I) Motivation (Ch 1, textbook)

S Why are we here?
Study of objects that evolve with time L_{D} described dy variations of continuous quantities. (ultimately, disunite: atoms!)
Mathematical description: model.
Process of modeling: series of stops
$[\rightarrow$ What me the most important pr ocesoes? de cube the system?
(ex: position, remperative, concentertion)
\rightarrow How do 1 does cube their evolution?
Note: modded un typically, be improved by oheaving, anulyting, correcting errors.
Note? : time nor only pasibility \rightarrow ex: space. but very intuitive \rightarrow mary examples alary
Essential ingredient: differential equations.

Idea: often, known relation between the sate of change of one variable and the viunbles Henuselves. Example:

$$
x(t),
$$

position as $\frac{\text { unknown function }}{\text { of time }}$ of time

$$
\frac{d x}{d t}=x^{2}+t^{2}
$$

some relation between $x(t)$, t and $d x / d t$.
Definition: A differential equation (D.E.)
Is an equation which construing derivatives of ore (or more) dependent' variables
with respect to one (or more) independent variables
\leadsto If only one independent variable:
\Rightarrow one y ovdinay derivatives \Rightarrow Ordinary diff. eq.
unknowns) is a function of 1 variable
$\leadsto \mathrm{Ff}$ mon than one indepeuclent caviathle:
\rightarrow partial derivatives
UnHenown(s) is function t of ley SEVERAL váábiag
\longleftrightarrow $4 A \operatorname{TH}_{H} \quad 647$.

Definition (2)
The ORDER of a diff. en is the highest or den of the derivative (s)
Notations:

$$
\begin{aligned}
y(t) & \rightarrow \frac{d y}{d t}, \frac{d^{2} y}{d t^{2}}, \ldots \\
& \underline{O R} \quad y^{\prime}, y^{\prime \prime}, \ldots
\end{aligned}
$$

Example 1 CREDIT
Modal evdution of a credit card.
Step 1: at hascoven a D.E. modeling the problem at hand.

- $A(t)$ amount of money on the credit card offer t years.
- Evolution of $A(t)$:
* compound interest: 25% APC.
* Minimum payment each month: \$35, or $\$ 420 /$ year.
Together, then give the rude of change:

$$
\frac{d A}{d t}=0.25 A-420
$$

Step 2: solve the model equation. Here, we know the solution:

$$
A(t)=1680+C e^{0.25 t}
$$

Check:

$$
\begin{aligned}
& \frac{d A}{d t}=0.25 c e^{0.25 t} \\
& 0.25 A(t)-420=\frac{0.25 \times 1680-420^{0}}{+0.25 C e^{025 t}} \\
& \therefore
\end{aligned}
$$

Note: we will learn soon how to compute such solutions.
C is an arbitral constant. To determine the solution, need additional information: belane at time 0 .

$$
\begin{aligned}
& A(0)=\$ 2000=1680+C e^{\circ} \\
& \Rightarrow \quad C=2000-1680=320
\end{aligned}
$$

Then $A(t)=1680+320 e^{0.25 t}$
Question: When is the loan pail off $(A(t)=0)$.
Answer: never. $A(t)$ is increaling.
After 10 years, you ouse $\$ 5578$

Wednesday, August 24
II (Direction field: graphical analysis. (Recall) from previous lecture: CC bulame modal

$$
\begin{aligned}
\frac{d A}{d t} & =0.25 A-420 \\
& \Rightarrow A(t)=1680+C e^{0.25 t}
\end{aligned}
$$

Solution curves:

Ls Slope given at any point' by D.E.
Remark: a problem of the form
$\begin{cases}\text { Diff. eq: } & y^{\prime}=f(t, y)\end{cases}$
Initial condition: $y\left(t_{0}\right)=y_{\lambda}$ known quantities is called an initial value problem (IU,O)

Q When is the balance incseasing/stable/decreaing'

$$
\frac{d A}{d t}=0.25 \mathrm{~A}-420
$$

A Depends orly on the sign of $\frac{d A}{d t}$!

- If $A<1680$, it will decare council ir reaches 200 and 1 slop preying)
- If $A>1680$, it will increase towards infinity
- If $A=1680$, it will stay the.

Direction field
Cereal wonupt: $\quad \frac{d y}{d t}=f(t, y)$
We can reisualize the behavior of solutions $y(t)$ by Maxing stor segments with the slope of (t, y) at a grid of points in the (t, y) plane.

Example 2 : Free Fall
Legend: Newton obraws an apple falling from the rue.

Step 1: interesting gumtitios.
$h(b)$: height of the apple.
$v(t)$: velocity of the spile.

Newton's $2^{\text {na }}$ lew:
rate of change of velocity (acceleration) proputioul to the net effort of all fores applied to the object.

$$
m a(t)=m \frac{d v}{d r}=\sum F
$$

The cons tut of proportionality is the mass (m).

What forces ave applied to the object?

* gravity: pusher da tn
* ais resistance: pusher up

$$
\Rightarrow F(t)=m g-\gamma v
$$

* m : mass of object
* g: acceleration due to gravity. I $\pi 9.8 \mathrm{~m} / \mathrm{s}^{2}$ near sea lead
* γ : dray cosficiour (legends on shape)
Together: $\quad m \frac{d v}{d r}=m g-\gamma v$
St rp I.J Can we say smith before subduing?
Example: $m=10 \mathrm{~kg}, \quad \gamma=2 \mathrm{~kg} / \mathrm{s}$.
then $\quad \frac{d v}{d t}=9.8-0.2 v$
$\frac{Q}{A}$ When is the velocity, stable linceasingleneasin?
$\frac{A}{} \quad$ Sign of $d v / d r$!
In puticula, $\frac{d v}{d r}=0$ if $98-02 v=0$ or

$$
v(t)=49 \overline{\mathrm{~m} / \mathrm{s}} .
$$

Note: this is a constant deflation of the O.D.E! called equilibrium solution or, here terminal velocity,
Direction field

- If $v<k s \mathrm{~m} / \mathrm{s}$, it will innease rowans this value.
- If $v>\mathrm{k}^{9} \mathrm{~m} / \mathrm{s}$, it will denocese roucuds this value.
\Rightarrow In both casa, as $r \rightarrow \infty$ the velocity approaches $49 \mathrm{~m} / \mathrm{s}$.
Step II Solution.
write the equation in the form

$$
\frac{d v}{d t}=0.2(49-v)
$$

Then $\quad \frac{d v / d t}{v-l .9}=-0.2$
Recall chain rule:

$$
\begin{aligned}
& \frac{d}{d x} \ln |x|=\frac{1}{x} \\
& \frac{d}{d t} \ln |v(t)-4 y|=v^{\prime}(t) \times \frac{1}{v-4 y}
\end{aligned}
$$

then

$$
\frac{d}{d t}[\ln |v(t)-49|]=-0.2
$$

By integrating both sides, we find

$$
\begin{aligned}
\ln |v(t)-49| & =C-0.2 \times t \\
|v(t)-49| & =\exp (C-0.2 t) \\
v(t)-49 & = \pm e^{c} e^{-0.2 t} \\
v(t) & =49
\end{aligned}
$$

where $c= \pm e^{c}$ is an arbiliary constart.
(Note: method valid for all $1^{\text {st }}$ order D.E. of the form

$$
\begin{aligned}
& y^{\prime}=a y+b \\
\Rightarrow & y(t)=-\frac{b}{a}+c e^{a t} .
\end{aligned}
$$

Friday August 24

Recap: modeling
Examples of (ingredients for) simple $1^{\text {st }}$ ovdes nodels.
Key: proportionalis between vate of change aud some function of the quantity.
(1) $\frac{d y}{d r}$ proportional to y : $\frac{d y}{d r}=k y$
(2) $\frac{d y}{d r}$ " "1/y: $\frac{d y}{d r}=\frac{k}{y}$
(3) Logistic growth: $\frac{d N}{d r}=k N\left(N_{t-r}-N\right)$

Lo usfel for disane nodeling
Rate of incsase of $\#$ of infected people
propentional to pralact of \# infected by \#healty
(4) Nout in's law of coling of heating:

Rate of ihange in an objoct rempeadture proportiend t. difference between its remperature and survounding rempuature:

$$
\frac{d T}{d r}=k\left(T_{f}-T\right)
$$

Graphical analysis: direction field!

L_{D} Solutions all tangent to direction field?
Higher order models
Ex 1: Free fall with variable $h(6)$, height

$$
m \frac{d^{2} h}{d r^{2}}=m g-\gamma \frac{d h}{d r}
$$

Ex: Hooke's law and the harmonic osullahor:

* Restoring force: $\quad F_{\text {spring }}=-k\left(x-x_{0}\right)$ striffnes construct length at vert
* Neuron's $2^{\text {nu }}$ (aw (neglect fiction):

$$
m \frac{d^{2} x}{d t^{2}}=-k\left(x-x_{0}\right)
$$

This is a $i^{\text {nd }}$ ores ODE. Note that it is equivalurt to a 1 st order instem:
let $\quad v=\frac{d x}{d r}$ then $\left\{\begin{array}{l}\frac{d x}{d r}=v \\ m \frac{d v}{d t}=-k\left(x-x_{0}\right)\end{array}\right.$
III Direction fields; graphical solutions
Take a $1^{\text {st }}$ order D.E: $\quad \frac{d y}{d t}=f(t, y)$
A solution is a function $t \mapsto \varphi(t)$ such that $\varphi^{\prime}(t)=f(t, \varphi(t))$ for all t.

The slope or direction field consists of small line segments on a grid, lith slope $m=f(l, y)$

Case:

$$
f(t, y)=2 y
$$

A solution is always tangential to the slope field.
Is Graphical me thad to find or approximate an INTEGRAL CURVE representing a SOLUTIIDN.

Case 1: f docs nor el pond on t :

$$
y^{\prime}=f(y)
$$

Notion of equilibrium: solutions of $f(y)=0$
$\Rightarrow y(t)=$ Cote: equilibrium solution
(Note: solutions reach maximin at equilibrium points)
Notion of stability: An equilibrium solution is stable if solutions "near it" tend rowmas ir.
It is unstable if they tend away from ir.
In the example above: $\left\{\begin{array}{l}+\pi \text { is stable } \\ -\pi \text { is unstable }\end{array}\right.$
Another example: $y^{\prime}=y^{2}$
Ls Use computes. Mat lab suipr.

