Monday
Sept 10
$S 2.5$ Autonomous equations. Population dy namics.
Definition: a $1^{\text {st }}$ order ODE of the form

$$
\frac{d y}{d t}=f(y)
$$

is AUTONOMOUS.
\rightarrow The independent variable does not appear explicirely.
A good example is population dynamics $\left\{\begin{array}{l}\text { medicine } \\ \text { ecology } \\ \text { economics }\end{array}\right.$
In general, solution by sepmation of variables:

$$
\int \frac{d y}{f(y)}=\int d t
$$

It is not the subject here (simple integration $p b$).
Idea: Use geometric intuition to find quickly properties of solutions qualitatively.
L_{0} Typically, stability, basin(s) of
Example 1: Malthus model. 1798 equilibria. (economist)
(1)

$$
\frac{d y}{d r}=r y \quad \text { (proportional to population) }
$$

$\rightarrow \quad y(t)=y_{0} e^{r t} \quad$ where $y(0)=y_{0}$.
If $r>0$, this model predicts exponential growth.
In practice, limits (lack of resouras/space) ultimately reduce the growth sale - think peri dish.
Then exponential growth ends.
Example 2. Logistic growth
Idea: growth rate actually depends on population

$$
\frac{d y}{d t}=h(y) y_{1}
$$

where $h(y) \approx r \quad$ for small $y_{\text {decreasing with }}^{\text {de }}$ decreasing with y^{7}, ectrimetrely $h<0$ for 'y loge.
Simplest replacement: affine function,

$$
h(y)=r(1-y / k)
$$

Then $\quad \frac{d y}{d t}=r(1-y / k) y$
Logistic equation

* r : intrinsic growth rate,
* K: equilibrium population (see laker).

Analysis: Equilibrium solutions, $f(y)=0$

$$
\begin{gathered}
r\left(1-\frac{y}{k}\right) y=0 \\
* y(t) \equiv 0 \quad * y(t)=k
\end{gathered}
$$

Zeros of $f(y)$ are also called critical paint.

Behavior of $y(t)$ (increasing $/$ / de ceasing) depends on the sign of $f(y)$.
\rightarrow The phon line:

as $y \equiv K$: stable equilibrium
$\leadsto y \equiv 0$: unstable equilibrium

Note: * solutions do nor intersect
\leadsto If a solution start, $0<y<r$, it slays in that interval (and $y^{\prime} \rightarrow$ te
\leadsto If $y>H$ at any time, it also shays in that internal and $y \rightarrow x$ es $r \rightarrow \infty$.

* K is called the sate ration level or enuronmental carrying capacity.
* Concavity: (curves up / down)

This depends on $\frac{d^{2} y}{d t^{2}}=\frac{d}{d t} f(y)=y^{\prime} f^{\prime}(y)=f(y) f^{\prime}(y)$
Rememau: $\begin{gathered}\text { concave up } \\ \text { concave down } \\ \sim\end{gathered} y^{\prime \prime}>0$
Inflection points when $y^{\prime \prime}$ changes sign: $f^{\prime}(y)=0$.
Here (graph of f): $\begin{cases}y^{\prime \prime}>0 & \text { for } 0<y<k / 2 \\ y^{\prime \prime}<0 & \text { for } k / 2<y<k \\ y^{\prime \prime}>0 & \text { for } y>k\end{cases}$
Note the inflection point at $y=k / 2$.

Finally, solution! Sepuation of variabs

$$
\int \frac{d y}{y(1-y / k)}=\int r d t
$$

\downarrow pertial fraction expausion

$$
\begin{aligned}
\frac{1}{y(1-y / k)} & =\frac{1-y / n+y / n}{y(1-y / k)} \\
& =\frac{1}{y}+\frac{1}{x-y}
\end{aligned}
$$

Suppose $0<y<k$ then

$$
\begin{aligned}
& \ln (y)-\ln (k-y)=r t+C \\
& \frac{y}{k-y}=e^{c} e^{r t} \quad \text { Impliat } \\
& \text { selution }
\end{aligned}
$$

Initial condition: $\quad e^{c}=\frac{y_{0}}{k-y_{0}}$
Solving for $y(t)$:

$$
\begin{aligned}
& y=\frac{y_{0}}{k-y_{0}} e^{r t}(k-y) \\
& \left(1+\frac{y_{0}}{k-y_{0}} e^{r t}\right) y(t)=\frac{k y_{0}}{k-y_{0}} e^{r t}
\end{aligned}
$$

Thus:

$$
y(t)=\frac{y_{0 k}}{y_{0}+\left(k-y_{0}\right) e^{-r t}}
$$

Example 3: Logistic growth with a threshold

$$
\frac{d y}{d t}=-r\left(1-\frac{y}{T}\right)\left(1-\frac{y}{k}\right) y
$$

where $r>0$ and $0<T<k$

Phase line:

Example: hunted species $\underset{\rightarrow}{\rightarrow}$ extreshold for consavation healthy population

Summary
Phase line: graphical representation helpful to determine equilibsia and stability

$S 2.4$ Differences between linear and non-lineas diff. eq. (1 sores)

Linear	Non-linear
$y^{\prime}+p(t) y=g(t)$	$y^{\prime}=f(t, y)$
$($ Specific form $)$	$\quad($ Everything else)
$E_{x: ~} y^{\prime}+\sin (t) y=\cos (t)$	$E_{x:} \quad y^{\prime}=t^{2}+y^{2}$

TL:DR Linear rascally much easier.
glove results and methods.
Linear case: General solution formula

$$
\left\{\begin{array}{c}
y(t)=\frac{1}{m(t)}\left(\int m(t) g(t) d t+C\right) \\
\text { where } m(t)=\exp \left(\int p(t)\right)
\end{array}\right.
$$

[integrating factors!]
Ls All possible solutions ane explicit as long us $p(t)$ and $g(t)$ is continuous in some interval.
Non linear case: At lest, implicitsselution of the form

$$
F(t, y)=C
$$

"First integral" of the differential equation.
(Separable equations; Exact equations)
But, no general method, no explicit solution.
Only reassurance:
Picand-Lindelöf existence and uniqueness theorem.
\rightarrow "There exists a solution".
(friday)

Main difficulty: Intend of definition

* Linen eq: Or, as lory as $p(t)$ and $g(t)$
* Nonlinear cars: only gumankeed "some" intraved.

Example: $\quad y^{\prime}=y^{2} ; \quad y(0)=y_{0}$
Solution: $\frac{y^{\prime}}{y^{2}}=1$ or $\frac{d}{d r}\left(\frac{-1}{y}-t\right)=0$
so $\quad \frac{-1}{y(t)}=t+C$ and $y(t)=\frac{-1}{t+c}$
Then $C=-\frac{1}{y_{0}}$ and $y(t)=\frac{y_{0}}{1-y_{0} t}$
The solution blows up at $t=1 / y_{0}$
4 Interval of existence:
If $y_{0}>0$: $-\infty<t<1 / y_{0}$
If $y_{0}<0: \quad 1 / y_{0}<t<+\infty$
Note: If $y_{0}=0$: then $-\infty<t<\infty$ $y(t)=0$!

Example 2: $\quad y^{\prime}=\sqrt{y}$
Solution: separation of variables.

$$
\begin{aligned}
\int \frac{d y}{\sqrt{y}}=\int d t & \text { OR } y=0 \\
2 \sqrt{y}=t+C & \text { OR } y=0
\end{aligned}
$$

for $t+c \geqslant 0$

$$
y(t)=\overline{\left(\frac{t+c}{2}\right)^{2}} \quad \text { OR } \quad y(t)=0
$$ for $t \geqslant-c$ for all t

In fact, we can build new solutions by parting two pieces rogettar:

$$
y(t)=\left\{\begin{array}{cll}
0 & \text { for } & t \leq-c \\
\left(\frac{t+c}{2}\right)^{2} & \text { for } & t>-c
\end{array}\right.
$$

Indeed, y^{\prime} is continuous: $\quad y^{\prime}(-c)= \begin{cases}0 & \text { (legit }(0) \\ 0 & \text { (right) }\end{cases}$ so such $y(t)$ satisfies the definition of a solution.
In particular, this means that the IUP

$$
\left\{\begin{array}{l}
y^{\prime}=\sqrt{y} \\
y(0)=0
\end{array}\right.
$$

has many solutions:

Non-linear SUPs to not necessarily have unique solution!
\rightarrow This is annoying. Can we identify cases where it doss not happen?

What is special about o here? Note $f(t, y)=\sqrt{y}$ continuous for $y \geqslant 0$ but $\frac{\partial y}{\partial y}$ is not continuous for $y=0$.

S2.8 Existence and Uniqueness Theorem
This is a fundamental result for $1^{1 t}$ order IVEs.
Picaud-Linleligf Theorem
(or Cauchy - dipichila)
Consider of a function $f(t, y)$ such that f and $\frac{\partial f}{\partial y}$ are both continuow in a rectugle: $D_{y} \quad|t|<\bar{a}, \quad|y|<b$,
then there exists a time interval $|t| \leqslant h \leqslant a$ in which there exists " unique solution to the IUP $y^{\prime}=f(t, y)$ and $y(0)=0$.

An idea about the proof.
Or, How do we show that a solution exists wither keno sing anything about ir?

Main ilea: look at the eq in a \neq way:

$$
\left\{\begin{array}{l}
y^{\prime}=f(t, y) \\
y(0)=0
\end{array} \rightarrow y(t)=\int_{0}^{t} f(t, y(t))\right.
$$

unknown!
Instead of a D.E we have now an integrate eq!
The function $y(t)$ is then identified as a fixed point of the integral opuation.
Picard Irenation Method
Start from $\varphi_{0}(t)=0$
Then $\varphi_{1}(t)=\int_{0}^{t} f\left(s, \varphi_{0}(s)\right) d s$
Then $\varphi_{2}(t)=\int_{0}^{0} f\left(s, \varphi_{1}(s)\right) d s$

$$
\varphi_{n+1}(t)=\int_{0}^{t} f\left(s, \varphi_{n}(s)\right) d s
$$

This generates a sequence of function. Taking the limit we hope to write

$$
\varphi_{\infty}(t)=\lim _{n \rightarrow \infty} \varphi_{n}(t) \rightarrow \varphi_{\infty}(t)=\int_{0}^{t} f(s, \varphi(1) d s
$$

For this to work, we nad to make sun that things do not break down along the way:

* Do the values of φ_{n} get out of the rectangle
at some peint? at some paint? Ponvery fence? Properties of the limit
Con
* Convergence? Properties of the limit
y con tinnily, derinties..
* Uniqueness?

Example in action: $y^{\prime}=y+1$

$$
G y(t)=\int_{0}^{t} y(s) d s+t
$$

Picul iteration :

$$
\begin{aligned}
& \varphi_{0}(t)=0 \int_{0}^{t} 0 d s+t=t \\
& \varphi_{1}(t)=\int_{0}^{t} s l_{s}+t=t+\frac{t^{2}}{2} \\
& \varphi_{2}(t)=\int_{0}^{t} s+\frac{s^{2}}{2} d s+t=t+\frac{t^{2}}{2}+\frac{t^{3}}{6} \\
& \varphi_{3}(t)={ }^{3}
\end{aligned}
$$

Extapdating, we recognize the Taylor expansion of

$$
\varphi_{\infty}(t)=e^{t}-1=t+\frac{t^{2}}{2}+\frac{t^{3}}{6}+\frac{t^{4}}{26}+\cdots
$$

\leadsto at such shop, add var small correction.

Main ilea: fixed point iterations

Idea: if F is a contraction:

$$
\operatorname{dist}(F(x), F(y)) \leq k \operatorname{dist}(x, y)
$$

then $\operatorname{dist}\left(\varphi_{n+2}, \varphi_{n+1}\right) \leqslant \operatorname{te} \operatorname{dist}\left(\varphi_{n+1}, \varphi_{n}\right)$

$$
\begin{aligned}
& \leq k^{2} \operatorname{dist}\left(\varphi_{n}, \varphi_{n-1}\right) \\
\leq & k^{n+1} \operatorname{dist}\left(\varphi_{1}, \varphi_{0}\right)
\end{aligned}
$$

If $k<1 \rightarrow$ convergence!

