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1. The World’s Oldest Algorithm

Arithmetic and numbers have always fascinated me. Even in the first grade, my
friend Coleman and I used to race each other to see who could finish our pages of
addition and subtraction and get the most answers right. (I usually won, but he’s
now president of a very large jewelry store. Oh, well. .. .) In third grade, my friend
Ron and I decided to write down all the Roman numerals up to 1000, just for the fun
of it. And after long division in the fourth grade, I stood atop Arithmetic with no
new worlds to conquer.

Or so I thought.

Right at the end of the fifth grade, we were told to read the Iliad and the Odyssey
over the summer, and that in sixth grade math, Mrs. Garrison was going to teach us
how to take square roots by hand. “Great!” I said. But what was a square root?

I soon found out. We children who grew up in New Orleans and who rode on
truck floats on Mardi Gras Day all knew about perfect squares. A gross was a
square, namely 12 times 12. You bought carnival throws and beads by the gross,
and every kid knew that a gross was a dozen dozen, or 12 times 12, or 144. We
soon learned that a square root was a number, such as 12, that you multiplied by
itself to get the number you started with, such as 144. If you began with, say, 49,
then the square root of 49 is 7, because 7-7 = 49. Likewise, the square root of 1 is 1
and the square root of 4 is 2.

But how could you take the square root of 2? It didn’t seem possible— V2 is not
an integer—but I soon found out how to do it. I also found that Mrs. Garrison’s
method applied to 2 never stopped; it just went on forever:

V2 =1.4142135623730950488016887242096980785696718753769. . . .

(That was my introduction to infinity, by the way.)
Eventually, I learned a number of things about square roots we’ll talk about in this
paper:
e People have been interested in V2, and in square roots in general, for a long
time.

e 1;24,51,10 has something to do with V2 —if you know how to read it.
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e One of the earliest methods of approximating square roots—Heron’s
Method—is also one of the fastest.

e There’s a way of approximating square roots that uses things called continued
fractions and has something to do with solutions of equations of the form

2 2 _

x°—ny =1

e Mrs. Garrison’s method dates back many hundreds of years, it is easy to learn,
and it is easy to show that it does what it claims to do—namely, to find the
closest decimal approximation to Vn toa given number of places.

e Heron’s Method is a special case of a well-known method of approximating
the roots of arbitrary functions, called Newton’s Method.

 If you want to calculate, not the real square root of 2, but the square root of 2
considered as an integer modulo, say,

b = 360027784083079948259017962255826129,

there’s a devilishly clever algorithm due to the late and legendary Dan Shanks
that does the trick quickly. We’ll find out what that square root is later. Oddly
enough, the Shanks—Tonelli Algorithm—to give it its proper name—doesn’t
work mod 360027784083079948259017962255826079. If it did, that would be
truly earthshaking. We'll find out why later.

2. 1;24,51,10 and 322

The Old Babylonian Dynasty (from 1900 to 1600 B.C.) was located in the “Cradle of
Civilization” in ancient Mesopotamia—the Land Between the Rivers. The flourish-
ing trade economy in this part of the world gave impetus to the development of
arithmetic. The ancient Babylonian numbering system was mainly sexagesimal
(base sixty) with an admixture of the decimal system. The ancient Babylonians
wrote numbers using a positional notation with neither a true zero nor a true
“sexagesimal point”—magnitudes were inferred from context [1, p. 10-11]. The
four hundred or so numerical tablets from the time that have been read reveal
considerable computational facility: their arithmetic extended to summing arithmetic
and geometric progressions, calculating squares and cubes—and calculating square
roots.

Tablet No. 7289 from the Yale Collection includes the calculation of V2 to three
sexagesimal places, namely

V2 =1 24,51, 10 1;24,51,10
=1+—=+—=+—-—=1,
60  60% 603 oo

(using a semicolon as the sexagesimal point and commas as separators). This is very
close to V2 : squaring it yields 1; 59, 59, 59, 38, 1, 40, which differs from 2 by less than
.000001696.

How did they find this approximation?

Our best guess is that they used a method of successive approximations based on
two observations; namely, (1) if x < V2, then 2> V2, and (2) the average 2(x+ 2)
is closer to Y2 than either number. Most historians believe that they began the
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approximation scheme with x= @, =3/2; in the following, B8,=2/«,, and «,,

= %( a;+ ﬁi):

! a; B;
3 4
1 f— —
2 3
17 24
2 JR— R
12 17
3 i 1;24,51,10,35
408 -5 ) ) ) g

When they found this approximation, they apparently truncated its sexagesimal
representation to three places—rather like our using 1.414 as a three—decimal place
approximation to V2.

You may be wondering about how much the ancients knew in general about
finding square roots. To see a slightly bigger picture, we have to jump ahead almost
2000 years to the world of Alexandrian mathematics.

3. Heron’s Square Root Algorithm

It was Heron of Alexandria (first century A.D.) who is credited with seeing this
slightly bigger picture. His algorithm combines the a/s and B;s into one step, and it
also works for finding Vn for any positive #:

Theorem H (Heron’s Method). et n and a be positive numbers, let d be a
nonnegative integer and set h(a) = %( a+ g) Then:

@) Vn is between a and n /.
b) If a >0, then h(a)>Vn.

© |h(@) =Vl =l =Vn)2
@ of [l < ik, then | (@) =] < min 7, <57 ).

1OZd ) 2

What (d) means is that if & approximates V7 to d decimal places, then h(a)
approximates V7 to 2d decimals. That is, each time you apply Heron’s Method, you
double the number of digits of accuracy. The fact that the error in approximation is
roughly the square of the error in the preceding step is why the convergence of
Heron’s Method to V7 is said to be quadratic.

Heron’s Method, it turns out, is just a special case of Newton’s Method. If we let
f(x)=x*—n, then f'(x)=2x and

fla) a n 1( n),

N(a)=a—f,(a)—a 2+2a 5

which is just Heron’s approximation.

4. Continued Fractions

A Diophantine equation is an equation whose solutions are integers. Now %% has
an interesting feature—namely,

577% — 2-408% =1.
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It is also true that 172 — 2-12% =1 and that 3% — 2-2% = 1. These observations lead
us to one of the oldest problems in number theory, namely the existence, character-
ization, and construction of nonzero solutions to the Diophantine equation

x?—ny*=1,

where 7 is a positive nonsquare integer. To tackle this problem, we turn to yet
another way of representing numbers, different from decimals and sexagesimals,
called simple continued fractions, or scf’s. Finite scf’s are based on the Euclidean
algorithm for finding the greatest common divisor of two integers, so they go back
over two thousand years. Infinite scf's first turn up in Europe in the sixteenth and
seventeenth centuries in the work of Bombelli (1526-1573) and Huyghens
(1629-1695), and it was Lagrange who used them to prove that if 7 is any positive
nonsquare integer, then the Diophantine equation x? — ny? = 1 always has nonzero
solutions.

All very well and good, you say, but what do they bave to do with V2?7 and what
are they, anyway? Fair questions—Ilet’s answer the second one first. A finite simple
continued fraction is an expression of the form

x=a,+

a, ; +—
k

where the a,’s are integers and @, > 1 for i > 1. This notation is not easy to use, so
we customarily write x = {da,, d,, 4,, ..., d,) to represent the above finite scf. We’ll
call the a,’s partial quotients of x.

Since a, is a positive integer for i>1, it follows that 0 <x—a, <1, and

a,=[x], the greatest integer <ux; if we put x,=x, x, =

, and in general
X0~ Ao

Xpin , it turns out that a, =[x,;], @, =[x,], and in general, a,=[x,]. It's

—a,
not too hard to prove the following:

Theorem CF1. (a) Fvery positive rational number has exactly iwo represenia-
tions as a finite scf, differing only in the last place—if p={a,, a,, a,, ..., a,) with
a, > 1, then the other finite scf representing p is {ay, d,, d,...,d,—1,1).

(b) Ewvery finite scf represents a rational number.

Somewhat trickier to prove is the following result (for a proof and a nice general
treatment of continued fractions, see [2], Chapter 1): :

Theorem CF2. If a, is a real number, a,, a,,... are real numbers =1, and
s,=fay, a,...,a,), then lim, _, s, exists. That is, the sequence {sy, S1,..., Sy, ...}
converges to a real number 7.
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With Theorem CF2 at hand we may define the infinite simple continued
fraction

(ag,ay, ay,...)=ady+
' a,+ ————
a,+ ...

to be the limit of the sequence {s,, s, s,, 55,...}.
Assuming that this definition makes sense, let’s determine the infinite scf expan-
sion of our friend V2 according to the method given prior to Theorem CF1.

x0=\/5,a0=[\/5]=1;
1 1
X1=x0_a0 - V2 -1
1 1
X, — a4 N V2 +1-2
oy =

=V2 +1,a,=[V2 +1] =2

=V2 +1,a,=[V2 +1] =2

Xy =

hey, wait a minute—x, = x; and a, = a,, so it looks like this repeats! Evidently,
V2 =<1,2,2,2,2,...).
Such a repeating infinite scf
X=Cay, A1,y Oy Ay, iy Aoy Appgys o)

is called periodic, and the shortest repeating part is called the period. As a
shorthand, we write x=<{a,, a,,. s @y aj+l,...,aj+,e>, using the bar to indicate
the period, much as we do with the periodic part of a repeating decimal. Thus,

V2 =(1,2), V13 =(3,1,1,1,1,6) and

v21 = <14)1)]‘)975’1’2)2)1’]‘)4737]"13)]‘75’4’17172’2)]‘)579’1’1)28>'

Periodic scf’s play an important role in the Big Picture, which we’ll see at the end of
this section.

Meanwhile, let’s compute scfs for some of the Heron approximations to v2 . We
begin with the scf for 12 which we find by a combination of division and inversion:

17 5 1 1 1 1
E_1+E_1+-1—2—_1+ 2—1+ 1 =1+ 1
— 24 = 24+ — 2+
5 5 5 1
_ 24 —
2 2
=(1,2,2,2).

These are just the first four partial quotients in the scf for V2! If we do the same
thing with 32, streamlining the process a little bit, we get the first eight partial
quotients in the scf for V2 —and a surprise as a bonus:

577 169 408 70 169 29 70 , 12
707 29 29’

408 408" 169 169" 70
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hence,

577 29 17
—— ={(1,2,2,2,— )=(1,2,2,2,1+ — ).
408 12 12

Now if x={xy,...,x,+y) and y={y,,..., Y, then

1
X=X, + 1
X, + .
X, Ty
1
=x,+ 1
X+ .+ 1
X,y + 1
Yt ot
y?ﬂ
Hence, x =y, ..., X, + Vg,.--, V. It follows that since 15 =(1,2,2,2), we have
that
577
ﬁ=<1’2’2’2’1+<1’2’2’2>>=1’2’2’2’2’2’2’2>'

Does this pattern persist? Yes, indeed; in fact,
1=(1),

3
E = <1;2>)

17
— =(1,2,2,2),
5 € >

o7 {1,2,2,2,2,2,2,2)
408 - gLy Ly Ly Ly Ly Ly )
665857
={1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2), and
470832
886731088897
— =(1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2).
627013566048

In general, we have the following result:
Theorem CF3. I[fa,=3/2 is the first Heron approximation to V2, then

a,=<1,2,2,2,2,...,2);
N R A
2% — 1 twos in all

that is, each iteration doubles the number of partial quotients.

Not only that, but the scf for each Heron approximation to V2 is obtained by
truncating the infinite scf for V2 at an appropriate number of places.
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All of this business raises an interesting question. The first partial quotient in the
scf for Ve is [V ], the greatest integer < V7. That's easy to find if # is small—but
what if, say,

n = 3600277840830799482590179622558261311759349942860011?

Is there a reasonable way to find [Vn), even if n is really big?
Well, there is, and the answer brings us back to Mrs. Garrison.

5. Square Roots By Hand

How do we find [vV# ], so that we can calculate the scf for v ? One possibility is to
take a number with roughly half the number of digits in 7, and use Heron’s Method
on it until the integer part doesn’t change from one iteration to the next. For
example, 7= 41897492 has eight digits, so begin with some four—digit number
—say, @, =1000. Then a, =21448.746..., a, =11701.061..., a, =7640.859...,
s =06502.103..., a;=0473.434..., a;,=0472.827..., and ag=0472.827..., sO
that [V41897492 ] = 6472.

But there’s a way to find square roots by hand that Mrs. Garrison taught us in
sixth grade, and is based on the following result:

Theorem SRH. et a and b be non-negative integers, with a >0 and b < 100.
If c=Wal and d=max{j j is a non-negative integer and (20c+ j)j<
100(a — c?) + b}, then 10c+ d = [V100a + b ].

Proof. 1If ¢ and d are as described, then

20cd +d* <100a +b—100¢*, or (10¢+d)* <100a + b.
But
(10c+d+1)*>100a + b,
by the maximality of d. This implies that 10¢c + d = [V100a + b, as claimed.

Example. Let’s try this on 41897492. First, group the digits in pairs, beginning at
the decimal point:

V41 89 74 92.

Let a=41 and b=89. Since 36 <a <49, we see that ¢=[V41]=6, and so
a— c*=41—36=5. Now we need the largest d for which

(20c+d)d<100(a—c*) +b, ie. (120+d)d<589.

Now 124-4 = 496 < 589, so 4 works, and 125-5 = 625 > 589, so 5 is too big. Hence
d =4 and so [V4189 ] = 64. For the next step, set a = 4189 and b = 74; we already
know that ¢ =[V4189 ] =64, so ... but let’s lay the whole procedure out. Note that
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successive values of d are boldfaced:

6 4 7 2

V41 89 74 92
36

124 5 89

4 96
1287 93 74
90 09
12942 3 6592
2 58 84
1 07 08

To obtain the initial digits of the first trial divisor, we double [V41]=6, i.e.
12 = 6 + 6. To obtain the initial digits of the subsequent trial divisors, add the most
recently found digit of the square root to the previous trial divisor. Thus, 128 = 124
+ 4, 1294 = 1287 + 7, and so forth.

Thus, 41897492 = 6472% + 10708. Can we do better? Certainly; this procedure
doesn’t really care where the decimal point is, as long as the digits are paired
correctly, and the pairing begins at the decimal point. That is, the above procedure
shows that 418974.92 = 647.22 + 107.08 and that 41.897492 = 6.472% + 0.010708.

Well, then, why not try it out on 2? If we do, here’s what we get:

1.4 14213
V2. 00 00 00 00 00 00

24 1 00
96
281 4 00
2 81
2824 1 1900
1 1296
28282 6 0400
5 65 64
282841 38 36 00
28 28 41
2828423 10 07 59 00
8 4852 69
1 59 06 31

Thus, 2= 1.414213% + 0.000001590631, and 1.414214% = 2.000001237796. 1t fol-
lows that 1.414213 is the six—decimal place lower approximation to V2. We could
continue this process as long as we please to get better and better approximations
to V2.

How does this method compare with Heron’s Method? No contest here! Heron’s
Method is much faster: it converges quadratically to V7, whereas the by—hand
method gives you just one significant digit per iteration.

Then why bother with the by—hand method at all?
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Good question. The reason is that it dates from a time when there were no
calculators or computers, and in those days it was almost the only way to calculate

Vi at all!

And now, for something significantly (but not completely) different.

6. Square Roots (mod p)

If arithmetic and numbers have been a fascination for me, then they were a
downright passion for Daniel Shanks (1917-1996). Dan was an absolute master at
devising and modifying algorithms for computing using quadratic forms, number
fields, modular arithmetic and ordinary arithmetic. For example, he devised three
separate algorithms (one of which is known by the picturesque name of SQUFOF)
for factoring large numbers using the arithmetic of binary quadratic forms—
polynomials of the form ax? + bxy + cy?. But one of his cleverest pieces of work
was his modification of an old procedure, due to A. Tonelli, for finding modular
square roots.

Now, modular arithmetic is the familiar arithmetic of remainders. Just for the sake
of review, recall that we fix some number m, called the modulus, and we consider
two numbers a and b equivalent if they have the same remainder on division by m.
If this is so, we say that a is congruent to b modulo m and write a = b (mod m).
Thus, 55 = 16 (mod 13), but 55 # 16 (mod 11), since 39 is a multiple of 13 but not of
11. To see what we mean by modular square roots, we notice that 25% = 625 = 7-89
+ 2 =2 (mod 89). That is, 25 is a square root of 2 in the world of mod 89 arithmetic.
With this example in mind, we say that x is a square root of a (mod m) if x*>=a
(mod m) is true.

These modular square roots are worth knowing about and worth being able to
compute. To give two examples, they show up in a scheme that emulates a fair coin
toss over the telephone (see [7] and [4, p. 340-341]), as well as in a scheme that
computers use to verify a user’s identity. It’s easy to find them for small moduli—trial
and error will do it—but for even moderately large ones, trial and error is out of the
question. Worse than that, not every number a has a square root mod every
modulus m. (For example, 2 has a square root mod 597035519, but not mod
597035539. Don’t even try.)

Before we get to the Shanks—Tonelli Algorithm, we need several definitions
(which may be familiar) and a theorem we’re not going to prove. If a and m # 0
are integers with no common factors except 1, we define ord,,(a), the order of
a (mod m), to be the least positive integer j for which a’=1 (mod m). For
example, ord,(2) = 3, since 2% = 1 (mod 7), and 3 is the smallest positive integer for
which this is true. If there exists an integer d for which a = md, then we say that m
divides, or is a divisor of, a and write m|a. That is, m|a means that a is an
integral multiple of m; note that 13(39 but 11 4 39. Finally, @ and b are said to be
relatively prime if they have no divisors in common except +1.

The result we'll assume is the following:

Theorem FEL (Fermat—Euler-Lagrange). et a and m be relatively prime
integers, with m+# 0, let p be an odd prime, and let a and p be relatively prime.
Then

(D ord, (@) always exists.
(2) (Fermar's Little Theorem) a*™' =1 (mod p); that is, ord (a)| p —1.
(3) Ifj=ord,(a) and k is an integer, then ord,(a®)| j.

90 THE COLLEGE MATHEMATICS JOURNAL



(4 If ord(a)=j and if b=a’~'"" (mod p), then ab=1 (mod p), and we
call b an inverse of a (mod p).

(5) (Euler's Criterion) a?~9/?=1 or —1 (mod p) according as a does or
does not have a square root (mod p)

Suppose Euler’s Criterion tells us that @ has a square root (mod p). Now p is an
odd prime, so p —1=s-2°¢ with s odd and e positive. Then x = a“*D/? is almost
the square root of a (mod p), because

x*=a’*!' =a’*-a (mod p)

and if a’=1(mod p), then x is the square root. Dan Shanks points out that this is
true in two-thirds of all cases (Turner [6] gives a neat proof of this fact). For
example, if p=23 and a=3, then p—1=11-2 and so s=11. Sure enough,

(36+D/2)% = (36)" = 312 = 531441 = 3 + 23106+ 23 = 3 (mod 23).

What this means is that in the cases when a**V/2 is not the square root, it is only
off by a fudge factor—and the Shanks—Tonelli algorithm keeps updating the fudge
factor until it gets the correct answer. ,

Before we present the algorithm, here is a key lemma (not a Key Lime) that we
will prove.

Key Lemma. [fp is a prime and y* =1 (mod p), then y= £1 (mod p).

Proof. For then ply*—1 and so pl(y — 1)y +1). Now if a prime divides a
product, it must divide one of the factors. Hence, either p| y — 1, in which case
y=1(mod p), or p| y+ 1, in which case y= —1 (mod p).

Note that the lemma is not true for composite moduli—y = +1 and y= +103 all
satisfy p? =1 (mod 221).
With that, we now list the steps of the Shanks—Tonelli Algorithm:

1. BEGIN with an integer @ and a prime p > 2, relatively prime to a. Calculate
a?=Y/2 (mod p). Since by Fermat’s Little Theorem, a?~' = 1(mod p), by the Key
Lemma it follows that a’?"Y/2=1 or —1 (mod p).

2. IF 4*79/2= —1 (mod p), then by Euler’s Criterion, @ has no square root
(mod p). EXIT quietly.

3. IF a?"9/2=1 (mod p), then we're in business. Write p — 1 =5-2¢ with s
odd and e positive.

4. FIND a number n such that n?"D/2= —1 (mod p)—that’s right, some
number that does not have a square root (mod p). You can test numbers sequen-
tially, beginning with » =2... it doesn’t usually take very long.

5. INITIALIZE the following variables (all congruences are mod p):

x=a*tV/2 (first guess at the square root)

b=a’ (first guess at the fudge factor)

g=n’ (powers of g will update both x and b)

r=e (exponent will decrease with each update of the algorithm).
Note that x? = ba (mod p).

6. Now b? =2 =4"?"/2 = 4P=V/2 =1 (mod p), so by part 3 of Theorem
FEL, there is a least integer m such that 0 < m < r—1 and b*" =1 (mod p). FIND
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that m—this you do by successive squarings and reductions (mod p). That is, find
m such that ord ,(b) = 2"
7. IF m =0, we're done. RETURN the value of x and EXIT triumphantly.
8. IF m > 0, UPDATE the variables:
replace x by x-g2 "

Hr—m

replace b by b-g*

Qr=m

replace g by g
replace » by m.

Shanks observed that the algorithm will terminate, as the old value of b has order
2™ but the new value has order at most 2™ !, The reasoning is as follows. Set
y=b""". Now »*=1 (mod p), by the definition of order, but y# 1 (mod p).
Hence, by the Key Lemma, y= —1 (mod p). In the same way, g2 = —1
(mod p). Hence

2m—1

(b'gzr—m) = bzm—lgzr—m+m—1 = bzm—lgzr—l = _1 . 1 = 1 (mod p).

Hence, ord (b- g% ") <2™' as claimed. It follows that the value of m decreases
with each iteration of the algorithm.

9. GO BACK to Step 6 with the new value of », which is the old value of m. As
we have shown, » (and hence, m) decreases with each iteration of the algorithm.
Eventually, m must equal zero, and when it does, Step 7 tells us to stop—we’ve got
the answer.

What about the new value of x? Note that the old value of x satisfies x? = ba
(mod p); multiplying the old x by g*™"" leads to the congruences

2

(xgzr-—rn—l) =x2g2r—m = bagzr—m = ngr_ma (mod p)'

Hence, in multiplying x by g? ", we replace the old value of b in x*=ba
(mod p) by the new value of b. Since this new value has order strictly less than that
of the old value, we are making progress.

Let’s run though a couple of examples to make some kind of sense out of this
welter of symbols and terms.

Example 1. Find a square root of 2 modulo the prime 113.

SETUP: a=2, p=113, p—1=7-2% e=4,5s=7 (p—1)/2 =56,
s+1)/4=4.

BEGIN: 2°° =1 (mod 113); we're in business.

FIND 7: 3°°= —1 (mod 113), so n = 3.

INITIALIZE: x=aC*"Y/2 =2%=16 (mod 113); b=a’ =27 =15 (mod 113); g=
n® =37 =40 (mod 113); r=e=4.

FIND ord,(b)=2": b*=225= —1, b*=1 (mod 113). Hence b* =1 (mod
113), and so m = 2.

m # 0, so UPDATE:

x=xg?""" =16-40""" =16-1600 = 16-18 = 62 (mod 113);
b=bg? " =15-40*=15-(—15) = 1 (mod 113);

g=g*" = —15(mod 113);

r=m=2.
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Since b=1, ord (b) =1= 2% hence m = 0 and we’re done: RETURN the current
value of x, namely 62. Sure enough, 62% = 3844 = 2 + 34-113 = 2 (mod113), and so
62 is a square root of 2 mod 113. As it is with real numbers, an integer either has
exactly two square roots modulo a prime p, or no square roots (mod p)—this is a
consequence, by the way, of the Key Lemma. The other square root of 2 mod 113 is
51 = —62 (mod 113).

That first example didn’t go through too many iterations, so here’s one that does.
We'll list the steps in a table.

Example 2. Find a square root of 5 modulo the prime 40961.
SET UP:

a=5,p=40961=1+5-2";5% =1 (mod p);
32080 = —1 (mod p); n=3;
x=a"P/?=53=125;

b=a’=5"=3125;

g=n'=3>=243,

ord,(b) m x=xg*"" b=b-g*" g=g>" r
21 11 8145 =125-18088 37802 = 312520237 20237 11
27 9 35907 = 8145-8091 21227 = 378028603 8603 9
27 7 33206 =35907-36043 26432 = 21227-19734 19734 7
26 6 34087 =33206-19734 21153 = 26432-14529 14529 6
2° 5 31533 =34087-14529 8555 = 21153-19808 19808 5
24 4 32336=31533-19808 9282 = 855532406 32406 4
23 3 16114 = 32336-32406 26420 = 928231679 31679 3
22 2 19424 =16114-31679 1= 2642014541 14541 2

After eight iterations, we have b=1, so were done: x?=19424>=5 (mod
40961). We found 19424 by successively multiplying the initial value of x by
various powers of the initial value of g:

19424 = 125-18088- 8091 - 36043 - 19734 - 14529 - 19808 - 32406+ 31679 (mod 40961).

And now, as mentioned in the introduction, we can use the Shanks—Tonelli
Algorithm to find a square root of 2 mod p, where

D = 360027784083079948259017962255826129
It doesn’t take long:
D = 360027784083079948259017962255826129
p—1=22501736505192496766188622640989133- 2 = 5-2°
a=2,ada* /%=1 (mod p)
n =23, g=n'=125498114661614417168928780905935147 (mod p)
x = at*th/% = 14950440904776671273718554989608293 (mod p)
b= a’ = 345077343178303276985299407266217835 (mod p).
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Now ord (») = 22, so that we update x by multiplying by g2 ; it turns out that
P p Y piying by g

g% =9928839158183314543463366096574742 (mod p), and so
x = 14950440904776671273718554989608293 - g* (mod p)
= 162244492740221711333411667492080568 (mod p).

Finally, the new value of b is 1, so we're finished; that is,
162244492740221711333411667492080568* = 2 (mod p).

You can implement Shanks—Tonelli yourself: either use some sort of computer
algebra system—one that has “powermod” functions built in to calculate
a® (mod m)—or write a free—standing program to do it. (For more information on
this algorithm, see [2], pp. 213-230.)

As previously mentioned, the Shanks—Tonelli Algorithm doesn’t work for
q = 360027784083079948259017962255826079—even though 2 has a square root
mod g—because that number is composite. (Don’t believe me? Well, it just so
happens that

240879636515128888541937896009793966 = 2 (mod q).

Try it yourself!) Except for an exhaustive search, there is no known algorithm for
calculating square roots to composite moduli. The reason is that calculating square
roots to composite moduli requires knowing the prime factorization of the modulus.
Since the integer factorization problem is very hard in general, that is why it would
be truly earthshaking if the Shanks-Tonelli Algorithm worked with composite
moduli.

7. Ever so many questions
Naturally, you have them:

e Are there ways to find square roots that do better than Heron— that is,
whose convergence is better than quadratic? Yes, but they’re a bit compli-
cated to explain. Maybe some other time.

e Who invented the  sign for the square root, and why was it choser? It was
Christoff Rudolff who first used the radical sign in his 1525 book called Die
Coss (see [3]). Notice that y is a kind of elongated lower-case “r”, the first
letter in radix, which is Latin for “root”.

e s there a way to find cube roots, similar to Heron's method? to Mrs.
Garrison's method? Sure. The analog to Heron’s algorithm for cube roots is
the more general Newton’s Method. Whereas Heron’s update of an approxi-

mation a for Vn is h(a)=2(a + g), Newton’s update &( 8) of an approxi-

3
mation B for Vn —that is, a number ¢ such that ¢®=n—is k(B)=
;2B +%). As for cube root computation by hand, there is such an

algorithm. Naturally, it's a bit more complicated than the square root algo-
rithm. If you want to figure it out for yourself, the result analogous to
Theorem SRH is the following:

Theorem CRH. Let a and b be non-negative integers, with a >0 and b < 1000.
3
If c=Wal and d = max{j: j is a non-negative integer and (300¢* + 30¢j + j2)j <
3
1000(a — c3) + b}, then 10c + d =[V1000a + b].
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* Howd you find that square root of 2 mod that big composite number q? 1

found out that g is a product of four primes p, p, p; p,, such that 2 has a
square root #; mod each p,. Then I used Shanks—Tonelli to find ¢, for each i.
Finally, T combined the ¢, to find the answer you saw, by means of
something called the Chinese Remainder Theorem. And no, I didn’t cheat!

Youw’ve told us about real square roots and square roots (mod p); are there
other kinds of square roots? Absolutely. For any set S with a binary operation
°, you can define square roots: just say that x is a square root of y if
y=x0°x. It doesn’t matter whether ° represents multiplication (mod ),
matrix multiplication, functional composition, composition of symmetries or
composition of points on an elliptic curve—where there’s an operation,
there’s a square root. Oh, yes. What’s an elliptic curve? Well, that’s another

story!
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o
A Theorem

Theorem. 1 is the largest integer.

Proof. Suppose not. Let 1 > 1 be the largest integer. Then #? > #. This is
a contradiction, which proves the theorem.

Exercise. Use the theorem to show that 1/2 is the largest non-integral
rational number.
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