Non 17 2018 § 2.6 Exact differential equations I dea: separable equations are a very particular case, but the idea of implicit solutions couris over... For a Junction F(x,y) one forms a differential equation $\frac{a}{dx}F(x,y(x))=0 \quad \longrightarrow F(x,y)=C$ Co Couple of notions from Calc II to get these ... * Partial derivatives: take a simple junction $F(x,y) = 2x^2y^3$ Around a point (a,b) we can change either x or y. First we may hold y fixed and allow x to way? y = b g(x) := F(x,b)= 2 x b³ This is now a function of a single reaciable? Rate of change -> derivative $g'(a) = 4ab^{3}$ Call g' The putiel derivedin of F e.r.t. 2. This gives us $\frac{\partial F}{\partial x}(a,b) = F_x(a,b) = 4ab^3$ \bigcirc

Similarly, we can hold n = a fixed and change y: set $h(y) = 2a^2y^3$ $\frac{\partial F}{\partial y}(a,b) = F_y(a,b) = h'(y) = -6 a^2 b^2$ * Chain rule: we have the situation have where in want to compute de F(x, y(x)) More generally, extend chain rule from Calc I: If 2(t) = F(x(t), y(t)) then: $\frac{dz}{dt} = \frac{\partial F}{\partial x} \left(x(t), y(t) \right) \frac{dx}{dt} (t) + \frac{\partial F}{\partial y} \left(x(t), y(t) \right) \frac{dy}{dt} (t)$ Apply here to our example, where x(t) = t $\frac{\partial F}{\partial x}(x_{i}y) + \frac{\partial F}{\partial y}(x_{i}y) \frac{dy}{dx} = 0$ $M(x_{i}y) = N(x_{i}y)$ Any D.E. of the form $M(x_{iy}) + W(x_{iy})\frac{dy}{du} = 0$ where there exists a function $F(x_{iy})$ such that $M = \frac{\partial F}{\partial x}, N = \frac{\partial F}{\partial y}$ is called exact. Implicit solutions of such an equation are given as F(x,y) = CCarbitrary. 2

(3) . When does such an Ferist? . How to find it based on trand N? QUESTIONS ANSWERS. D Assume that in some rectangle of (x,y) ylang, M, N, M, N, exist and are continuous. Then the two statements are equivalent: (1) There exist F such that in this rectangle, $M = \frac{\partial F}{\partial x}, \quad N = \frac{\partial F}{\partial y}$ (2) $\frac{\partial \Pi}{\partial y} = \frac{\partial N}{\partial x}$ in the rectangle. $\frac{1}{\sqrt{2}}$ This is a test for whether an equation is exact. 1) Idea: integrate one variable after the other. $E_{xample} = \left\{ \frac{y'}{x} + \left(2y \ln(x) + \cos(y) \right) \frac{dy}{dx} = 0 \right\}$ $\frac{1}{y(1)} = 1$ O Test for exact D.E. $\frac{\partial \Pi}{\partial y} = \frac{2y}{x}$ and $\frac{\partial N}{\partial x} = \frac{2y}{x}$ \checkmark

3

4) 2 Compute the "generating function" F * First, write F(x,y) = Q(x,y) + h(y)where Q is any function such that here, is $\frac{\partial Q}{\partial x} = \frac{\partial F}{\partial x} = \frac{\partial F}{\partial x} = \frac{\partial V}{\partial x} = \frac{\partial V}{\partial x}$ Lo choose $Q(x,y) = y^2 \ln x$ * Next, use 2nd piece of information: $\frac{\partial F}{\partial y} = \frac{\partial Q}{\partial y} + h'(y) = N(x_{i}y)$ Lo $h'(y) = \left[2y \ln(x) + \cos(y) \right] - 2y \ln(x)$ so we can take h(y) = sin(y) * Combine Q and h: $F(x,y) = y^2 \ln x + \sin(y)$ * Now we can rewrite the exact D.E. in the form $\frac{a}{dx} F(x, y(x)) = 0$ and the implicit substions: $y^{2} \ln(x) + \sin(y) = C$ (4)

(Find constants, domain of realidity (5) y = 1 for x = 1: $C = sin(1) \approx 0.84$ => Ceneral recipe for finding F(x,y) (Textbooh, p72). * Choose to integrate first in 2 or y $\frac{\partial F}{\partial x} = \Pi(x,y) \implies F(x,y) = \int \Pi dx + h(y) \\ OR \qquad Q(x,y) \quad unhuans! \\ \frac{\partial F}{\partial y} = N(x,y) \implies F(x,y) = \int N dy + g(x) \\ P(x,y)$ L's Compute Q = Mdx OR P = JNdy * Next, do the other one $h'(y) = N(x,y) - \frac{\partial Q}{\partial y}(x,y)$ $DR \qquad IF EXACT EQN, THIS EXPRESSION$ WILL NOT DEPEND ON x/y. $g'(x) = M(x,y) - \frac{\partial P}{\partial y}(x,y)$ * Finally combine: F(x,y) = Q(x,y) + h(y)= P(x,y) + g(x)(5)

6 Wed 19, September 1st order ODEs. Summary ; (1) Linear equations: y'+p(t)y = g(t) SOLUTION DETHOD: INTEGRATING FACTORS. $y(t) = \frac{1}{m(t)} \left(\int m(t)g(t) dt + C \right)$ $m(t) = e \times p\left(\int p(t) dt\right)$ (2) Separable equations: $\frac{dy}{dx} = g(x)f(y)$ solution: separate variables, INTEGRATE $\int \frac{dy}{f(y)} = \int g(x) dx$ (3) Exact equations: M(x,y) + N(x,y) y' = 0 $\frac{-\mathbf{D} \ C \ hech:}{Solution: \ compute} \frac{\partial \Pi}{\partial \gamma} = \frac{\partial N}{\partial x}$ $g(x,y) = \int M(x,y) dx$ and h(y) such the $h'(y) = N(x,y) - \frac{\partial y}{\partial y}$ G Solutions have the form $F(x, y) = g(x, y) + h(y) = C \quad (constraint)$ 6)

Models of interest: (1) Nixing problems: $\frac{dQ}{dt} = \frac{\Gamma_{in} \cdot C_{in}}{r_{ote}} - \frac{\Gamma_{out}}{V(t)} \cdot \frac{Q(t)}{V(t)}$ $r_{ote} = IN \qquad rate out$ $G \ linean: in regrating factors.$ (2) Population models, autonomous equations $\frac{dy}{dt} = f(y) \qquad \left(= r \left(1 - \frac{y}{k}\right)y \right)$ Phase line analysis; equilibria, stability. Separation of remiables. (3) Heating / Cooling problems. $\frac{dT}{dt} = k \left(\underbrace{M(t)}_{l} - T(t) \right)$ external temp. Object temp.

SECOND ORDER Diff Eq CHAPTER 3 Homogeneous Differential Equations Constant coefficients <mark>ره کارا</mark> In general, a 2nd order D.E. has the form y'' = f(t, y, y') (1) where f is a given function. We will focus on cases where f takes the specific shape: f(t, y, y') = g(t) - p(t)y' - q(t)yi.e. f is a linear function of y and y'. Then we can rewrite the linear 2nd order ODE: y'' + p(t)y' + q(t)y = g(t). (2) or equivalently, Y(t)y'' + Q(t)y' + R(t)y = G(t) for $P(t) \neq 0$. Any egn (1) which cannot be transformed as (2) is called non-linear. Not much to say as they are hard to statue analytically.

An initial value problem is here a D.E. of the form (1) or (2) with Two initial conclitions, $y(0) = y_0, \quad y'(0) = y'_0.$ tue given numbers. Why I conditions? Think most simple case, $y'' = 0 \implies y'(t) = A \implies y(t) = At + B$ To fix each of the 2 continues introduced by integrating twice, need 2 conditions. A linear 2nd order ODE is homogeneous if The right - hand side, g(t) or 6(t) is zero: P(t) y" + Q(t) y' + R(t)y = 0. In the simplest case, the coefficients P, Q, R(E) are simply constants: $ay'' + by' + cy = 0, \quad a \neq 0.$ This is a specific but important example which governs many pleyical lengineering situations dose to equilibrium.

(9)

(10) A first example 5 y"-y=0 y(0) = 2, y'(0) = -1"Intuition" of solutions: et, et and multiples Observation: sums of solutions are solutions! Form linear combinations of These elementary scelutions: $y(t) = C_1 e^{t} + C_2 e^{-t}$ Two arbitrony constants! Initial conditions: $y(0) = C_1 e^{-t} + C_2 e^{-t} = C_1 + C_2 = 2$ $y'(0) = C_1 e^{-c_2} e^{-c_2} = C_1 - C_2 = -1$ Solve system of 2 equations for Cy, Ce: $C_1 = \frac{1}{2}, \quad C_2 = \frac{3}{2} \longrightarrow \frac{y(t)}{2} = \frac{1}{2}e^t + \frac{3}{2}e^{-t}$ General technique ay"+by+cy=0 Find two solutions y₁(t), y₂(t) which we different (not multiple of each other)
 Write general solution as a linear combination: y(t) = C₁y₁(t) + C₂y₂(t) . Use the L constants to git the 2 initial conditions. Ø

are two sidutions then Check if y 1, y2 $\alpha \left(C_{1}y_{1} + C_{2}y_{2} \right)'' + b \left(C_{1}y_{1} + C_{2}y_{2} \right)' + c \left(C_{1}y_{1} + C_{2}y_{2} \right)$ $= C_{1} \left(\frac{a y_{1}'' + b y_{1}' + c y_{1}}{= 0} \right) + C_{2} \left(\frac{a y_{2}'' + b y_{2}' + c y_{2}}{= 0} \right)$ = 0 = 0 = 0 = 0 How do we find the base solutions? I dea: seek exponential colutions of the form: y(t) = est runtenour yet. Since $y'(t) = re^{rt}$, $y''(t) = r^2 e^{rt}$, $ay''+by'+cy=0 \iff (ar'+br+c)e^{rt}=0$ Now et = 0 satisfied if reduction of the CHARACTERISTIC EQUATION $ar^{2} + br + c = 0$ Characteristic polynomial (order 2) Possible cases: Discriminant, 1 = b² - 4ac · D>0: Two real roots D=0: One real, repeated root
D<0: Two complex conjugate roots. (U)

(12) Hirst, consider the can where \$ >0. Other cases: § 3.6 and § 3.3. Then we have two rates of the characteristic polynomial: $r_1 = \frac{-b + J\Delta}{2a}$ $r_2 = \frac{-b + J\Delta}{2a}$ Then, $y_1(t) = e^{r_1 t}$ and $y_2(t) = e^{r_2 t}$ are two different solutions of the equation and The general subution has the form $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$ with C_1, C_2 arbitrary constants. Next, fit the initial conditions: Sylto) = yo) y'(to) = y'o This leads to iso equations: $\begin{cases} c_1 e^{r_1 t_0} + c_2 e^{r_2 t_0} = y_0 \\ c_1 r_1 e^{r_1 t_0} + c_2 e^{r_2 t_1} = y_0' \end{cases}$ Co system of linear equations: 2 unhuowns, 2 equations.

(12)

(٤١) Example 1 $\begin{cases} y'' + y' - 2y = 0 \\ y(0) = 1, \quad y'(0) = 0 \end{cases}$ Step 1 Solve the characteristic equation is solutions under the form y(t) = et $r^{2} + r - 2 = 0$ D_{is} uniminant: $\Delta = 1^{2} - 4 \cdot (-2) = 9$ The roots of the characteristic equation are $r_1 = \frac{-1 - \sqrt{9}}{2} = -2$ and $r_2 = \frac{-1 + \sqrt{9}}{2} = +1$ Step 2 General subution: $y(t) = C_1 e^{-2t} + C_2 e^t$, C_1 and C_2 and trangStep 3 Initial conditions, particular scelection: $SO \begin{cases} C_{1} + 2C_{1} = 1 \\ C_{2} = 2C_{1} \end{cases}$ $\begin{cases} C_1 + C_2 = 1 \\ -2C_1 + C_2 = 0 \end{cases}$ $und c_{1} = \frac{1}{3}$ $C_2 = 2/3$ $y(t) = \frac{1}{3}e^{-2t} + \frac{2}{3}e^{t}$

(3)

14 $\int y'' + 12y' + 35y = 0$ Example 2 $\int y(0) = 3, y'(0) = -17$ Step 1 $r^2 + 12r + 35 = 0$ $D_{iscriminant} = 0 = 12^2 - 4 \cdot 1.35 = 4$ The roots of the characteristic goly romial are $r_{1} = \frac{-12 - \sqrt{4}}{2} = -7$ $r_{2} = \frac{-12 + \sqrt{4}}{2} = 5$ Step 2 The general colution of the D.E. is $y(t) = C_1 e^{-7t} + C_2 e^{-5t}$ Step 3 Particular scelution: $\int y(0) = C_1 + C_2 = 3$ so $\int C_2 = 3 - C_1$ $\int -7C_{1} - 5(3 - C_{1}) = -17$ $y'(0) = -7C_1 - 5C_2 = -17$ Then, $-2C_1 = -17 + 15 = -2$ $SD = C_1 = 1$ and $c_2 = 2$ The solution to this IVP is $y(t) = e^{-7t} + 2e^{-5t}$.

General behavior at infinity: depends on sign of r, and v, $y(t) = C_1 e^{c_1 t} + C_2 e^{c_2 t}$ $r_1 < r_2$ (= 0 5 r,20 r, > 0 r2<0 y->0 As t→00... $r_2 = 0 \quad y \to C_2$ $r_{2} > 0 \qquad \begin{array}{c} y \rightarrow \pm \alpha \\ depends \ on \ ijsn \ of \ C_{2}; \\ ij \ C_{2} = 0, \ y \rightarrow 0 \\ \end{array} \qquad \begin{array}{c} y \rightarrow \pm \alpha \\ depends \ on \ ijsn \ of \ C_{2}; \\ ij \ C_{2} = 0, \ y \rightarrow 0 \\ \end{array}$ y → ±a depends on tigh of C_2 ; if $C_2 = 0$, on sign of C_1 ; if $C_1 = 0$, y = 0!

Note: as long as rifriz, system for Cire can alwegs be solved! $\begin{cases} C_{1} e^{r_{1}t_{0}} + C_{2} e^{r_{2}t_{0}} = y_{0} \\ C_{1}r_{1} e^{r_{1}t_{0}} + C_{2}r_{2} e^{r_{2}t_{0}} = y_{0} \\ C_{1}r_{1} e^{r_{1}t_{0}} + C_{2}r_{2} e^{r_{2}t_{0}} = y_{0} \\ C_{2} = \frac{y_{0}r_{1} - y_{0}}{r_{1} - r_{2}} e^{-r_{2}t_{0}} \end{cases}$ by substitution!

There is always a solution in this form! But, is it the only possibility? Answer in the next section!

