Week 2: August 27-31
(cont. study of $1^{\text {st }}$ order ODE $y^{\prime}=f(t, y)$)
Case 2 General function $y^{\prime}=f(t, y)$
Example:

Condusion: Direction fields we a visual ail to grin intuition about pr orca oboists.
III Solutions of " differentia equation.
Definition: A solution of the n-th order
$D E:$
$d y$

$$
D E: \quad \frac{d y}{d r^{n}}=f\left(t, y, y^{\prime}, \cdots, y^{(n-1)}\right)
$$

is " function φ such that $\varphi^{\prime}, \ldots, \varphi^{(n)}$ exist and $\frac{d \hat{\varphi}}{d t^{n}}=\varphi^{(n)}(t)=f\left(t, y, \cdots, y^{(n-1)}\right)$ at all times.

GENERAL SOLUTion: An expression that contains ALL possible solutions of a $b . E$.
INTEGRAL CURVES: the geometrical representation of the general scelution is (typically) an infinite f family of curves called in legree curves.
PARTICULAR COLUTION: a single solution of a D,E Typically charactevizedt on y an additional condition sully as an initial condition (IVD).

Examples: see next chapter (now)!

Chapter 2 First Order Dobs
S2.1 Integrating factors.

* In the general IVP case: $\left\{\begin{array}{l}y^{\prime}=f(t, y) \\ y\left(t_{0}\right)=y_{0}\end{array}\right.$
there is no generic way of arriving at an explicit expression for the solution.
(Although one should know that a solution always exists under very relaxed conditions:

We save last week that equations of the form $y^{\prime}=a y+b$ for a, b constant have explicit solutions.

Tricks: we know how to solve equations of type

$$
\frac{d y}{d t}=g(t) \longrightarrow \text { direct integration! }
$$

This turns out to work in general for any ODE of 'pe

$$
y^{\prime}+p(t) y=g(t)
$$

where coefficients we not constants.
\rightarrow Method of integrating factors.
Example $1 \quad y^{\prime}+y=2 e^{-3 t}$.
Step 1: find an appropriate function $m(t)$ such that by multiplying the whee equation by $m(t)$:

$$
m(t) \frac{d y}{d t}+m(t) y(t)=2 m(t) e^{-3 t}
$$

we may rewrite the equation as

$$
\frac{d}{d t}(m(t) y(t))=2 m(t) e^{-3 t}
$$

G this can be solved directly by integrating

By the product rule, this will happen if

$$
m \cdot \frac{d y^{7}}{d t}+\frac{d m}{d t} \cdot y=m / \frac{d y^{T}}{d t}+m \cdot y
$$

or $\quad \frac{d m}{d t}=m$
For example, choose $m(t)=e^{t}$
(Rule: $m(t)>0$)
Now we rewrite the initial problem as

$$
\frac{d}{d t}\left(e^{t} y(t)\right)=e^{t}\left(y^{\prime}+y\right)=e^{t}\left(2 e^{-3 t}\right)
$$

or $\frac{d}{d t}\left(e^{t} y(t)\right)=2 e^{-2 t}$.
Stop 2
Integrate both sides: Constant of integration.

$$
e^{t} y(t)=\int 2 e^{-2 t}=-e^{-2 t}+C
$$

Divide by $m(t)=e^{t}$:

$$
y(t)=C e^{-t}-e^{-3 t} .
$$

This is the general solution!

Now: general case, $y^{\prime}+p(t) y=g(t)$.
Let es find the right integrating fatter $m(t)$:

$$
W_{a n t} \underbrace{m(t) \frac{d y}{d t}+m(t) p(t) y}_{\frac{d}{d t}(m(t) y)=m(t) \frac{d y}{d t}+m^{\prime}(t) y(t)}=m(t) g(t)
$$

L_{Δ} need to adjust $m(t)$ such that

$$
m^{\prime}(t)=p(t) m(t)
$$

Assuming $m>0$, rewrite as $\frac{m^{\prime}(t)}{m(t)}=p(t)$.
Chain rule: $\quad \frac{m^{\prime}(t)}{m(t)}=\frac{d}{d t} \ln m(t)=p(t) 10$ integrating both sides,

$$
m(t)=\exp \binom{m p t)=}{\int p(t)} \int p(t)
$$

METHOD OF INTEGRATING FACTORS
(1) Write the $O D E$ in standard form,

$$
y^{\prime}+p(l) y=g(t)
$$

(2) Compute the integrating factor,

$$
m(t)=\exp \left(\int_{p}(t)\right)
$$

(3) Compute general solution:

$$
y(t)=\frac{1}{m(t)}\left(\int m(t) g(t)+C\right)
$$

Note: any primitive of $p(t)$ works for $m(t)$; Do not worry about constants of integration!

Example. Solve the IUP

$$
\left\{\begin{array}{c}
\left(t^{2}+1\right) \frac{d y}{d t}+2 t y=1 \\
y(0)=0
\end{array}\right.
$$

(1) Standard form: divide by $\left(t^{2}+1\right)$

$$
y^{\prime}+\frac{2 t}{\frac{t^{2}+1}{p(t)}} y=\frac{1}{\frac{t^{2}+1}{g(t)}}
$$

(2) Integrating factor:

$$
m(t)=\exp \left(\int p(t)\right)
$$

Here, $p(t)=\frac{2 t}{t^{2}+1} \frac{u^{1}}{u}$ so $\int p(t)=\ln \left(t^{2}+1\right)$

$$
m(t)=\exp \left(\ln \left(t^{2}+1\right)\right)=t^{2}+1
$$

(3) General solution: two ways.

- Direct use of formula:

$$
y(t)=\frac{1}{m(t)}\left(\int m(t) g(t)+c\right)
$$

Here, $\quad m(t) g(t)=1 \rightarrow \int m(t) g(t)=t$
General selution: $y(t)=\frac{t+c}{t^{2}+1} C$ arbitrary.

- If you do nor remember this formula: remember to multiply the ODE by $m(t)$ and Transform the LHS in to $d / d r[m(t) y(t)]$.

$$
\underbrace{\left(t^{2}+1\right) \frac{d y}{d t}+2 t y}_{\frac{d}{d t}\left(\left(t^{2}+1\right) y(t)\right)}=1
$$

so $\left(t^{2}+1\right) y(t)=t+C$
$y(t)=\frac{t+C}{t^{2}+1} \quad$ General scelution of the
(4) Particular solution from initial condition.

We want $y(0)=\frac{C+0}{1+0}=C=0$
so $\quad y(t)=\frac{t}{t^{2}+1}$ is the particular sielution of the IUP.
Note: we could have seen immediately that the LHS is a derivative of $d / d t((t-1) y)$. But the method guider us.

Example 2 Solve the IUP

$$
\left\{\begin{array}{c}
y^{\prime}+\frac{t}{3} y=e^{-t^{2} / 6} \cos (t) \\
y(0)=1
\end{array}\right.
$$

(1) standard form:

$$
\begin{aligned}
& \text { standard form: Ok. } \\
& p(t)=t / 3, \quad g(t)=e^{-t^{2} / 6} \cos (t)
\end{aligned}
$$

(2) integrating factor: $m(t)=\exp \left(\int_{p}(t)\right)$

Here, $p(t)=t / 3 \Rightarrow m(t)=\exp \left(t^{2} / 6\right)$
(3) general solution:

$$
\frac{d}{d t}\left(e^{t^{2} / 6} y(t)\right)=e^{t^{2} / 6} \cdot e^{-t^{2} / 6} \cos (t)
$$

integrating: $e^{t^{2} / 6} y(t)=\sin (t)+C$
finally: $\quad y(t)=e^{-t^{2} / 6} \sin (t)+C e^{-t^{2} / 6}$
(4) particular solution:

$$
\begin{gathered}
y(0)=e^{-0} \operatorname{sig}(0)+C e^{-0}=C=1 \\
\text { so } y(t)=e^{-t^{2} / 6}(1+\sin (t))
\end{gathered}
$$

solution of the IUP.

Conclusion

* General-purpose method for linear, $1^{\text {st}}$ order ODE of rope

$$
y^{\prime}+p(t) y=g(t)
$$

* Nor always possible to write the solution! We may not be able to compute the integrals.
* Solution always write us

$$
y(t)=y_{p}(t)+y_{h}(t)
$$

1 particular solution "C/m(t)
"hon O aeneous solution"
Let $h(t)=1 / m(t)=\exp \left(-\int p(t)\right)$

$$
\frac{d h}{d t}=-p(t) \exp \left(-\int p(t)\right)=-p(t) h(t)
$$

(chain rule)
OR, $\quad \frac{d h}{d t}+p(t) h=0$
homogeneous equation ($g \equiv 0$)
$S_{2.2}$ Separable equations
What can we do when the previous method does not apply?
Observation: we were able to solve directly for the integrating factor,

$$
\frac{d m}{d t}=p(t) m,
$$

because we "separated variables" he tween leyt/right:
$\begin{aligned} & \text { inverts } \\ & \text { Chain vale }\end{aligned} \int \frac{1}{m} \frac{d m}{d t}=p(t)$
$\begin{aligned} & \text { integrate } \\ & \text { both sites }\end{aligned} \quad \ln (h)=\int p(t)$
This idea can be useful in other cases, when sone other function of m than $1 / m$ appears on the cyl !
\Rightarrow We identify particular cases of $1^{\text {st }}$ order ODES which han be tivensformean to be of the form

$$
M(t)+N(y) \frac{d y}{d t}=0
$$

That is if $\quad f(t, y)=-\frac{M(t)}{N(y)}$.

In this case, the equation can be solved directly by integration.
Note: switch to variable x instead of t.
Example 1: $\quad \frac{d y}{d x}=\frac{x}{1+y^{2}}$
(1) Rewrite by sepmating variables:

Integrate: $\frac{d}{d x}\left[\frac{x^{2}}{2}+\left(y(x)+\frac{y^{3}(x)}{3}\right)\right]=0$ or $\quad y+\frac{1}{3} y^{3}=C-\frac{x^{2}}{2}$
\triangle IMPlicit FOR of the solutions.
NOT $y(x)$?
NOT $y(x)=$?
\rightarrow Also called an equation for the integral curves of the equation.
Note: usually impossible to solve for y !
But if it is do it! But if it is - do ir!

Examples of equation: which are sepaciles?
(a) $y^{\prime}=\frac{\sin (y)}{\sin (t)}$
(b) $y^{2} y^{\prime}=\frac{2}{t}$
(C) $\frac{d y}{d t}=e^{y-t}$
(d) $\frac{d y}{d t}=\sin (t y)$

Domain of validity
Example (rextbook): $\quad \frac{d y}{d x}=\frac{x^{2}}{1-y^{2}}$

- It is sepouable:

$$
x^{2}-\left(1-y^{2}\right) \frac{d y}{d x}=0
$$

- Integral curves:

$$
\frac{d}{d x}\left[\frac{x^{3}}{3}-\left(y(x)-\frac{1}{3} y^{3}(x)\right)\right]=0
$$

\rightarrow Such a curve is not the graphical representation of a solution (multiple values around zero!)
In fat the curve corresponds to 3 distinct selftiens for each value of C :

* one for $y \geqslant 1$, (1) valid for $t \leqslant t_{1}$
* one for $-1 \leq y \leq 1$, (2) valid for $t_{2} \leq t \leq t_{1}$
* one for $y \leqslant-1$, (3) valid for $t \geqslant t_{2}$

Note how each solution is only valid on a certain interval of time,
beyond which it cannot be extended.
This is the domain of validity of the solution.

Friday August 31
S 2.2 (cont.) Separable Equations
Consider the equation $\frac{d y}{d x}=-\frac{x}{y+1}$.
We can solve it by separation of variables:

$$
\int y+1 d y=\int-x d x
$$

integrate

$$
\times 2
$$

$$
\int \frac{1}{2} y^{2}+y=-\frac{1}{2} x^{2}+C
$$

C an anditacy confront.
The "integral curves," or graphical representation of solution we 'levee's sets of the vexuling expression,

$$
F(x, y)=\frac{1}{2}\left(x^{2}+y^{2}\right)+y=C
$$

Here, level sets are circles!

$$
x^{2}+(y+1)^{2}=2 c+1
$$

Particular solution: when given un initial condition, $y(0)=1$ i.e. $y=1$ for $x=0$ we can find the rathe of C :

Looting at the equation we oherve that $\left|\frac{d y}{d_{0}}\right| \rightarrow \infty$
when $y+1 \rightarrow 0$ i.e. $y=-1$ when $y+1 \rightarrow 0$ i.e. $y=-1$
This corresponds to $1 / 2 x^{2}+1 / 2(-1)^{2}-1=3 / 2$ Solve for x :

$$
x= \pm 2
$$

Thus selutier exist) for

$$
-2 \leq x \leq 2
$$ domain of validity

Condusion: even if we only have the inplicitform of the solution (no $y(x)=\cdots)$, lots to say . (1) Separate sanialles
(2) Integrate both sides. Write implicirform.
(3) If possible, find explicit solution.

Use graphical Tools; determine interval of sadiaity.

Recipe: look for seculues their
$* y(x) \rightarrow \infty$: Example, $y^{\prime}(x)=y^{2}$

$$
\frac{y^{\prime}(x)}{y^{2}(x)}=1 \Rightarrow \frac{-1}{y(x)}=x+c \Rightarrow y(x)=\frac{-1}{x+c}
$$

Solution exists for $x<-C$ or $x\rangle+C$

$$
\begin{aligned}
* y^{\prime}(x) \rightarrow \infty: \quad \text { Example, } y^{\prime}(x)=k / y \\
y y^{\prime}(x)=k \Rightarrow \frac{1}{2} y^{2}(x)=k x+c \Rightarrow y(x)=\sqrt{2(k x+c)}
\end{aligned}
$$

Solution exists for $x>-C / h$
Last example: consider IUP $\left\{\begin{array}{l}d y / d x=\frac{x y}{1-y^{2}} \\ y(0)=2\end{array}\right.$
(1) Separation of varubbles:

$$
\left(\frac{1-y^{2}}{y}\right) \frac{d y}{d x}=x \quad \Delta y=0 \text { forbidden. }
$$

(1) Integrate:

$$
\left(\frac{1}{y}-y\right) \frac{d y}{d x}=x \Rightarrow \frac{d}{d x}\left(\ln |y|-\frac{y^{2}}{2}-\frac{x^{2}}{2}\right)=0
$$

$$
\ln |y|-y^{2} / 2-x^{2} / 2=C \text { C arbitrary. }
$$

(3) Particular solution: $y=2$ for $x=0$

$$
\ln 2-2=c \approx-1.3
$$

Interval of definition: vertical tanguls $y^{\prime} \rightarrow \infty$ for $y= \pm 1$, here

$$
\ln |+1|-\frac{(\pm 1)^{2}}{2}-\frac{x^{2}}{2}=\ln 2-2
$$

so $x= \pm \sqrt{3-2 \ln 2} \approx \pm 1.27$
$\begin{aligned} & \\ & \rightarrow \text { Sine }-1.27<0 \\ &-\sqrt{3-2 \ln 2}<x<\sqrt{3-2 \ln 2}\end{aligned}$

Consider Other case: $y(1)=0$
$\leadsto \ln \left\lvert\, O T^{\infty}-\frac{0^{2}}{2}-\frac{1^{2}}{2}=C\right.$
\Rightarrow The expression above does not inclucle all possible coluchars! Forbidden case: $\quad y=0$

Check: $\quad \frac{d y}{d x}=0=\frac{x \cdot 0}{1-0}=0$

