$\underset{2018}{\operatorname{Mon} 17} \S 2.6$ Exact differential equations
Idea: separable equations, are a very particular case, but the ied of implicit solutions carrie oven...
For a function $F(x, y)$ one forms a differential equation

$$
\frac{d}{d x} F(x, y(x))=0 \longrightarrow F(x, y)=C
$$

C Couple of notions from Talc III to get these...

* Partial derivatives: take a simple function

$$
F(x, y)=2 x^{2} y^{3}
$$

Around a point (a, b) we can change either x or y. First we may hold y fixed and allow $\frac{x}{y}$ to any.

$$
\begin{array}{rl}
y=b & g(x)
\end{array}:=F(x, b)
$$

This is now a function of a single variable! Rare of change \rightarrow derivative

$$
g^{\prime}(a)=4 a b^{3}
$$

Call g^{\prime} the partial derivative of F v.r.t. x.
This gives us $\frac{\partial F}{\partial x}(a, b)=F_{x}(a, b)=4 a b^{3}$

Similarly, we can hold $x=$ a fixed and change y :
set $h(y)=2 a^{2} y^{3}$

$$
\frac{\partial F}{\partial y}(a, b)=F_{y}(a, b)=b^{\prime}(y)=6 a^{2} b^{2}
$$

* Chain rule: we hue the situation here when we want to compare $\frac{d}{d x} F(x, y(x))$ Tore generally, extend chain rule from Calk I :
If $z(t)=F(x(t), y(t))$ then:

$$
\frac{d z}{d t}=\frac{\partial F}{\partial x}(x(t), y(t)) \frac{d x}{d t}(t)+\frac{\partial F}{\partial y}(x(t), y(t)) \frac{d y}{d t}(t)
$$

Apply here to our example, where $x(t)=t$

$$
\underbrace{\frac{\partial F}{\partial x}(x, y)}_{M(x, y)}+\underbrace{\frac{\partial F}{\partial y}(x, y)}_{N(x, y)} \frac{d y}{d x}=0
$$

Any D.F. of the form $M(x, y)+N(x, y) \frac{d y}{d x}=0$ when there exists a function $F(x, y)$ such that $M=\frac{\partial F}{\partial x}, \quad N=\frac{\partial F}{\partial y}$ is called exact.

Implicit solutions of such an equation ane gin as

$$
F(x, y)=C, \quad \text { Cabitaay. }
$$

Questions. When does such an F exist?

- How to find it based on Π and N ?

ANSWERS:
(1) Assume that in some rectangle of (x, y) y lone, $M, N, M y, N_{x}$ exist and arc continuous.
Then the two statements are equivalent:
(1) there exist F such that in this rectangle,

$$
M=\frac{\partial F}{\partial x}, \quad N=\frac{\partial F}{\partial y}
$$

(2) $\frac{\partial \Pi}{\partial y}=\frac{\partial N}{\partial x}$ in the rectangle.

VI
This is a test for whether an equation is exact.
(2) Idea: integrate one variable after the other.

Example: $\left\{\begin{array}{l}y^{2} / x+(2 y \ln (x)+\cos (y)) \frac{d y}{d x}=0 \\ y(1)=1\end{array}\right.$
(1) Test for exact D.E.

$$
\frac{\partial \Pi}{\partial y}=\frac{2 y}{x} \text { and } \frac{\partial N}{\partial x}=\frac{2 y}{x}
$$

(2) Compute the "generating function" F

* First, write $F(x, y)=Q(x, y)+h(y)$ where Q is any function such that

$$
\begin{aligned}
& \text { here, wi } \\
& \text { stair with } x
\end{aligned} \rightarrow \frac{\partial Q}{\partial x}=\frac{\partial F}{\partial x}=M(x, y)=y^{2} / x \text {. }
$$

$L_{\Delta \text { choose }} \quad Q(x, y)=y^{2} \ln x$

* Next, use $2^{\text {nd }}$ piece of information:

$$
\begin{aligned}
& \frac{\partial F}{\partial y}=\frac{\partial Q}{\partial y}+h^{\prime}(y)=N(x, y) \\
& L_{D} \quad h^{\prime}(y)=[2 y \ln (x)+\cos (y)]-2 y \ln (x)
\end{aligned}
$$

so we can take $\quad h(y)=\sin (y)$

* Combine Q and h :

$$
F(x, y)=y^{2} \ln x+\sin (y)
$$

* Now we can rewrite the exact D.E. in the form

$$
\frac{d}{d x} F(x, y(x))=0
$$

and the implicit solutions: $\quad y^{2} \ln (x)+\sin (y)=C$
(4) Find constants, domain of realility $y=1$ for $x=1$:

$$
C=\sin (1) \approx 0.84
$$

\Rightarrow General recipe for finding $F(x, y)$ (Texthooh, p72).

* Choose to integrate first in x or y

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=\Pi(x, y) \Rightarrow F(x, y)=\int_{O R}^{\int_{Q(x, y)} M d x}+h(y) \\
& \frac{\partial F}{O_{y}}=N(x, y) \Rightarrow F(x, y)=\int_{P(x, y)}^{\int_{N} N(y+g(x)}
\end{aligned}
$$

\rightarrow Compute $Q=\int M d x$ OR $P=\int N d y$

* Next, do the other one

$$
h^{\prime}(y)=N(x, y)-\frac{\partial Q}{\partial y}(x, y)
$$

OR IF EXACT EQ, THIS EXPRESSION WILL NOT DEPEND ON x / y.

$$
g^{\prime}(x)=\frac{\text { WILL NOT DEPEND ON }}{M(x, y)-\frac{\partial P}{\partial y}(x, y)}
$$

*Finally, combine: $\quad F(x, y)=Q(x, y)+h(y)$

$$
=P(x, y)+g(x)
$$

Wed 19, September
Summary: $1^{\text {st }}$ order ODES.
(1) Linear equations: $\quad y^{\prime}+p(t) y=g(t)$

SOLUTION METHOD: INTEGRATING FACTORS.

$$
\begin{gathered}
y(t)=\frac{1}{m(t)}\left(\int m(t) g(t) d t+C\right) \\
m(t)=\exp \left(\int p(t) d t\right)
\end{gathered}
$$

(2) Sepcuable equations: $\quad \frac{d y}{d x}=g(x) f(y)$
solution: separate variables, integrate

$$
\int \frac{d y}{f(y)}=\int g(x) d x
$$

(3) Exact equations: $M(x, y)+N(x, y) y^{\prime}=0$

Solution: compute \rightarrow Check: $\quad \frac{\partial \Pi}{\partial y}=\frac{\partial N}{\partial x}$
$g(x, y)=\int M(x, y) d x$ and $h(y)$ such that

$$
h^{\prime}(y)=N(x, y)-\frac{\partial y}{\partial y}
$$

G Solutions have the form

$$
F(x, y)=g(x, y)+h(y)=C \text { (constoul) }
$$

Models of interest:
(1) Mixing problems:

$$
\frac{d Q}{d t}=\underbrace{r_{\text {in }} \cdot c_{\text {in }}}_{\text {rate } \mathbb{N}}-\underbrace{r_{\text {out }} \cdot \frac{Q(t)}{V(t)}}_{\text {rate out }}
$$

G linear: integrating factors.
(2) Population models, autonomous equations

$$
\frac{d y}{d t}=f(y) \quad(=r(1-y / k) y)
$$

Phase line analysis; equilibria, stabili 5 . Sepmation of variables.
(3) Heating / Cooling problems.

$$
\frac{d T}{d t}=k\left(\frac{M(t)}{\text { external temp. }}-\frac{T(t)}{\frac{J}{J}}\right)
$$

Chapter 3
Second order Diff Eq
$S_{3.1}$ Homogeneous Differential Equations
In general, a $2^{n d}$ over D.E. hes the form

$$
\begin{equation*}
y^{\prime \prime}=f\left(t, y, y^{\prime}\right) \tag{1}
\end{equation*}
$$

where f is a given function. We will focus on cases whee of takes the specific shape:

$$
f\left(t, y, y^{\prime}\right)=g(t)-p(t) y^{\prime}-q(t) y
$$

ie. f is a linear function of y and y^{\prime}.
Then we can recurile the linear $2^{\text {ad }}$ order ODE:

$$
\begin{equation*}
\underbrace{y^{\prime \prime}+p(t) y^{\prime}+q(t) y}_{\text {linear combination of } y, y^{\prime}, y^{\prime \prime}}=g(t) \text {. } \tag{2}
\end{equation*}
$$

or equivalently.

$$
P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=G(t) \text { for } P(t) \neq 0 \text {. }
$$

Any eqn (1) which cannot be transformed as (2) is called non-lineas. Not much to say as they are
(8) have to sieve analytically.

An initial value problem is here a D.E. of the form (1) on (2) with Two initial conditions,

$$
y(0)=y_{T}, \quad y^{\prime}(0)=y_{\tau}^{\prime} .
$$

ter given numbers.
Why 2 conditions? Think most simple cease,

$$
y^{\prime \prime}=0 \quad \Rightarrow \quad y^{\prime}(t)=A \Rightarrow y(t)=A t+B
$$

To fix each of the 2 coxitrmbis introduced by integrating twice, need 2 conditions.

A linear $2^{\text {nd }}$ order ODE is homogeneous if The $\begin{aligned} & \text { right. hand side, } g(t) \text { or } G(t) \text { is zero: } \\ & \text { forung term }\end{aligned}$

$$
P(t) y^{\prime \prime}+Q(t) y^{\prime}+R(t) y=0
$$

In the simplest case, the coefficients $P, Q, R(t)$ are simply constant:

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad a \neq 0
$$

This is a specific but important example which ovens. many pleyical engine ring situations dose to equilibrium.

A first example $\left\{\begin{array}{l}y^{\prime \prime}-y=0 \\ y(0)=2, \quad y^{\prime}(0)=-1\end{array}\right.$
"Intuition" of solutions: e^{+t}, e^{-t} and multiples
Observation: sums of solutions are solutions!
Form linear combination of these elementray solutions:

$$
y(t)=C_{1} e^{t}+C_{2} e^{-t}
$$

Two arbilicay constants!
Initial conditions:

$$
\begin{aligned}
& y(0)=C_{1} e^{0}+C_{2} e^{-0}=C_{1}+C_{2}=2 \\
& y^{\prime}(0)=C_{1} e^{0}-C_{2} e^{-0}=C_{1}-C_{2}=-1
\end{aligned}
$$

Solve system of 2 equation for C_{1}, C_{2} :

$$
C_{1}=1 / 2, \quad c_{2}=3 / 2 \rightarrow y(t)=\frac{1}{2} e^{t}+\frac{3}{2} e^{-t}
$$

Several technique $a y^{\prime \prime}+b y^{\prime}+c y=0$

- Find two solutions $y_{1}(t), y_{2}(t)$ which we different (nor multiple of each other)
- Write general solution as a linear combination:
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Use the L constants to fir the 2 initial conditions.

Check: if y_{1}, y_{2} are two solutions then

$$
\begin{gathered}
a\left(C_{1} y_{1}+C_{2} y_{2}\right)^{\prime \prime}+b\left(C_{1} y_{1}+C_{2} y_{2}\right)^{\prime}+c\left(C_{1} y_{1}+C_{2} y_{2}\right) \\
=C_{1} \underbrace{\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right)+C_{2} \underbrace{\left(a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}\right)}_{=0}}_{=0} \\
=0
\end{gathered}
$$

How do we find the base solutions?
Idea: seek exponential solutions of the form:

$$
y(t)=e^{r t} \quad r \text { untinown yet. }
$$

Since $y^{\prime}(t)=r e^{r t}, \quad y^{\prime \prime}(t)=r^{2} e^{r t}$,

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 \longleftrightarrow\left(a r^{2}+b r+c\right) e^{r t}=0
$$

Now $e^{r t} \neq 0$: satisfied if r solution of
the CHARACTERISTIC EQUATION

$$
a r^{2}+b r+c=0
$$

Chamactritic polynomial (over 2)
Possible cases: Disaiminant, $\quad A=b^{2}-4 a c$

- $\Delta>0$: Two real roots
- $\Delta=0$: One real, repeated root
- $\Delta<0$: Two complex conjug ate roots.

First, consider the can where $\Delta>0$.
Other cases: $\{3.4$ and $\{3.3$.
Then we have two roots of the characteristic polynomial:

$$
r_{1}=\frac{-b+\sqrt{\Delta}}{2 a} \quad r_{2}=\frac{-b+\sqrt{\Delta}}{2 a} .
$$

Then, $y_{1}(t)=e^{r_{1} t}$ and $y_{2}(t)=e^{r_{2}}$ are two different solutions of the equation and

The general sedation has the form

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

with C_{1}, C_{2} arbitiany constants.
Next, fit the initial conditions:

$$
\left\{\begin{array}{l}
y\left(t_{0}\right)=y_{0} \\
y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
\end{array}\right.
$$

This leads to reno equation:

$$
\left\{\begin{array}{l}
c_{1} e^{r_{1} t_{0}}+c_{2} e^{r_{r} t_{0}}=y_{0} \\
c_{1} r_{1} e^{r_{1} t_{0}}+c_{2} e^{r_{2} r_{0}}=y_{0}^{\prime}
\end{array}\right.
$$

C system of linear equations: 2 unturowns, 2 equation.

Example 1

$$
\left\{\begin{array}{l}
y^{\prime \prime}+y^{\prime}-2 y=0 \\
y^{(0)}=1, \quad y^{\prime}(0)=0
\end{array}\right.
$$

Step 1 Solve the characteristic equation \leadsto solutions under the form $y(t)=e^{r t}$

$$
r^{2}+r-2=0
$$

Discriminant: $\quad \Delta=1^{2}-4 \cdot(-2)=9$
The roots of the characteristic equation are

$$
r_{1}=\frac{-1-\sqrt{9}}{2}=-2 \text { and } r_{2}=\frac{-1+\sqrt{9}}{2}=+1
$$

Step 2 General solution:

$$
y(t)=C_{1} e^{-2 t}+C_{2} e^{t}, \quad C_{1} \text { and } c_{2} \text { arbitiang }
$$

Step 3 Initial conditions, particular solution:

$$
\begin{gathered}
\left\{\begin{array} { r }
{ c _ { 1 } + c _ { 2 } = 1 } \\
{ - 2 c _ { 1 } + c _ { 2 } = 0 }
\end{array} \text { so } \quad \left\{\begin{array}{l}
c_{1}+2 c_{1}=1 \\
c_{2}=2 c_{1}
\end{array}\right.\right. \\
\text { and } c_{1}=1 / 3 \quad c_{2}=2 / 3 \\
y(t)=\frac{1}{3} e^{-2 t}+\frac{2}{3} e^{t}
\end{gathered}
$$

Example 2

$$
\left\{\begin{array}{l}
y^{\prime \prime}+12 y^{\prime}+35 y=0 \\
y(0)=3, \quad y^{\prime}(0)=-17
\end{array}\right.
$$

Step $1 \quad r^{2}+12 r+35=0$
Disuiminurl: $\Delta=12^{2}-4 \cdot 1 \cdot 35=4$
The roots of the chenctreisti. poly nominal ace

$$
r_{1}=\frac{-12-\sqrt{4}}{2}=-7 \quad r_{2}=\frac{-12+\sqrt{4}}{2}=5
$$

Step The general solution of the D.E. is

$$
y(t)=c_{1} e^{-7 t}+c_{2} e^{-5 t}
$$

Step 3 Patículas solution:

$$
\left\{\begin{array} { l }
{ y (0) = c _ { 1 } + c _ { 2 } = 3 } \\
{ y ^ { \prime } (0) = - 7 c _ { 1 } - 5 c _ { 2 } = - 1 7 }
\end{array} \text { so } \quad \left\{\begin{array}{c}
c_{2}=3-c_{1} \\
-7 c_{1}-5\left(3-c_{1}\right)=-17
\end{array}\right.\right.
$$

Then, $\quad-2 c_{1}=-17+15=-2$ so $c_{1}=1$
and $\quad c_{2}=2$
The sdention to His IUP is

$$
y(t)=e^{-7 t}+2 e^{-5 t} .
$$

General behavior at infinity: depends on sign of r_{1} and r_{2}

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t} \quad r_{1}<r_{2}
$$

As $\vdash \rightarrow \infty \ldots$

Note: as long as $r_{1} \neq r_{2}$, system for $C_{1,2}$ can always be salved!

$$
\left\{\begin{array} { l }
{ \text { be solved! } } \\
{ c _ { c _ { 1 } e ^ { r _ { 1 } t _ { 0 } } + c _ { 2 } e ^ { r _ { 2 } t _ { 0 } } } ^ { c _ { 1 } r _ { 1 } e ^ { r _ { 1 } t _ { 0 } } + c _ { 2 } r _ { 2 } e ^ { r _ { 2 } r _ { 0 } } = y _ { 0 } } = y _ { 0 } ^ { \prime } }
\end{array} \Rightarrow \left\{\begin{array}{l}
c_{1}=\frac{y_{0}^{\prime}-y_{0} r_{2}}{r_{1}-r_{2}} e^{-r_{1} r_{0}} \\
c_{2}=\frac{y_{0} r_{1}-y_{0}^{\prime}}{r_{1}-r_{2}} e^{-r_{2} r_{0}}
\end{array}\right.\right.
$$

by substitution!
There is always a solution in this form! But, is it the only possibility? Answer in the next section!

