-Legendre rule and weights. Indeed, using the error formula for the Gauss
quadrature from the previous lecture, we find that over each sub-interval, we have

Yk+1 n 2n+3
/ fa)de — gZ aif(fgk)) =Cn (ﬁ> Fem? (&), for & € (Yi, Yr+1)-
i=0

Yk 2

Summing over all the intervals, we find that, using a discrete mean value theorem,

b h 2n+2 b _m—
/(; f('r)d‘r - Gn,m(f) = Cn (§> Z 2n+2

b—a h 2n+2
=C, (—) e (¢), for some £ € (a, b).

2 2

The composite rules uses a total m(n + 1) function evaluations in the Gauss-Legendre case and
mn + 1) in the Lobatto-Gauss-Legendre case (since the end points of sub-intervals in the interior
of [a, b] appear twice in the sum).

Remark 17.2. One can also construct composite rules based on other Gaussian rules (e.g., Cheby-
shev), but particular care should be taken to take the weight into account.

17.2 Examples

Let us construct explicitely some low-order Gaussian quadrature rules.

17.2.1 Case n = 0.

We check here that the Legendre-Gauss quadrature with 1 node is the midpoint rule. We seek the
node xy and weight wq such that the following quadrature rule has degree of precison 2-0+1 = 1:

Go(f) = wof(wo) = I(f / [z

7

Method of Undetermined Coefficients. Let us form directly two equations corresponding to
the required exactness property:

Go(1) = I(1) R wy — /_1 ldo = 2,

1

This yields the quadrature rule

which is just the midpoint rule applied to I(f).

Using Legendre polynomials. Using the theory from the last lecture, we can also construct
the node x(as the only root of the Legendre polynomial Li(x) = z, that is xy = 0, and compute
the corresponding weight as the integral of the corresponding elementary Lagrange interpolation
polynomial, ¢5(x) = 1. Hence

1 1
x9 =0, wy = / lo(x)dx = / ldz = 2.

This is indeed the same result.

17.2.2 Case n = 1.

Let us seek now the Legendre-Gauss quadrature with 2 nodes xg,x; and weights wg, w; that
integrates exactly all polynomials of degree at most 3:

Gr(f) = wof (x0) + wn f(1) ~ I(f) = / f(a)da.

Method of Undetermined Coefficients. Let us form directly four equations corresponding
to the required exactness property:

1
G1(1) =1(1) - w0+w1=/ ldz — wo + wy = 2,
-1
1
Gi(z) = I(x) — WoLo + W11 = / xdx — woTo + wiry = 0,
-1
1
G1(2?) = I(2?) — worh + Wyt = / v?dx — worh + wiz = 2/3,
-1
1
G1(2%) = I(2%) — wors + wyah = / z*dx — wors + wyzh = 0.
-1

This is a nonlinear system of 4 equations for 4 unknowns. We can simplify its solution by guessing
that, by symmetry, ro = —z; and wy = wy, thus

2’(1}1:1 — Wy = Wy =

2wz} = 2/3 - Ty = —Tg =

78

This yields the quadrature rule

cun-1(-2) s ()

Using Legendre polynomials. We can also construct the nodes xg, x; as the two roots of the
Legendre polynomial Ly(z). We know that Lo(z) = 1, Li(z) = x, and the three-term recurrence
for Legendre polynomials reads

(J+ D)L (z) = (25 + DaL;(x) = jLi-1(2),
s0 2Ly(x) = 3z - L1(x) — Lo(z) = 322 — 1 or Ly(z) = 2(32% — 1), which has roots zo, z; = i*/?g.

Next, one can compute the corresponding weight as the integral of the corresponding elementary
Lagrange interpolation polynomials:

woz/_z;__”;dxzﬁgl/g/_z @—?) dr = 2\;31/3 (0—2%5/3) —1,

wy = /_11 Zl__xxood:c = 2\/13/3 /_11 (a: + \/?g) dr = 2\/15/3 (O + 2\@/3) = 1.

This computation yields the same quadrature rule:

Gi(f) = (—E) b (§> .

Last remarks on Integration

e Gauss quadrature requires usually some extra work to set up (mainly the computation of
the nodes and weights), but it is usually more stable and accurate than comparable Newton-
Cotes rules.

e Adaptive quadrature rules, whether built out of simple Newton-Cotes or high-order Gaussian
quadrature rules using an error estimator to guide the construction of a composite rule using
a non-uniform partition of the interval, will usually be more effective as a general-purpose tool
for accurate integration, especially when applied to a function which is not uniformly smooth
throughout the interval of interest. A review of error estimators and adaptive algorithms
can be found in the textbook, section 9.7.

e Acceleration methods such as Anderson acceleration and, in the case of quadrature, Romberg
integration, are useful tools to accelerate the convergence of low-order methods such as the
trapezoidal rule without requiring the additional work of setting up e.g. more complex
Gaussian quadrature rules.

e There exist methods for both improper integrals, where the interval of interest is not bounded,
as well as singular integrals where the function to be integrated blows up at a given point(s)
in the interval but whose integral remains finite, but such cases require special care.

79

Lecture 18: Numerical Differentiation. (Monday, October 25)

Let us now turn to the different question of approximating derivatives f’(z;) at a set of nodes
xo, ..., Ty € [a,b] given values of f(z) at the nodes.
In principle, one could use the interpolating polynomial to compute such approximations:

n

f/(flfi) ~ Z JUk gk 331

However, this approach is both expensive (the computation of ¢ (z;) requires O(n?) work in gen-
eral) and rather unstable because of the Runge phenomenon for high-order interpolation, so we
focus on efficient low-order schemes called finite differences.

Remark 18.1. One remarkable exception is interpolation using a set of Gauss quadrature nodes,
usually using a scaled set of Chebyshev-Gauss x; = — cos [n(j + 1/2)/(n + 1)] or Chebyshev-Gauss-
Lobatto nodes T; = —cos [jm/n], j = 0,...,n. This approach can be shown to yield an efficient,
stable scheme whose accuracy is limited only by the smoothness of the function to be approximated,
whether approximating the function, its derivatives or integrals, see Section 10.3 of the textbook
and the Matlab package Chebfun developed by Prof. Nick Trefethen (Oxford) for a set of Matlab
routines allowing to experiment with the power of Chebyshev interpolation.

In the following, we assume the nodes {x;} are distributed uniformly on the interval [a, b]:

b—a
—

x; = a+ ih, 1=0,...,n, h =

18.1 Classical Finite Difference Schemes

Forward Finite Difference formula. The very definition of the derivative gives us a first hint
at an approximation:
f@i+h) — f(x)

Taking a fixed step size h > 0 in this limit, such that x; + h = x;,1, we obtain a first numerical
approximation of the derivative, the forward finite difference:

f(xig1) — flz)

flxi) ~ui? = , i=0,...,n—1

h

Graphically, the formula computes the slope of the secant to the curve between x; and x;, 1, which
is expected to converge to the slope f’(x;) of the tangent to the curve as h — 0.

To estimate the error attached to this formula, we expand f(z) in a Taylor series of order 2 around
ZI;:

2
Floin) = floi +) = f@) + @)+), G (i)

and reorder the terms we find

Fi(w:) = f(l'iﬂ)h_ f (i) _ gf”(&)

that is an error formula: h
filw) = ui’? = - 1"(&),

where & € (z;,2;41). This shows in particular that the error is of order O(h), which goes to zero
as h — 0.

Backwards finite difference formula. Next, we can also write a formula involving the previous
node z;_1:

f,(xz) ~ UZBD _ f(xz) _hf(xi—1)7 i = 17 o

N 00
glafl “e

g("f-t) L

f[h'u)

s : . >

XKoo 2 K4

Graphically, the formula computes the slope of the secant to the curve between x;_; and x;, which
is expected to converge to the slope f’(x;) of the tangent to the curve as h — 0.

This formula behaves very similarly to the previous one, and using a similar Taylor expansion of
order 2 around x;, we derive an error formula:

7)\2
Flri) = flai—h) = fa) + (WA + e, e),
and thus "
file) — P = 276,

this time with & € (x;_1,2;). In particular, the error has the same order (power of h) as the
forward finite difference formula.

A better approximation can be obtained by forming the average of the two previous formulas,

which is the so-called centered finite difference:

f(@iv1) — f(@ic1)
2h ’

) ~ uf® =

81

/[’(f-&l)
j/"t')
/ —>

xf:" xl- K{{,l

Graphically, the formula computes the slope of the secant to the curve between z; _; and z;,1. The
error term can be derived by using a Taylor series of order 3 for f(z) around z;: we find

2 3
Flrin) = it B) = flm) + b + S f@) + o PE), 6 e),
(12 0y B

f(wica) = f(zi = h) = fx:) + (=h) fi(z) + f'(x) + F&D, & € (i, Tir1),

such that

2 6

3

h
flasnn) = flai) = 20f1(2) + 5 (1€ + 1"
Dividing by 2h and reordering, we find that
_h_Q [f///(g;r) + f”l<€;)]

! — CD =

We now observe that by the intermediate value theorem / discrete mean value theorem, there is

" (¢+ " (=
& € (x;_1,mi11) such that f(&) = w, which simplifies the error formula down to
h2
i)~ = e,

This shows that the formula has order of accuracy O(h?) - much better than the forward or
backwards finite difference formulae.

End-point formulae To approximate the derivate at one of the end-points of the interval, only
one of the three formulae above is usable: the forward FD (left end-point) or the backwards FD
(right end-point). Neither of these formulae is as accurate as the centered finite difference, which
is why we introduce the left end-point formula and right end-point formula:

LEP _ —3f(wo) +4f (1) — f(22) REP _ f(#n—2) —4f(xn1) + 3f(n)
Ug =) Uy -

2h 2h
Using Taylor expansions around zy and z,, respectively, one shows that both methods are O(h?)
accurate (homework).

Definition 18.2. e A finite difference formula in which only 2 points appear, e.q. x; and ;1
(forward FD) or z; and x;_1, is called a 2-point finite difference formula.

e A finite difference formula in which 3 points appear, e.g. x;_1, x; and x;y1 (centered FD),
or x;, Tiy1 and T (left end-point FD) is called a 3-point finite difference formula.

82

18.2 Method of Undetermined Coefficients

Given a point x where one wishes to approximate the derivative and neighboring nodes x + h,
x + 2h, ... we seek generically to compute approximations the derivative f’(x) of the form of a
linear combination of the values of f at these nodes,

=y 3 At h),

j=—m

with the right coefficients A_,,, ..., A,,.

Example. the centered difference formula takes the form: m = 1,

uP = %(A_lf(x— h) + Aof(z) + A1 f(z + h))

To determine the right coeflicients, one seeks to find A; such that the error f’(x) — u has the
highest order of h possible. We achieve this by computing Taylor expansions of order at least
2m+ 1 (one term for each coefficient in the expansion, plus one for the error term) around z, here:

fla— 1) = 1) @)+ o) - e,
() = f(2),
Flo+B) = F@) + hf (@) + 5 () + (6.

We form the linear combination u as above with coefficients A_;/h, Ag/h, A1/h: grouping terms
of the same order in A,

2
w= BRI) (AL A S)+ A+ AP+ (CASE) + ASE),

We seek coefficients such that v = f'(z) + O(h®), leading to the three conditions
A_1+A()+A1 =0,
A —A =1,
Al + A,1 = 0.

We solve this linear system and find
A =-1/2 Ag =0, Ay =1/2,

and we recovered the coeflicients of the centered finite difference and its error formula:

D f(x + h’) B f(x _ h) ! h2 (f”/(g—) + f”/(f-i-)) / h’2 "
uP = A =f(x)+€ 5 :f(x)‘FEf (€).

18.3 Difference formulae for the second derivative.

Using the same ideas, we can also approximate higher derivatives, starting with f”(z;) at some
of the nodes. Using the method of undetermined coefficients, we propose the generic form for a
2m + 1-point formula:

Pla)x v=an 3 A gh)

j=—m

with the right constants A_,,, ..., A,, such that f”(z) — v has the highest order of h possible.

83

Example: 3-point centered formula with nodes x — h, x and x + h (m = 1).
Using the Taylor expansions of order 2m + 1 = 3 around « from the previous paragraph, we form
the linear combination

Al +A+A —A 1+ A
v= BLEE Ry T R o

We seek coefficients such that u = f”(x) + O(h

A1+ Ag+ A =0,
AI—A,1=O,
A +A =2

h

(At + A S (@) + 5 (A" (E) + Auf"(€4).

, leading to the three conditions:

N | —

~—

We solve this linear system and find
A =1, Ag = —2, A =1,

and we find the centered finite difference for the second derivative:

flx—h)=2f(x)+ f(x+h h
’UCD _ () h(Q) () _ f”(CC) + g (—f’”(S_) + f/”(€+))-
Now, we notice that, if f is of class C* then f”(&,) — f”(£_) is itself of order O(h), meaning the
formula is more accurate than indicated by the previous error formula. To show this, we write

Taylor expansions of order 4 for f(x + h):

Flo—h) = o) — ') +) g+ e,
F(&) = 7@,
_ / h? " h? " ht (4)
Flo ot h) = o)+ ')+) + g+ D e,

Then we recompute the error formula:

f(:C—h)—Qf(x)—i—f(:c—i—h) " h_2
vl = 2 = f"(z) + 51

(fOe) + 1)) -

FOE) D (e

Using the intermediate value theorem, we find & € (z;_1,2;,1) such that f(§) = 5

leading to
h2
WP = Pa)+).

This shows that the 3-point finite difference formula for the second derivative is also of order O(h?).

18.4 Application:

Finite Differences method for boundary value problems.
Assume we seek to find an approximate solution to a boundary value problem such as the Poisson
equation,

{ —u"(z) = f(z) for xe€ (a,b),

)
on [a,b]. To achieve this, we set up a grid of equidistant

for a given continuous function f(z)
points z; = a + jh for j =0,...,n, h = b’Ta, and we seek values ug ~ u(xg),. .., u, ~ u(z,) such
that

84

o u'(z;) ~ W = f(zj), for yj=1,...,n—1, and
o uy = u, = 0 (the boundary conditions).

This yields a linear system of n + 1 equations for n + 1 unknowns:

[1 0 o 0w | [0]
1 —1 2 —1 U.l .][:1
2 . . : = :
1 2 1| |ua| S
i 0 ... 0 1 11 un | i 0 |
This system can be solved easily using e.g. Matlab’s backlash operator for the values uy, ..., u,.

This is the simplest example of the method of finite differences for solving ODEs and PDEs
in boundary value problems.

18.5 Pseudo-spectral differentiation (Chebfun).

If the function f(z) is very smooth, a high-order, high-accuracy alternative to finite differences
is the pseudo-spectral derivative

an = (HSGLf)/ € ﬂn—la

where TI9CL f is the interpolation operator using a well-chosen set of quadrature nodes, which is
here the Chebyshev-Gauss-Lobatto quadrature nodes on [a, b], that is

a+b a—0» mJ 4
T = 5 + 5 cos o) 7=0,...,n.

This set of points ensures stability of interpolation such that, on the interval [—1,1] to keep
estimates simple, for any s > 1 such that f has at least s derivatives in the space L2,

) 1/2
1. In the L? weighted norm |g|, = (f_l |g(x)|2\/ldf7> , we have the error estimate:

n 1/2
| f — 1S9 £, < On~ (Z rf<’“>|?u> ,
k=0

where the constant C' > 0 depends in general on s. This means that the interpolant converges
to f as n — oo with order 1/n°.

2. In the co-norm |g|lo = sup_;<,<; |g(x)|, we have the interpolation error estimate:

n 1/2
|f =TS9 fllo < Ot (2 ||f(’“)i) :
k=0

where the (possibly different) constant C' > 0 also depends in general on s. This means
that the interpolant also converges uniformly to f as n — oo with (slightly lower) order
1/nls —1/2).

85

3. Finally, the derivative of TIY“Lf also converges to f’ with order 1/n®*"!, with the error
estimate

n 1/2
|f" = Duflo < C'n'™* (Z If(’“)li> :
k=0

where the constant C’ > 0 also depends in general on s.

Notice how the order of convergence is only limited by the smoothness of f, in particular if f(x) can
be differentiated an infinity of times, then the interpolant and its derivatives converge to f and its
derivatives faster than any power of n. This kind of convergence is termed "spectral convergence".

Implementation. We have the Lagrange formula for the interpolant,

n

M9 f () = Y flan) (),

k=0

so the derivative takes the form
Dy f(x;) = (TS f) () = Z Ce(@i) f ().
k=0

The right-hand side can be formulated as a matrix-vector product, using the differentiation matriz
D with coefficients Dy, = ¢} (z;). Note that these coeflicients have explicit formulae for the chosen
set of points (see the textbook), which makes this a very practical expression:

— —

f = D
Vector of derivative values [f’(zo), ..., f'(zn)] Differentiation matrix Vector of function values [f(zo), ..., f(zn)]]

86

Lecture 19: Numerical Solution of ODEs. (Wednesday, Octo-
ber 27)

19.1 The Cauchy problem.

Given an interval I < R, an initial point ¢y € I and value gy, and a function f : I x R — R, we
consider the initial value problem:

Find y € CY(I) such that:

{g/(t) = f(t,y(t)), foralltel, (19.1)

y(to) = Yo

Equivalent integral formulation Integrating directly these equations with respect to time
yields an equivalent problem: find y € C*(I) such that

y(t) = yo +/t f(s,y(s))ds.

Existence and Uniqueness of solutions. Before desigining numerical methods to approximate
the solution of this problem, we need to understand under which condition the Cauchy problem
is well-posed and stable. The following theorem provides a condition for the existence and
uniqueness of solutions.

Theorem 19.1. If f(t,y) is continuous as a function of the two variables t,y and satisfies a
Lipschitz condition in the variable y, 1.e.

|f(tyn) = f(ty2)| < Ly — v, (19.2)

for allt € I and y1,y in R, that is in the region D = {(t,y) s.t. t e I,y € R},
then the Cauchy problem (19.3)) has a unique global solution y(t) on I.

The Lipschitz condition is obviously satisfied if the partial derivative f, exists and is bounded,
leading to the following result, which is slightly less general but easier to apply:

Corollary 19.2. The Cauchy problem (19.3) has a unique global solution y(t) on I if f(t,y) is
continuous, differentiable with respect to y and

1fy(ty)| < L, V(t,y) € D.

We skip both proofs.

Example. Let us show that the following Cauchy problem is well-posed:
y' =1+ tcos(ty(t)), y(0) =0, t € [0,2].

Solution. Clearly, the function f(¢,y) = 1+t cos(ty) is continuous. Furthermore, it is differentiable
with respect to y and
[fo(ty)l = | = Psin(ty)| < 7] < 4,

for all ¢ € [0,2] and y € R. By Corollary 2, this IVP has a unique solution.

87

19.2 Stability.

Now that we have some understanding of when the Cauchy problem has a unique solution, we
turn our attention to the conditionning of the problem, that is how much the solution varies if one
perturbs the data, that is yo, f. We investigate the perturbed problem:

Find z € CY(I) such that:

{ Z/(t) _ f(t, Z(t)) + (S(t7 z(t)), for all t € [, (19‘3)

Z(to) = Yo + 50,

where the perturbations d(¢, y) is continuous and satisfies a Lipschitz condition in y of the type (19.2))
to ensure this problem has a unique solution as in Theorem [19.1]

Definition 19.3. Let I be a bounded interval of R. The Cauchy problem (19.3) is called stable
in the sense of Lyapunov, or well-posed, if for any perturbations &g, such that

|50|7|5(tay)| <& v(t’y) €D,
then there exists C > 0 such that |y(t) — z(t)| < Ce, for allt e I.

Letting u(t) — z(t) — y(t), we see that u satisfies

W(t) = ft, 2(t)) + 6(t, 2(t) — f(t,y(t)), foralltel,
U(to) = 50.

so that, using the Lipschitz condition for f(¢,y): |u'(t)| < L|u(t)| + €. Now we integrate from ¢,
to ¢t and obtain

u(t) = o + /t u'(s)ds

to

/0 () ds

/ Llu(s)| + eds

to
t
/ fu(s)ds
to

Lemma 19.4. (simplified Gromwall’s Lemma.) Let v(t) = 0 be a positive, continuous function on
I that satisfies the integral inequality

u(t)] < 100 +

<e+

<(A+|t—to)e+ L

In order to conclude, we need the following result:

¢
v(t) <A+ B/ v(s)ds, A, B> 0.

to
Then v(t) < AeBE0) for any t > t,.
Proof. Define the function V (t) = Be=B(t—t) ftz v(s)ds, then

V'(t) = B [v(s) — B/tv(s)ds] o~ Blt—to)

to
< ABe Bltto)

88

where we have used the integral inequality. Furthermore, V' (t5) = 0 so that, integrating V' from
to to t,

¢ ¢
V(t) = / V'(s)ds < A/ Be Bls—tlgr — A [1- e_B(t_tO)] :

to to

Recalling the definition of V (¢), this means

t
B/ v(s)ds < AeBl0) — A

to
and recalling the integral inequality v(t) < A+ B fti v(s)ds < AeP~%) we have finished. O

Let us resume our analysis of the perturbed solution. Let T' = maxe; [t —to|. If t = to, we conclude
from Gromwall’s lemma applied to v(t) = |u(t)| with A = (14 T)e and B = L that

lu(t)] < (1 + T)eelt0l < (1 4 T)el7e,

and if t < tg, we set t' =ty —t =t =0, and v(t') = |u(ty — t')| such that

to—t’
/ fu(s)|ds
to

Applying Gromwall’s lemma to v(t') with ¢, = 0, A = (1+7T)e, B = L yields the desired inequality

v(t") =lu(to—t)| <(1+T)e+ L =(1+T)e+ L/Ot/ v(s)ds.

lu(t)| =) < (1+T)e .
To conclude, we have found that for T' = maxyc; |t — to| and C' = (1 + T)eT, for any t € I,
lu(t)| < Ce.
We have proved:

Theorem 19.5. If f is continuous and satisfies the Lipschitz condition (19.2), then the Cauchy
problem is stable / well posed.

Remark 19.6. We have shown that the condition number of the problem is at most C' = (1+T)el"
which grows exponentially fast in the interval width T. This means the problem may be quite
ill-posed on long intervals, depending on the properties of the problem, a result which should be
improved for particular problems to be really usable.

19.3 One-step numerical methods.

Fix T > 0 and the integration interval I = [to,to + T]. We seek to approximate the solution of
the Cauchy problem on I,

y'(t) = f(t,y(t)), foralltel,
y(to) = wo-

We form a set of regularly spaced nodes t,, =ty + nh, n = 0,..., N with step size h = T/N, and
we seek approximate solution values w,, ~ y(t,).
For convenience, we will denote

Yn = y(tn)7 Jn = f(tn, un).

89

19.3.1 Forward Euler method.

There are many ways to derive the following approach.

Using a forward finite difference formula. We seek that

Up+1 — Un

: ~ Y (tn) = fltn, Yn) ~ f(tn, un),

Since we know uy = 1, this leads to the recurrence (Euler’s method):
Uy = Yo, Upy1 = Up + hfy, fo = ftn,un), for0O<n< N -1 (19.4)

Since we know the initial value exactly, we can understand the error committed during the first
step exactly!
ur = Yo + hf(to. yo) = y(to) + hyy(to) ~ y(to + h) = y(t1).

This corresponds to making a step of length h along the tangent of the curve y(t) at t = t,.

Using a Taylor expansion:

2

y(h) = ylto + B) = ylto) + hy/(t0) +-"(€)

=ul
leading to the error formula for the first step of Euler’s method:

h2 "
Yy —ur = 79 (&)
Integration and quadrature: Using the alternative integral formulation to the Cauchy prob-
lem:

mm=%+[5mwmw

~ 1o + (t1 — to) f(to, y(to))

- /
~—

leftrectanglerule

=y + hfo

= Uq.

These are three different interpretations of Euler’s method: using the forward finite difference
approximation to the derivatives of y at the nodes tg,...,ty; and for the first step at least, a
Taylor expansion of order 1 of y(¢) around tj, or as an approximation of the integral formulation
using the left rectangle rule.

90

Algorithm 4 Forward Euler method.

Input: Function f(¢,y), initial data ¢, y9, T, number of steps N.
Output: Approximate values ug, ..., uy of the solution.

1: function FORWARDEULER(f, to,yo, IV)
2 h =T/N,

3 u = zeros(N + 1,1);

4: Up = Yo,

5: forn=0...N—1do
6 Uni1 = Un + f(tn, Un);
7 end for
8 return u
9: end function

91

Lecture 20: Analysis of one-step methods, I. (Monday, Novem-
ber 2)

20.1 Some one-step methods

Remember that we are looking for approximations
U ~ Y(tn),
where y(t) is the solution to an initial value problem

(20.1)

Y (t) = f(t,y(t)), forall te [to, to + T,
y(to) = Yo

Definition 20.1. A one-step numerical scheme for the approzimation of (20.1) is one where
Upyp1 depends only on u,.
If upy 1 depends on uy, u,_1, ... the scheme is multistep.

20.1.1 Forward Euler method

See the previous lecture.

20.1.2 Backwards Euler method

Instead of using a forward finite difference formula to approximate the derivatives y'(¢,), which
leads to the forward Euler method, one can use a backwards finite difference formula for y/(¢,+1),
and this leads to the backwards Euler method:

Up+1 — Un

h ~ y/(tn+1) ~ f(tn+1vun+1)'

This can be reformulated as the scheme:

Ups1 = Up + Bf(Eni1, Untr).

Note that unlike the previous case, this equation does not define explicitely u,,1,but rather defines
it implicitely as the solution of an equation (nonlinear, in general). In practice, a root-finding
scheme studied earlier in the semester, such as Newton’s method, may be used to find w,, 1.

92

Algorithm 5 Backwards Euler method.

Input: Function f(¢,y), initial data ¢, y9, T, number of steps N.
Output: Approximate values ug, ..., uy of the solution.

1: function BACKWARDSEULER(f, to, o, IV)
2 h =T/N,

3 u = zeros(N + 1,1);

4: Up = Yo,

5: forn=0...N—-1do
6 SOLVE w11 = uy + A f(tni1, Uns1);
7 end for
8 return u
9: end function

20.1.3 Trapezoidal or Crank-Nicholson method

The forward and backwards Euler method can also be seen as left- and right-rectangle quadrature
rules applied to the integral formulation of the initial value problem:

lny1
Yn+1l = Yn + / f(ta y(t))dt
tn

A more accurate approximation can be achieved by using a trapezoidal rule:

Yo~ g+ I [t () + b yltnin)]

which leads to the Crank-Nicholson scheme:

h
Up+1 = Up + 5 (f(tna un) + f(tn+17un+1)) .

Just like the backwards Euler method, this formula defines u, ;1 only implicitely, as a solution to
a nonlinear equation.
20.1.4 Heun’s method

In order to avoid having to solve a nonlinear equation for u, 1, we can replace its value on the
right-hand side of the Crank-Nicholson scheme by an approximation, obtained with one step of
the forward Euler method: w,,; ~ u, + hf(t,,u,). This approximation yields Heun’s method:

oy = 0+ g [f (ts) + f (busts 1+ Bif (£, 02))]

20.1.5 Explicit vs Implicit schemes

We have introduced four schemes so far. In two of them (the forward Euler and Heun’s method),
Up+1 1S given as an explicit formula in terms of w,,, while for the other two (backwards Euler and
Crank-Nicholson), u, is given as the solution of a nonlinear equation. This distinction can be
generalized to any scheme, including ones that are multistep.

93

Definition 20.2. A numerical method (or scheme) for the solution of the initial value prob-
lem 15 called explicit if u, .1 can be computed directly, as an explicit formula in terms of
the previous values ug, k < n.

A scheme is called itmplicit if u,,1 is given as the solution of an implicit, nonlinear equation.

20.2 Analysis of 1-step methods

Let us recall now the concepts introduced in the first chapter, when we investigated the general
idea of numerical schemes to solve equations or systems of equations for given data d of the form

F(z,d) =0 with F.(x,,d) =0,

where F), is an equation than can be solved in practice for an approximate solution z,, to the exact
solution x. In particular, we recall the general result that

CONSISTENCY + STABILITY — CONVERGENCE.

20.2.1 Consistency.
We recall our original definition in Section [3.3}

Definition 20.3. A scheme is said to be consistent if
F.(z,d) = F,(x,d) — F(xz,d) > 0 as n— w,
where x 1s the exact solution with exact data d.

We put this definition into action for one-step numerical schemes, which broadly take the form
Upt1 = Fp(tn, u,). We can rewrite these as the set of equations:

uy — Fy(to, up) = 0,
ug — Fi(t1,uq) = 0,

Up+1 — Fh(tnaun> = 07

un — Fp(tn-1,un-1) = 0.

To implement the idea of consistency, we plug in the exact solution y, = y(t,) into these equa-
tions, resulting in error terms on the right-hand side since the exact solution does not satisfy the
approximate scheme:

y1 — Fu(to, yo) = €1,
Yo — Fp(ti,y1) = €2,

Yn+1 — Fh<tn> yn) = En+1,

yn — Fr(tn-1,yn-1) = en.

94

To sum up, consistency is concerned with the difference arising at each point ¢,, .1 between ¥, ,1 =
y(tn41), the exact solution at t,y1, and §,+1 = Fj(t,, yn), the result of applying our numerical
scheme for one step only using the exact initial data y, = y(t,):

En+l = y(tnﬂ) - Un+1
~— ~——

exact solution at t,4+1 result of 1 step of the numerical scheme with data yn = y(tn)

More precisely, by inspection of the schemes above we notice that one-step schemes broadly take
the form
Up+1 = Fh(tm un) = Uy + hq)(tny Upy Un+1; h)>

for n = 0,..., Ny, where the function ®(t,,u,,u,+1;h) is called the increment function of the
time-stepping scheme. Note that ® depends in practice on u, 1 only for implicit schemes. In this
case, we can rearrange the equations above and divide by h on both sides:

Up+1 — Un

h

Yn+1 — Yn
h

En
- (I)(tn7yn7yn+l; h’) = = = Tn-i-l(h)'

— O(ty, Up, Upr1;h) =0 N

The new quantity 7,,,1(h) measures the difference between the actual increment (y,,+1 —y,)/h and
the approximate increment of the scheme ® (¢, yn, yni1;h), both computed using values of the
exact solution y(t). We shall see that this definition of the consistency error is the relevant one in
the next sections.

Definition 20.4. The quantity 7,,1(h) = ol _ Yntl T Untl o called the local truncation

h h

error or LTE.
The global truncation error is T(h) = maxocp<n—1 |Tnr1(h)].

Definition 20.5. o A one-step numerical scheme is called consistent if
’1112% 7(h) =0,

i.e. the local truncation error converges to zero as h — 0, uniformly in n.

o A scheme has order p for p =1 if it is consistent and
‘Tn+1(h)’ < Chp’

where C' > 0 is a constant independent of n, but which may depend on f, yo and the scheme.

Applications: the forward Euler scheme. Here, we have u, 1 = u, + hf(t,,), SO Ypy1 =
Yn + f(tn,yn), so the difference reads

En+1 = Yn+1 — [yn + hf(tm yN)] .

Using a Talor expansion, we compute:

2

/ h "
st = Yt +) = ylta) + b/ 00) + 9" (60),
-

:§n+1
such that we have the error formula
h2 "
En+l1 = 73/ (gn)

95

for some &, € (tn, tni1)-
The local and global truncation errors of the forward Euler scheme thus read

()= 5y&), and 7)< 5 max)]

2 Ee [to ,to +T]

The forward Euler scheme is consistent with order 1.

Backwards Euler scheme. The forward Euler scheme is consistent with order 1 (home-
work).

Crank-Nicholson scheme. Here, we have u, 1 = u, + %[f(tn,un) + f(tn+1,Uns1)], so the
increment function for this implicit scheme reads

qDCN(tna Up,, Un+1; h) = [f(tny un) + f(tn+1a un+1)] .

DN | —

Let us compute the difference between the exact (y,+1 — y»)/h and approximate increment .
Using the integral formulation of the Cauchy problem and the error formula for the trapezoidal
rule, we have

n — Yn 1 bnt1
tn

1 (th —tn / h o,
- E (% (y (tn) +y (tn+1)) - Ey (gn))
1(h h’
= % (§ (f(tnu yn) + f(tn+17y’n+1)) o Eym(gn))
h2
= Oon(tn, Yns Yni1; h) — ﬁyw({fn)'

This computation gives us the local truncation error:

_ Yn+1 — Y

n h?
Tn-i—l(h) h - (I)CN(tna Yns Yn+1; h) = _ﬁym<€n>7 f € (tna tn-i—l)a

such that 7(h) < }f—;\\y”’HOO:
The Crank-Nicholson scheme is consistent with order 2.

Example: Heun’s method. Here, we have u, ., = un—l—% [f(tn,un) + f(tns1, un + hf(tn, un))],
so the increment function for this explicit scheme reads

Bir (i) = 5 b i) + ot + 0)]

Heun’s method is consistent with order 2 (homework).

20.2.2 Zero-stability

The next concept on the road to convergence is the stability of the numerical scheme, that is its
resilience to perturbations of the data yo and ®. In parallel to the stability of the continuous
problem, we introduce the concept of zero-stability:

96

Definition 20.6. A one-step numerical scheme for the Cauchy problem (20.1)) is called zero-
stable if, for h < hg small enough, there exists C' > 0 such that, for ¢ > 0 small enough,
given perturbations |6,| < e for 0 <n < Np = T/h, then

[un, — 2n] < Cé, n=20,..., Ny,

where u,, s the solution to the exact scheme

Up = Yo,
, n=20,...,N, —1, 20.2
{Un+1 = Uy, + h®(t,, Up, Upi1; h), " (202)
and z, is the solution to the perturbed iteration
20 = Yo + do,
0= Yo T 90 (20.3)
Zni1 = 2n + B[P(tn, Zn, Zns1;) + Onia], n=0,...,N, — 1.

A zero-stable scheme is one that will keep under control the cumulative effect of errors occuring
at each step of the computation, such as rounding errors, errors due to solving approximately the
equations for implicit schemes, etc.

While the definition is quite complicated, it turns out that proving zero-stability is similar to
proving stability for the continuous Cauchy problem.

Theorem 20.7. Consider a one-step scheme with increment function ®(t,, u,, uny1; h) which is
Lipschitz-continuous w.r.t. u, for h < hg small enough:

Dty Uns U1 B) — Pty 20y 2ns1s B < A (Jun — tns| + [tngr — 2041])
where A is a constant independent of h, n and t,,. Then the scheme is zero-stable.
Proof. Set w,, = z, — u,, then by taking the difference between (20.3)) and (20.2):

Wpa1 = Wy + B[P(tn, Zn, Zni1; h) + On1 — Ptn, Un, Uni1;)]
= Wp + h [q)(tna Zny Zn+1; h) - (I)(tm Upy Un+1; h)] + h(SnJrl-

Using the Lipschitz condition from the theorem, we find that
|Wh 1] < |wn| + RA(Jwy| + |wps1|) + R|0pta],

hence if h < hg = 1/2A, §,41 < ¢, then

1+ hA h
rwn+lr<(+)|wnr+ :

1—hA 1—hA’
Let us set e = me and K = % such that 1 + K = %, then we find by recursion,
|w0‘ = |60”
|| < (T+ K)|wo| +e = (1 + K)[do| +e,
|ws| <1+ K)|w| +e < (14 K)?do| + [(1 + K) + 1] e,
|ws| < (1+ K)|ws| +e <1+ K)Po| + [+ K+ (1+K)+1]e,
W41 < (1+ K)|w,| +e <1+ K)" ol + [T+ K)"+ -+ (1 + K) +1]e,

97

and using the geometric series formula, we find:

(1+ K)»t—1

N < (1 Kn+16
] < (1+)" do] +

Since 1 + K < e, we have the bound

e
[] < XV I0] 4+ (K0 — 1)

Re-inserting the values of the constants K, e, since t,,,1 — to = (n + 1)h we find

W y1] < ’50’6%(%“_“’) + iA (e%(tnﬂ—to) _ 1)]
2

Finally, assuming 0y < &, h < hg = 1/2A and t,,1 — to < T we obtain the desired zero-stability
bound:

4AT e —1
lw,| < [+ ——— | ¢, n=0,...,N.
O

Note that, while this proves the desired result, the bound which is obtained is quite unsatisfying
- the constant grows exponentially fast with the length of the integration interval T', apparently
limiting the usefulness of the numerical methods to at most a few 1/A units of time before unac-
ceptable deviations from the exact solution.

Example. The forward Euler method is zero-stable provided f(¢,y) satisfies the usual Lipschitz
condition ((19.2)) in y. Indeed, in this case

(I)FE(tnaunaun-‘rl; h) = f(tn;un)7

hence
’(I)(tmun;unJrl; h) - (I)(tna Zny An+1; h)‘ = ‘f(tnaun) - f(tmzn)’ < L‘un - Zn‘7

and the theorem applies with Apg = L. The Crank-Nicholson method, indeed is also zero-stable

(I)CN<tn; Up,, Un+1; h) = (f(tny un) + f(tn+1a un+1>> 5

N | —

hence

|f(tmun) - f(tn7 Zn)‘ + 1|f(tn-&-17un-&-l) - f(tn-i-la zn+1)|

|q>(tnaunaun+l;h) - (I)(tnyznyzn-&-l;h” < 9

< (’un_zn’ + |un+1_zn+1|)a

(T Ny

so the theorem applies with Acy = L/2. As an exercise, you can check that the backwards Euler
and Heun’s schemes are both zero-stable, and in general most numerical schemes are zero-stable
for reasonable functions f(¢,y).

98

Lecture 21: Analysis of One-Step Methods, II. (Wednesday,
November 4)

After defining and investigating in the previous section the consistency and zero-stability of one-
step numerical schemes for the Cauchy problem, we now turn to the convergence which results
from these two properties.

21.1 Convergence analysis

We use in this paragraph the notations from the previous lecture. Let us define the global error
En = |yn - un|

Definition 21.1. o A scheme is called convergent if

lim l max |u, — yn|] =0.
e [t converges with order p if
[y, — yn| < CHP, n=20,..., Ny,

with a constant C' > 0 independent of h and n, but which may depend on the data f, yo, T
and the scheme itself.

Theorem 21.2 (Lax-Richtmeyer equivalence theorem.). A numerical scheme which is both con-
sistent and zero-stable is convergent.
Moreover, if |yo — uo| = O(hP) and the method has order p, then it converges with order p.

The global error thus has the same order O(h?) as the local truncation error.

Proof. We make the observation that, by definition of the local truncation error, the values of
the exact solution y,, = y(t,) are in fact obtained by the following perturbation of our numerical
scheme:

Yo = to + (Yo — Uo),
Yn+1 = Yn + hq)(tnv Yns Yn+1; h) + Tn-i-l(h)v n = 07 s 7Nh -1
Now, if we define perturbations 0,11 = 7,41(h) and dy = yo — ug, this system has exactly the
form (20.3). Hence, if the scheme is zero stable, then for A > 0 small enough such that h <
ho and |0,41| = |Tms1(h)|] < € = max (7(h),|yo — wo|) is small enough (which is possible since
limy,,o7(h) = 0) then
|un, — 25| < C'max (7(h),|yo — uo|) -

Hence, if the scheme is consistent and ug — o, the scheme is also convergent. Furthermore, if the
scheme has order p and [y — ug| = O(hP) we obtain

U — 20| < C(C'HP + O(hP)) < C"RP

for h small enough, so the scheme converges with order p and the second assertion is proved. [J

99

21.2 Analysis of the forward Euler scheme.

To see once more the steps of the convergence proof, let us show the convergence of the forward
Euler method without using the theorem above. We define

Uo = Yo, Up+1 = Up + hf(tn,un>’ Yn = y(tn>7
and we set ¥,11 = Yn + hf(tn, yn) obtained with one step of Euler’s method with initial data v,.

The global error may be expanded as

i1 = [Ynt1 — Unt1| (error at t,,11)

< |yn+1 - yn+1| + |yn+1 - Un+1| .
(- / . >
~~ ~"
Local truncation error Propagated error

Now we consider each part of the error separately. First, the local truncation error

Yn+1 — gn-i—l = th-H(h)a

which we computed earlier as 7,.1(h) = %y” (&,), and second the propagated error

gn-i—l — Up+1 = Yn + hf(tmyn) — Un — hf(tnaun)
= (yn - Un) + h(f(tm yn) - f(tn)un))a

which we bound using the Lipschitz condition on f,
|yn+1 - un+1| €n + hLem

such that finally
ént1 < ht(h) + (1 + hL)e,

Now, we show by recursion on n,

€o = 07
€1 < hT(h) + (1 + hL)eO (h)
€2 < hr(h) + (1 + hL)e (1 + (1 + hL))h7(h),
es < hr(h) + (1 + hl)es =1+ (1+hL)+ (1 + hL)*)h7(h),
Cnil < hr(h) + (1 + hL)e, =1+ (1+hL)+--+ (1+hL)")h7(h)
(1 + hL)"t -1
Trnr—1 T
ehL(n-i-l) -1
S——p 7)
Since h(n + 1) < T and
Mh _ /"
r(h) < == where M= max [y(¢)].
we conclude with the bound
T—1Mm
- < - = 0,

which shows that the Euler method converges (but the constant grows exponentially with L and
T).

100

Remark. If we further account for the possibility of rounding or approximation errors at each
step, leading to a perturbed solution:

Uy = Yo + €o, an-ﬁ-l = Up + hf(tn7ﬂn) + En+1,

where €g,...,eyx are the errors, then zero-stability allows us to bound the deviation from the
numerical solution wu, in exact arithmetic, provided 0,11 = €,41/h is small enough. In particular,
we get a bound of the form

€
U1 — Uny1| < ’EOIBL(t”“_tO) + — (6L(t"+1_t°) — 1) ;
hL
where ¢ = max;>1 |¢;|. In conjunction to the error formula for |y,,+1 — w41/, the triangle inequality
yields
Mh e\ elltnri—to) 1
2 h L

This shows that for A too small, the error will actually start to increase due to the accumulation
of small rounding errors at each step.

|ﬂn+1 - yn+1| < ‘Eo‘eL(tM—litO) + (

21.3 Absolute Stability

The notion of zero-stability introduced in the previous sections is a useful one in theory, since it
ensures robustness with regard to perturbations and convergence of the scheme, however it comes
with a caveat: the exponential dependence of the condition number on the length of the integration
interval, 7', which persists even as h — 0. In practice, one will be using a fixed time-step h > 0,
and may want to compute solutions over a long time interval. We investigate in this paragraph
the behavior of numerical schemes in this regime, starting with the following.

Definition 21.3. The following linear Cauchy problem is called the test problem:

{y/<(t) =)‘y(t)’ AeC, (21‘1)

with the exact solution y(t) = eM.

Now, if the real part of A is strictly negative, then lim; .., y(t) = 0. This is not necessarily true
for the numerical approximation!

Definition 21.4. A numerical method is absolutely stable if |u,| — 0 as t, — © when applied
to problem ([21.1J).

A method will be absolutely stable for certain values of h, A and not for others.

Definition 21.5. The region of absolute stability is the subset of the complex plane

A={z=hreC| lim |u,| =0}
n—00

Examples

101

21.3.1 Forward Euler scheme.

Applied to problem (21.1)), the forward Euler scheme yields

Up = 1a
Up=1 = Up + hf(ty, uy) = uy + hAu, = (1 + hA\)u,.
By recurrence, the numerical solution is given by the formula
up = (1 4+ hA\)", Vn =0,

and thus u,, — 0 if and only if |1 + hA| < 1, i.e. hA lies within the open disk of center (—1,0) and
radius 1.

Application. For a more general problem of the form y' = f(¢,y) such that A < f, < 0, the
forward Euler scheme will be unstable, i.e. develop oscillations of exponentially large amplitude,
unless we pick a timestep h < 2/|A|.

21.3.2 Backwards Euler scheme.
Applied to problem (21.1)), the backwards Euler scheme yields

Uy = 1,
{un_l = Uy + hf(tni1, Uns1) = Up + RAU, or Upy1 = (1 —hA) u,.
By recurrence, the numerical solution is given by the formula
U, = (1 —hA\)™", Vn =0,

and thus u, — 0 if and only if |1 — hA| > 1, i.e. hA does not lie within the closed disk of center
(1,0) and radius 1.

102

Lecture 22: Absolute Stability. Multistep Methods. (Mon-
day, November 9)

22.1 Absolute stability: some more examples.

Recall that we investigate the behavior of our numerical methods applied to the test Cauchy
problem

y(0) =

In particular, the region of absolute stability is the set

y'(t) = Ay(t),
1,

which has exact solution y(t) = eM.

A = {h\ € C such that |u,| — 0}.

22.1.1 Trapezoidal or Crank-Nicholson scheme.

We find here the recurrence relation
Uy = 17 Upt1 = Up + E ()\un +)\unJrl))
leading to (1 — %) Up+1 = (1 + %) u,, and by immediate induction, for A\ # 2,
(1
Uy = —x | -
2

Now, we observe that for any complex number z = x + 1y # 2,

<1l e [1+2P<1-2PF = 2<0,

1+z2
1—=z2

so the region of absolute stability is the entire left half-plane Re(hA) < 0. Note that this matches
exactly the set of parameters A\ for which the exact solution also converges to zero.

22.1.2 Heun’s method

For this last example, we have the recurrence
h
up = 1, Un+1 = Un + 5 (A + Auy, + hAuy,)) ,

leading to u,+1 = (1 + hA + @) u,, and by immediate induction,

2 n
o= (1o O

Hence the region of absolute stability is the set

1+ (14 hX)?
Atreun {h)\ € C such that 'M

<1,

The shape of this set is a somewhat elliptic set containing the disk centered at —1 with radius 1
and contained in the rectangle with —2 < Re(h\) < 0 and —1.75 < Im(h\) < 1.75.

103

22.1.3 A-stability

Definition 22.1. A method is called A-stable if its region of absolute stability contains the entire
left half-plane C~ = Re(z) < 0, i.e. the method is absolutely stable whenever Re(\) < 0.
If a method is not absolutely stable, it is called conditionally stable.

22.1.4 Summary

Order | Type | A-stable? Stability region

Forward Euler 1 Explicit No 1+ hA <1

Backwards Euler 1 Implicit Yes 1 —hA <1

Crank-Nicholson 2 Implicit Yes Re(hA) <1

Heun’s method 2 Explicit No |1+ hX+ @| <1
Remark 22.2. e There are no A-stable (or unconditionnally stable) explicit schemes.

e Not all tmplicit methods are A-stable. There are also consistent yet unstable or conditionally
stable implicit schemes.

22.2 Multistep methods.

Previous methods are limited in the order of convergence because we only used values w,, U,;1
and f, = f(tn,un), fuy1 = f(tnt1, Uns1). In order to gain accuracy, we may use the idea behind
interpolation: to gain accuracy, we can use more nodes. In particular, we can use some of the
previous values generated by the scheme: u,, but also u, 1, u,_», etc.

Notation In this entire section, we will use the notation

fn = f(tmun)
Definition 22.3. A numerical scheme called g-step is a method where u,,1 depends only on the
values Uy, ..., Upi1—q.
Examples.

e The midpoint method, based on the centered finite difference:

Y (t,) ~ unHQ;huH — Ups1 = Up_1 + 20 [(tn, up), for all n > 2.

This is an explicit 2-step scheme, since u,,,, depends only on w,, and u,_i.

e The Simpson method, based on the Simpson quadrature rule:

tn+1 . 2%
y(thrl) = Yt, 1 + / Yy (t>dt X Yt + — [f(tnfla ynfl) + 4f<tn7 yn) + f(tn+17 yn+1>]

tn—1 6

leading to the scheme
h
Up4+1 = Up—1 + § [fn—l + 4fn + fn+1] , for all n > 2.
This is an implicit 2-step scheme, since u,; depends only on u,, and u,_;.

104

Remark 22.4. Any q-step method needs q initial values to take off:
Uy -+ -5 Ug—1-

Since the initial value problem provides only one starting value ug = yo, one way to compute these
starting values is to resort to an explicit one-step method of the same order. For high-order multi-
step methods like the Adams method introduced below, this cannot be achieved with the schemes
of order 1 or 2 we have seen so far, but higher-order Runge-Kutta schemes can be used for this
purpose.

22.3 Explicit Adams-Bashforth schemes

Idea. To build a family of ¢ = p + 1-step schemes, we use the nodes t,,_,, ..., %, to construct and
interpolatory quadrature approximating the integral

tn+1 tn+1
Yot — Yo — / y(8)dt = / F(t (1))t
tn tn

To achieve this, we build a polynomial interpolating the values f(t,—p, Yn—p),- .-, f(tn,yn) at the
nodes t,_p, ..., t,:

P
Z tn—js Yn—3)l; (1),

where /;(t) is the elementary Lagrange polynomlal:

t(t) = ﬁ <tt_4>

k=0, k#j \ I bn—k

This allows us to build an interpolatory quadrature rule:

tnt1 tn+1 p tny1
/ F(ty(#))dt ~ / Pyt = Y a3 f(ta s uny), where a; = / 0,(0)dt.
tn tn j=0 tn

Let us compute the coefficients a; more precisely. Introduce the change of variables ¢ = t,, + hs,
dt = hds, and recall ¢,,_; = t, — jh, then

(tn + hs) — (t, — kh) kts
gj(t):H(tn—jh) (t, — kh) H

k#j

t"“ P k: + 8
oy = / dt =
tn

0k0k¢]

such that

—w;
Note that the coefficients w; only depend on j and p.
Replacing above the exact values y,_; by their approximation u,_;, we obtain:

Definition 22.5. For any p = 0, we define the (p + 1)-step Adams-Bashforth scheme:

p
Upt1 = Up + h E wj f(tn—j7un—j) .
— —_—
7=0
::fnfj

This relation defines an explicit scheme.

105

Examples.

e Case p = 0: here, we interpolate at the single node t,, with Py(t) = f(tn,ys). The result is
the forward Euler scheme:
Upy1 = Up + hf(tna un)

e Case p = 1: we build a linear interpolant at ¢,_1,t,: using the Newton formula,

f(tn—la yn—l) - f(tm yn)
tnfl - tn

Pl(t) = f(tmyn) + (t - tn)7

and in particular

Pl(tn+1> = f(tmyn) - (f(tnfla ynfl) - f(tnvyn)) = 2f(tna yn) - f(tnflv ynfl)'

Because the trapezoidal rule integrates exactly polynomials of order 1, we have

| R0t = 5 (Pt + Putain)) = 5 135t = s)]

This leads to the two-step Adams-Bashforth scheme
h
Up4+1 = Uy + 5(3fn - fn71>-

e Formulae for the 3-step (p = 2) and 4-step (p = 3) Adams-Bashforth schemes can be found
in the textbook.

Consistency analysis. Because these schemes are based on an interpolatory quadrature for
y'(t), we may use the Lagrange interpolation error formula:

y(p+2) (f(t))
Cp+ Dl U tn—p); (¢ —ty) dt.

=wp+1(t)

v(t) = Blt) +

Integrating this formula from ¢,, to t,,.1 leads to the identity

lnt1 tny1 tnt1 ,,(p+2) t
Ynt1 = Yn + Y (t)dt =y, + P,(t)dt + y—(f())w L1 (t)dt.
tn tn tn (p-i— 1)! P

For the first term, we note that by the construction above,
tn+1 p
T R A DI GRS R et
tn j=0

where 9,1 is the result of one step of the Adams-Bashforth scheme with exact initial values
Yn—ps - - -, Yn- Now for the second term, let ¢ = t,, + hs, we compute

pia(t) = (= tuy) -+ (= ta)t —)
= [t, + hs — (t, — hp)] - [tn + hs — (t, — h)[[tn + hs — t,]
=h"=(s+p)-(s+1)s.

106

In particular w41 (t) is positive on the interval [¢,,%,+1], so we can use the mean value theorem:

/tn+1 y(p+2)(§(t)) pﬂ()dt B yp+2) (5) /tn+1 wpﬂ(t)dt

(

. (p+1)! (p+ 1
(p+2) 1
y(p+ g)n)hp+2/0 (s+p)°"(8+1)3d5-

for some &, € (t,,tn41). Define the constant

p+l +=

ﬁ/g s(s+1)-- (s + p)ds > 0,

then we have shown that the local truncation error satisfies

~ Yn+1 — gn 1
Yn+1l — Ynt+1 = Op+1y(p+2)(§n>hp+2 or Tn+1(h) = o p+ 1y(+2)(§n>hp+1‘

h

This shows that the ¢ = p + 1-step Adams-Bashforth schemes are consistent for any p >
furthermore have order q.

107

0, and

Lecture 23: Multi-step methods: Adams-Moulton schemes and
analysis. (Monday, November 16)

23.1 Implicit Adams-Moulton schemes.

Using a similar idea as for the Adams-Bashforth schemes in the last lecture, we can use the nodes
tn—ps .- tn, tny1 to construct an interpolatory quadrature rule approximating

tn+1
Yst = U + / F(t,y ().
tn

P

i1 J(tnj yn—j), we find weights w; such that

By writing an interpolant Q,41(t) =

p
Ynt1 = Yn + h Z U_)jf(t”—j’y”—j)7
j=—1

1 P k
0 p="1, k#j —J

Using the approximate values u,, ~ ¥, yields a numerical scheme:

Definition 23.1. For any p > —1, we define the (p + 1)-step (for p = 0) or 1-step (forp = —1)
Adams-Moulton scheme:

which are given by the formula

p
Up+1 = Up + hz U_}jfnfj + hu_}flfn+1~
j=0

This relation defines an implicit scheme.

In general, a g-step Adams-Moulton method corresponding to p > 0 has order ¢+ 1. An exception
to this rule is made for p = —1, which corresponds to the backwards Euler scheme, an implicit
1-step scheme with order p + 2 = 1.

Example

e Case p = 0: we find the Crank-Nicholson scheme, which has order 2.

e Case p=1:)
Upy1 = Up + D (5fns+1 +8fn — fu-1).

23.2 Stability and Convergence Analysis

The general formula for a linear p + 1-step method takes the form

p p
Upt1 = Z AjUp—j + h Z bjfnfj + hbflfn+1 . (231)
oy i=0 ~—
\) R) if implicit
linear combination of past u values linear combination of past f values

We define in general the local truncation error

~ V4 p
Yn+1 — Yn+1 ~
T (D) = %, o1 = D, aiYn—j +h D bif(tnjsyns)-

i=0 j=-

108

Example: the Adams scheme share the coefficients ap =1, a; = --- = a, = 0.

e We have shown in the previous lecture that the explicit Adams-Bashforth scheme with ¢ =
p + 1 step, with coefficients

e k+s
b, =0, b-=w-=/ (,)ds, 7=0,...,p,
1 J J 0 1_[k—j

k=0, k+j

are consistent with order q.

e We can show that the implicit Adams-Moulton scheme with ¢ = p + 1 step, with coefficients

1 p
k
0 k=_1, k#j k—J

are consistent with order ¢ + 1.

23.2.1 What about stability?

Definition 23.2. A linear q-step method like (23.1) is called zero-stable if there exists K > 0 such
that, given two sequences {Un}n=0, {zntns0 generated by the scheme with different starting values
Ug, ..., Up—1 and 2o, ..., zp—1, then

Uy, — 2| < K max {|ug + 20| + -+ + [up—1 — 2p-1l},
for all n such that ty < t, < tqg+ T, with K independent of h as h — 0.

Remark 23.3. This is a simplified version of the zero-stability notion introduced for one-step
methods; we could also include perturbations 0, representing errors commited at each step of the

scheme (23.1) forn = p.

This is a difficult property to check a priori. However, we may use results from the theory of
sequences generated by multi-step recurrence relations like (23.1). Let us introduce the charac-
teristic polynomials:

p
p(z) = 2271 — Z a; 2",
= (23.2)
o(z) =b_12PT + Z b 2P

=0

We study the special case where f(¢,y) = 0 in the Cauchy problem, which as we will see is the
key to understanding (and justifies the name of) zero-stability. The values of the sequence {u,}
are then generated from the recurrence relation

p
Up+1 = Z AU = Qolp + =+ + Qplp—yp for n = p,
7=0

given a set of initial values wg,...,u,. In particular, we are interested in the behavior of this
sequence as n — o0.

109

Lemma 23.4. Consider the ¢ = p + 1-th order homogeneous linear recurrence relation given by
coefficients ay, ..., ap:

p
Un+1 = Z a;u;,
J=0

where we assume a, # 0, and its characteristic polynomial
p
— P+l _]
p(z) =z Z a;z"7.
j=0

Let zq, ...,z be the distinct (complex) roots of p with multiplicity mq, ..., my such that my + - -+

my = q. Then, for any set of initial values uo, ..., u, there exists polynomials p,(n) of degree at
most m, — 1 forr =1,...,1 such that
l
Up = Zpr(n)zf, for alln = 0.
r=1

In the particular case where m, =1 (the root z, is simple), then p, is a constant.

Proof. We only sketch the proof. Assume that the polynomial p(r) has ¢ distinct, simple roots
21, ..., 2z, different from zero (since a, # 0 and thus p(r) # 0).

Clearly, any sequence of the form ul) = (z.)" satisfies

p p
ntl _ n—j _ n—p | p+l _ L p=J | — P -
2 Z ajz =2z 2F Z a;2b =2""Pp(z.) = 0.
=0 =0

Hence it satisfies the recurence relation. Furthermore, by linearity any linear combination of such
sequences »_, C,.zI" also satisfies the recurrence relation. To show that any sequence satisfying
the recurrence relation and generated from initial values wuy, ..., u, has this form, we may solve
the linear system
(Ci+ -+ Cy = uy,

0121 + -+ quq
< 012%—1'4‘0(123 = U9,

Uy,

(C12] + -+ + Ozt = uy,.

The coeflicient matrix has the specific Vandermonde form, and its determinant is the Vandermonde
determinant

1 - 1
'Zl o .. Zq
= H(zs —2z) #0.
) 1 : r<s
Ztlz_ . e ngl
Hence the system has a unique solution (4, ..., C,, showing that any sequence generated by initial
values o, . .., u, and the recurrence relation writes as

ul” = i Crz,.
r=1

110

If the polynomial has one (or several) roots with multiplicity m, > 1, then the construction above
does not work since there are only [< ¢ distinct sequences of the form {(z,.)"},>0 where z, is a

root of p(z). To fix this, we include in the basis for each » = 1,...,[the m, sequences:
w0 = 2, ul"D = nz", ey ul"m) = p(n = 1) (n —m, + 2)2"

In total, this is a set of Zi;l m, = ¢ sequences. Some more complex computations show that
each such sequence satisfies the recurrence relation, and that the linear system allowing to find the
coefficients C, ; for r = 1,...,l and j = 0,...,m, from the initial values uo, ..., u, is well-posed.
Finally, we note that each linear combination

my—1

2 C’T,ju,(f’j) = [Cno + Cr,l’l'l, + -+ C’T,mT,ln(n — 1) s (Tl — M, + 2)] Z:L
j=0

is of the form p,.(n)z" with p.(n) a polynomial in n of degree at most m, — 1. O

Now that we understand the behavior of sequences generated by recurrence relations of the form
above, it follows that the roots of the characteristic polynomial p(z) are critical for the zero-stability

property.

Theorem 23.5. (Root condition)

A linear multi-step method applied to a Cauchy problem where f satisfies a Lipschitz condition is
zero-stable if and only if all roots of the first characteristic polynomial are inside the closed unit
disk of C, with any lying on the unit circle being simple, i.e.

2| <1
Zero-stability < (Root condition): if p(z) =0, then { and
p(z)#0 if |z] =1

Proof. Again, we sketch the proof, and in particular the necessary component of the equivalence
above. Consider the homogeneous case y = 0 and a, # 0. By Lemma [23.4] any numerical solution
of the scheme takes the form

l
wn = Y pr(n)2,
r=1

with p.(n) a polynomial of degree m, — 1 at most. Then |z.| > 1, then for some choice of the
starting values, p,(n) # 0 and the sequence will grow to infinity like |z.|™. If |z.| = 1 and m, > 1
(the root is not simple), then the sequence will grow to infinity like n™ ~!. Thus, as h — 0 such
solutions will grow to infinity as ¢, = ty + nh is fixed and the scheme is not zero-stable.

It is easy to extend this analysis to the case where a, = 0 and z = 0 is a (possibly multiple) root
of the characteristic polynomial. The other direction (sufficient) is quite technical, and we skip
the rest of the proof. O

Examples

e The Euler methods are example of 1-step linear multistep methods: wu,.1 = u, + hf, or
Upt1 = Uy + hfyy1. In this case, p = 0 and the characteristic polynomial is p(z) = z — 1.
It has a simple root z = 1, and hence satisfies the root condition: the Euler methods are
zero-stable.

111

e The Adams methods are p + 1-step linear multistep methods of the form
p
Up+1 = Up + h 2 wjfn,j,
j=0/—1
which have the characteristic polynomials
p(z) = 2P — 2P = 2P(2 — 1),

which have a simple root at z = 1 and a root at z = 0 with multiplicity m = p. The methods
hence satisfy the root condition, and they are zero-stable when applied to a Cauchy problem
with f satisfying a Lipschitz condition.

e The midpoint method: wu, 1 = u,_1+2hf, and the Simpson method: u, 1 = u,_; +%(fn,1 +
4f, + fny1) are both 2-step linear multistep methods with the characteristic polynomial

p(z)=2>—1=(z—1)(z+1).

Both roots z = —1 and z = 1 are simple, hence the methods satisfy the root condition and
they are zero-stable.

e Finally, consider the three-step method
Ung1 = Up—g + Up_1 — Up + 20(fr1 + fn),

which has the characteristic polynomial p(z) = 2* + 22 — 2 — 1 = (2 + 1)?(2 — 1). There is
a simple root at z = 1 and a double root at z = —1, so the method is not zero-stable (and
hence practically useless).

112

Lecture 24: Multistep methods (the conclusion). Runge-Kutta
methods. (Wednesday, November 18)

24.1 Consistency for multistep methods.
Recall
Definition 24.1. We define the local truncation error

Yn+1 — [Zﬁ?zo ajy; +h 35 bif(ta-j, yn—j]

Tor1(h) = ; whereyr = y(t),

and the global truncation error

T(h) = ex Tot1(R).

Theorem 24.2. The p+ 1-step linear multistep method (23.1)) is consistent, i.e. limy_o7(h) =0
if the exact solution y(t) is twice continuously differentiable on [ty, to+T]| and the coefficients satisfy
the algebraic conditions

p p
Z CL]‘ =]., b_1 + Z(bj —jaj) =].7
7=0

=0
or in terms of the characteristic polynomials p(z) = 2P*1 =3 _ja;2P77 and o(2) = 30__ b;zP7,
p(1) =0, o(1) = p'(1).

Remark 24.3. Note that 1 must be a root of the first characteristic polynomial to achieve consis-
tency. To satisfy the root condition (and the method to be zero-stable), this root must be simple,
meaning that

o(1) =p'(1) # 0.

Proof. Let us expand y(t) and y/(t) in Taylor expansions of order 1 and 0 respectively around ¢,:
Yn—j = y(tn -]h) =UYn —]hy; + O(h2)>
Yn—j = Yn + O(h) + f(tn, yn) + O(h).
Hence, since f(t,—j, Yn—j) = ¥ (tn—j) = Yn_;;
p p

p p
it = D a5y +h D by = Y ai(yn — jhyp) +h Y by, + O(R?),

J=0 j=—1 j=0 j=—1
Yn+l = Yn + hy;z + O<h2)7

such that, grouping terms with like powers of h,
Yn+1 — gn-ﬁ-l 1 < < <
() = LI LS)y (1] 3 = ey)i+ 00,
j=0 j=-1 j=0

To obtain 7,11 (h) — 0, we thus need >}7_ja; = 1and >7_ b; —>7_;ja; = 1, which are the two

algebraic conditions of the theorem. O

Remark 24.4. By taking Taylor expansions of higher order, one finds further algebraic conditions
which are necessary to increase the order of the method.

113

24.2 Dahlquist’s Theorems

To conclude this section on the analysis of multistep methods, the following two theorems give
necessary and sufficient conditions about convergence and order of accuracy of the methods.

Theorem 24.5 (Dahlquist Equivalence Theorem). For a consistent method of the form (23.1)),
zero-stability 1s equivalent to convergence.

Furthermore, if the solution has p+ 1 continuous derivatives, the truncation error satisfies T(h) =
O(h?) and the initial conditions satisfy |u; — y;| = O(h?) for j =0,...,p—1 then the global error
satisfies e, = |u, — y,| = O(hP), i.e. the method is convergent with order p.

Theorem 24.6 (Dahlquist Barrier Theorem). The order of accuracy of a zero-stable q-step method
cannot exceed ¢ + 1 if q is odd, and q + 2 if q is even.

Examples.
e The Crank-Nicholson method achieves the highest order of accuracy (2) for a 1-step method.
e The Simpson method achives the highest order of accuracy (4) for a 2-step method.
Remark 24.7. To be useful in practice, each method need also fulfill absolute stability for small
enough time-steps. We do not study this topic in detail, but refer to the textbook for more details.
24.3 Higher-order single-step methods.
24.3.1 The Taylor methods.

The first idea to make a one-step method more accurate is to exploit the Taylor expansion around
tn:

y(tn-H) = y(tn + h)
h? hp

= y(t,) + hy'(t,) + E?J”(tn) + - p y((t,) + ...

We know how to approximate y, with w,, y, with f(¢,,u,) but what about the higher order
derivatives? Using the multi-variate chain rule, we have the sequence

y(t)
y'(t) = [t y(t))
=DM f
d 0 0 —
(1) = ST u) = S eye) + O) =Tt TR ()
0y

() = S+ TR 9O = [Ffuf fu+ Uiy + 12+)] (60(0)

::I‘)?Q)f

We can thus define expressions DU f, D@ f DO f . D® f of any order, in terms of f and its

partial derivatives only, such that y®+Y(t) = D®) f(t, y()). This allows to build a method:

h? h?
Upp1 = Up + hf(tm un) + ED(I)f(tnyun> +ot _'D(p_l)f(tna Un)
o

114

which has by construction the local truncation error

N thrl L
Yn+l = Yn+1 + (p T 1>‘yp+ (gn)a tn < gn < tn+17

and thus satisfies 7,,41(h) = O(h?).

Issues: While this construction allows to build methods that have any order, they suffer from
some disadvantages:

e Requires to compute high-order derivatives of f;
e Formulae are very complex;

e Hard to generalize to systems of equations.

24.3.2 Runge-Kutta methods.

Goal: we seek to achieve high-order approximation without the use of derivatives of f.

Main idea: build a quadrature using s nodes t,,+cih, ..., t,+cshwith0 < ¢ <y < ... <c¢, <1
to approximate

tn+1
/ y'(t)dt ~ hbyy'(t, + c1h) + -+ + hbsy (t, + csh),
tn

with quadrature weights aq, ..., as. Since the values y/(t,, + c,h) are not known or approximated
by the values u;, we will construct appropriate approximations

K; ~ y'(t, + c;h) = f(tn + cjh, y(t, + c;h)) forj=1,...,s.

Remark 24.8. In most cases, we have ¢; = 0 such that Ky = f(t,, u,).

General Runge-Kutta scheme. From the construction above, we expect to write the scheme
as
Upt1 = Up + hF(tnvunv h) f)a

where F' is an increment function built as

j=1

Ki:f<tn+cih7un+h2ainj> forizl,...,s.

j=1

s is called the number of stages of the Runge-Kutta method.

115

Butcher tableau / array. The Runge-Kutta method above is fully specified by the knowledge
of the coefficients ¢y, . . ., ¢; (the nodes of the quadrature), by, . .., bs (the weights of the quadrature),
and a;; for 4,5 = 1,..., s, the coefficients of the linear combinations such that u,, +h Z;Zl a;; K; ~
y(t, + c;h). We organize these s(s + 2) coefficients in the shape of the following Butcher tableau:

¢l | amix Q2 - Als

Co | Q21 Q22 -+ Agg
c| A
bT

Cs Ags1 Ag2 e Agg

bl 52 . bs

Note that by consistency, we expect the following conditions on the rows of the tableau to hold:
o ¢ =) a;foralli=1,...,s,

[] ijl bj = 1

Such methods are in general implicit, in the sense that the coefficients K; have to be computed by
solving (coupled) systems of nonlinear equations. However, if a;; = 0 for any j > 4, then each K;
may be computed in terms of Ky,..., K; 1 only, and the method is explicit. This corresponds to
a strictly lower triangular Butcher tableau.

116

Lecture 25: Runge-Kutta methods: conclusion. (Monday, Novem-

ber 23)
Recall the general form of a Runge-Kutta scheme associated to a Butcher tableau
C1 | a1 aig o Qs
co | a1 @ S Qg
oA 2 | Q21 Q22 2
bT
Cs | Us1 As2 T Ass
by by bs
e First, we compute the values K; satisfying,
Ki=f<tn+cih,un+2aijl{j>, jzl,...,S,
j=1

e Next, we compute the next iterate,

Un41 = Uy + hz ijj‘

7j=1

25.1 Second-order, two-stage explicit Runge-Kutta schemes

We base these methods on a quadrature rule

tn+1
/ Y (t)dt ~ h[biy'(t,) + bay/ (t, + c2h)].
tn

(Note that we fixed the first node, ¢; = 0.)
The method of undetermined coefficients can be applied to find appropriate values of by, by, co such
that the quadrature above has degree of exactness 1. This means

tn+1
/ 1dt = h = h[by -1+ by- 1] = h(by + b), or by + by = 1;
tn
and
tn+1 t2 _ t2 h2
/ tdt = % = htn + ? =h (bltn + bg(tn + Cgh)) = h(bl + bg)tn + b202h2,
tn

so by = 1 —by and ¢y = 1/(2by). Let us define = by =
family of quadrature rules:

such that g > % We have found a

1
2co?

/tu y'(t)dt = h {(1 — By () + By (tn N %)] .

Next, we have

f(tn7yn)7

"t f = t f t h
ot o (oo)

117

@\

—~
~~

3

~
I

such that these values may be approximated, using Euler’s method for the second one:

y/<t'fl> & f(tTL’uTL)?

/ h ~ h h
Y (tn+ﬁ) "’f (tn"i_%;un"i_%f(tmun)) :

This construction amounts to the following Runge-Kutta scheme:
Kl = f(tmun)a

h h
Ky=f <tn + %ﬂtn + %Kl) ;
and then

Uny1 = Up + h[(1 = B) K1 + BK>].

This defines a family of two-stage, order 2 Runge-Kutta methods for any choice of § > 1/2. The
Butcher tableau for these methods writes:

1

28
[1-8 B

(Note that an empty cell in the tableau indicates a zero value.)
Some popular choices of 5 are:

0
1
2f

Examples.

e Case f =1, or co = 1/2: here

poI—= O

Ol
—_

This creates the scheme

Ky = f(tnaun)>
h h
ngf tn+§,un+§K1 , Up+1 ZUn+hK2,
or in a single line,
h h
Unt1 = Uy + Rf | L, + ot §f(tn,un) :
This is another 'midpoint method’.

e Case f=3/40rcy =2/3:

118

such that
Kl = f(tn7un)7
2h 2h

h
Ky = f (tn + ?7un + ?Kl) y Uyl = Up + Z(Kl + 3K2),

or in a single line,

h 2h 2h

e Case f=1/20rcy = 1:

such that
Kl = f(tmun)a

h
K2 = f (tn + haun + hKl) yUp+1 = Up + a(Kl + KQ)a

or in a single line,

Uny1 = Upn + g (f(tn, un) + f (tn + hyun + hf(tn, un))).

This is just Heun’s method!

25.2 Analysis of Runge-Kutta methods

We can use the one-step formalism here to find most answers.

Zero-stability: By Theorem [20.7] this is equivalent to the increment function F(t,,u,, h; f)
satisfying a Lipschitz condition. Because any finite combination of Lipschitz functions (sum,
product, composition) also satisfies a Lipschitz condition, this is usually OK, hence Runge-Kutta
methods will be zero-stable.

Consistency: This is usually studied case by case, using multivariate Taylor series. As an
example, let us investigate the midpoint method

Kl = f(tTL?u’fL)v

h h
KQ = f (tn + §,Un + 5[(1) ,Up+1 = Up + hKQ,

Let us expand to the 3rd order y(t) around t,, using the formulae derived above in the Taylor
methods section:

2 3

h h
Uit = Yltn +h) =y + by, + Syn+ oy + O(h*)

2 3

:yn+hf+%(ft+ffy)+%(ftt+ftfy+2ffty+ffy2+f2fyy)+O(h4),

119

where all functions are implicitely evaluated at the point (¢,,¥,). On the other hand, plugging
into the scheme the exact value y,,, we find

Kl:f?

h, h h\? hh hEK;
Ky = [+ Eft + %fy + % (5) Jue + 5%]@ + % (%) foy + O(R?)
h 2
= [+ U+ 1)+ g (fut 20 fiy + o) + O0F°).

Hence,
3

Bt = o+ hf 4ot)+t 2+) + O,

Taking the difference between this expansion and that of y,,1, we find

h? h?
Ynt1 — Ynt1 =Yn + hf + E(ft + ffy) + G (ftt + fefy + 2f foy + ffy2 + fzfyy)
3

2
—Yn—hf— %(ft + ffy) - % (ftt +2ffiy + foyy) + O(h4)
3 3
:Zz (fu + 21 fry + [fuy) + % (fufy + F17) + O(hY).

This yields the leading term in the local truncation error:

n+1 ~n+ h2 h‘2
rua(h) = SEIEL = 2 (fa 4 2f fry + Fh) + T (i + £1D) + O(R).

In particular, the method is consistent of order 2.

Convergence: Runge-Kutta methods are convergent as a by product of their zero-stability and
consistency, per the Lax-Richtmeyer Theorem [21.2]

25.2.1 Classical Fourth-Order Runge-Kutta Method

One of the most useful Runge-Kutta methods is given by the Butcher tableau:

0
1/2 | 1/2
12 0 1/2

1|0 0 1
1/6 2/6 2/6 1/6

This corresponds to the 4-stage explicit Runge-Kutta scheme:

(Kl = f(tnaun)a

h h
K2:f<tn+§aun+§Kl)>

h h

Ky = f(tn + hyu, + hK3),

h
\un+1 = U + E(Kl + 2K2 + 2K3 + K4)

120

	Introduction. (Monday, August 24)
	Basics of error analysis.
	Generic form of a problem.
	Absolute and relative errors.

	Machine representation of Numbers: Floating-point systems.
	Decimal system.
	General floating-point system:
	Finite number systems

	IEEE Format: Rounding errors and floating-point arithmetic. (Wednesday, August 26)
	IEEE standard.
	Rounding of real numbers.
	Machine arithmetic.

	Conditioning, Stability, Convergence. (Monday, August 31)
	Condition number
	Errors in a practical situation.
	Concepts of consistency, stability, and convergence

	Rate and Order of Convergence. (Wednesday, September 2)
	Asymptotic rate of convergence
	Order notation
	Order notation for functions.
	Root of a function

	Rootfinding (continued). (Monday, September 7)
	Root conditioning.
	Geometrical Rootfinding Methods
	Bisection method
	Newton's method

	Rootfinding (continued, again). Fixed Points. (Wednesday, September 9)
	Newton's method; methods of the Secant, chord and Regula Falsi.
	Newton's method
	Secant method.
	Chord method
	Regula Falsi.

	Analysis framework: the fixed-point iterations.
	Fixed points.
	Fixed point iterations.

	Analysis of Rootfinding Methods. (Monday, September 14)
	Convergence analysis of fixed-point iterations (cont.)
	Application of fixed-point iteration analysis to 1-point rootfinding methods.
	Analysis of two-point rootfinding methods
	Discussion: stopping criteria.

	Analysis of the Secant method. (Wednesday, September 16)
	Polynomial Interpolation. (Monday, September 21)
	Motivation. Horner's method
	Polynomial interpolation.
	Lagrange representation.

	Polynomial Interpolation II. (Wednesday, September 23)
	Error in the Lagrange formulation.
	An example.
	Newton representation
	Properties of the Newton divided differences.

	Interpolation Error. Piecewise interpolation. (Monday, September 28)
	Interpolation error and divided differences.
	Error investigation: Equidistant points.
	Piecewise Lagrange interpolation.
	Cubic Splines
	Properties of Cubic Spline Interpolants

	Hermite Interpolation. (Monday, October 5)
	Lagrange-type formula.
	Newton-type formula.
	Example.

	Numerical Integration. (Wednesday, October 7)
	Closed Newton-Côtes quadrature rules.

	Open Newton-Côtes and Composite Rules. (Monday, October 12)
	Open Newton-Côtes Quadrature Rules
	Example: the midpoint rule.
	Error analysis.
	Composite Quadrature Rules.
	Composite Trapezoidal Rule.
	Composite Simpson's Rule.

	Composite Rules (cont.) Approximation theory, Orthogonal Polynomials. (Wednesday, October 14)
	Last comments on composite rules
	Composite Midpoint Rule.
	General Composite Newton-Côtes Rule

	Approximation of Functions
	The Weierstrass approximation theorem
	Scalar product. Generalized Fourier Series on (-1,1)

	Families of orthogonal polynomials.

	Chebyshev and Legendre polynomials; Gaussian Quadrature. (Monday, October 19)
	Chebyshev polynomials.
	Legendre polynomials.
	Gaussian quadrature

	Numerical Quadrature: the Conclusion. (Wednesday, October 21)
	Integration over arbitrary intervals.
	Examples
	Case n = 0.
	Case n = 1.

	Numerical Differentiation. (Monday, October 25)
	Classical Finite Difference Schemes
	Method of Undetermined Coefficients
	Difference formulae for the second derivative.
	Application:
	Pseudo-spectral differentiation (Chebfun).

	Numerical Solution of ODEs. (Wednesday, October 27)
	The Cauchy problem.
	Stability.
	One-step numerical methods.
	Forward Euler method.

	Analysis of one-step methods, I. (Monday, November 2)
	Some one-step methods
	Forward Euler method
	Backwards Euler method
	Trapezoidal or Crank-Nicholson method
	Heun's method
	Explicit vs Implicit schemes

	Analysis of 1-step methods
	Consistency.
	Zero-stability

	Analysis of One-Step Methods, II. (Wednesday, November 4)
	Convergence analysis
	Analysis of the forward Euler scheme.
	Absolute Stability
	Forward Euler scheme.
	Backwards Euler scheme.

	Absolute Stability. Multistep Methods. (Monday, November 9)
	Absolute stability: some more examples.
	Trapezoidal or Crank-Nicholson scheme.
	Heun's method
	A-stability
	Summary

	Multistep methods.
	Explicit Adams-Bashforth schemes

	Multi-step methods: Adams-Moulton schemes and analysis. (Monday, November 16)
	Implicit Adams-Moulton schemes.
	Stability and Convergence Analysis
	What about stability?

	Multistep methods (the conclusion). Runge-Kutta methods. (Wednesday, November 18)
	Consistency for multistep methods.
	Dahlquist's Theorems
	Higher-order single-step methods.
	The Taylor methods.
	Runge-Kutta methods.

	Runge-Kutta methods: conclusion. (Monday, November 23)
	Second-order, two-stage explicit Runge-Kutta schemes
	Analysis of Runge-Kutta methods
	Classical Fourth-Order Runge-Kutta Method

