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This is a story about counting saints, safeguarding secrets from scoundrels, two back-
to-back classes, and how some students who were in both classes pointed out that the
Chinese remainder theorem (from number theory) and the polynomial interpolation
theorem (from numerical analysis) are really the same.

Did you know that these two theorems are the same?
The Chinese remainder theorem is one of the foundational theorems of number the-

ory. It states that if the positive integers m1, . . . , mn are pairwise relatively prime (that
is, no two of them have any common factors except 1), then given arbitrary integers
a1, . . . , an there exists a solution x = X to the system of n congruences

x ≡ ai mod mi for 1 ≤ i ≤ n

and that solution X is unique except for adding integer multiples of the product
m1m2 · · · mn. The key to this theorem is that if p is a fixed prime and q is any prime
except p, then there exist integers s and t such that sp + tq = 1. These conditions let
us construct formulas for the solution X .

The polynomial interpolation theorem is one of the foundational theorems of nu-
merical analysis. It states that if x1, . . . , xn are distinct real numbers and y1, . . . , yn are
arbitrary real numbers, then there exists a polynomial P(x) of degree at most n − 1
such that P(xi ) = yi for 1 ≤ i ≤ n and that polynomial P(x) is unique. The key to
this theorem is that if a and b are distinct numbers, then there exist constants s and t
such that s(x − a) + t (x − b) = 1. The fact that the xi are distinct lets us construct
formulas for the polynomial P(x); one such formula closely resembles the formula
obtained from the Chinese remainder theorem.

These two theorems are special cases of a construct in a more general setting and
in this paper we describe a scenario—namely, two back-to-back classes—in which
students discovered this fact. We end by describing that general setting, in which the
key idea is an ability to write 1 in a special way.
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The saints go marching in—how many are in that number?
Number theory met at noon and the topic was simultaneous congruences. The class
was unhappy with the first example from the previous meeting. A direct search for
finding the smallest number leaving remainders of 2, 3, and 2 on division by 3, 5, and
7 (respectively), they claimed, would be quicker and easier than a complicated method.
I agreed and then wrote the following problem on the board.

Find the smallest number N that leaves remainders of 521, 607, and 11,213 on
division by 193,707,721, 6,695,717,641, and 761,838,257,287, respectively.

An exhaustive search for that smallest N using a billion computers, each able to
check a billion cases per second, would take over over 30,000 years. In contrast, a
computer algebra system takes a fraction of a second. So, it must use some method
other than a direct search, right?

The class seemed to be in general agreement with this.
To illustrate the method, here is a problem that involves slightly larger divisors than

3, 5, and 7 and that concerns the well-known song “When the Saints Go Marching In.”
To a lover of numbers, the line “Oh, I want to be in that number” is intriguing because
nobody ever says what that number is. Here we determine that number for a special
case.

The saints go marching in and we know four facts about them:

• When they march in by rows of 7, there are 3 left over.

• When they march in by rows of 11, there is 1 left over.

• When they march in by rows of 13, there are 9 left over.

• There are fewer than 1000 saints.

How many saints go marching in?
Using congruence notation, the problem becomes finding the number of saints S

such that

S ≡ 3 mod 7, S ≡ 1 mod 11, S ≡ 9 mod 13, S < 1000.

At this point, we may ask three questions.

1. Is there a solution?

2. If so, how do you find one?

3. If so, is there a nice formula that gives a solution?

We take these one at a time. First, this set of congruences does indeed have a so-
lution and this is guaranteed by one of the great results of number theory, namely the
Chinese remainder theorem (CRT).

Theorem 1 (Chinese remainder theorem). Let m1, . . . , mn be pairwise rela-
tively prime integers (that is, gcd(mi , m j ) = 1 for i �= j ), and let y1, . . . , yn be inte-
gers. Then the system of simultaneous congruences

X ≡ y1 mod m1, . . . , X ≡ yn mod mn

has a common solution X = S that is unique mod m1 · · · mn.
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For a proof, see [2, pp. 38–39], [4, pp. 158–167], or [5, pp. 235–244], for example.
This theorem implies that a solution S exists, since 7, 11, and 13 are pairwise rel-

atively prime. Here is how we can actually find S. The first congruence, S ≡ 3 mod
7, implies that 7 divides S − 3, so S = 3 + 7t for some integer t . Substitution into the
second congruence and rearranging terms leads to

S = 3 + 7t ≡ 1 mod 11, so 7t ≡ 1 − 3 ≡ 9 mod 11.

Recall that the Euclidean algorithm finds g = gcd(a, b) as well as integers x and y
such that ax + by = g. If g = 1, this implies that ax ≡ 1 mod b. Thus, x is a mul-
tiplicative inverse of a mod b and we write x ≡ a−1 mod b. As gcd(7, 11) = 1, we
know that 7x ≡ 1 mod 11 has a solution. It turns out that x = 8 works, so we obtain
t ≡ 8 · 7t ≡ 8 · 9 ≡ 72 ≡ 6 mod 11 so that t = 6 + 11u and

S = 3 + 7(6 + 11u) = 45 + 77u.

The third congruence becomes 9 ≡ S ≡ 45 + 77u mod 13; however, 77u ≡ 12u mod
13 and we see that u ≡ 3 · 12 ≡ 10 mod 13. Thus, u = 10 + 13v and, since 7 · 11 ·
13 = 1001, we obtain our final result, namely

S = 3 + 7(6 + 11(10 + 13v)) = 3 + 42 + 770 + 7 · 11 · 13v = 815 + 1001v.

Thus, for each integer v, the quantity S = 815 + 1001v satisfies all three congruences.
Finally, since S < 1000, there are S = 815 saints in that number.

Proofs of the CRT provide the following general formula for a general solution.

Theorem 2 (Chinese remainder formula). Given pairwise relatively prime in-
tegers m1, . . . , mn, and integers y1, . . . , yn, define the numbers M and Mi , M∗

i for
1 ≤ i ≤ n by

M = m1m2 · · · mn, Mi = M/mi , M∗
i ≡ M−1

i mod mi .

Then X = y1 M1 M∗
1 + · · · + yn Mn M∗

n is a solution to the system of n congruences
X ≡ yi mod mi that is unique modulo M.

Note that Mi is the product of all m j for j �= i so gcd(Mi , mi) = 1. It follows that
Mi has an inverse mod mi and we call that inverse M∗

i .
We can use the formula to solve the saints problem. Given S ≡ 3 mod 7, S ≡ 1 mod

11, and S ≡ 9 mod 13, set m1 = 7, m2 = 11, and m3 = 13. Then

M1 = 11 · 13 ≡ 4 · 6 ≡ 24 ≡ 3 mod 7 and M∗
1 = 5,

M2 = 7 · 13 ≡ 7 · 2 ≡ 14 ≡ 3 mod 11 and M∗
2 = 4,

M3 = 7 · 11 = 77 ≡ 12 mod 13 and M∗
3 = 12,

and S = 3 · 143 · 5 + 1 · 91 · 4 + 9 · 77 · 12 ≡ 815 mod 1001 as before. Finally, we
see that 815 = 3 + 116 · 7 = 1 + 74 · 11 = 9 + 62 · 13 satisfies all three congruences.

The key step in verifying the formula is to see that

Mi M∗
i ≡

{
1 mod mi ,

0 mod m j , for j �= i.

With that, class was over. I promised to give a proof the next time, the students
dispersed, and several of them walked with me to our cryptography class.
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Sharing secrets among untrustworthy persons
Cryptography class met at 1:30 and the topic for the day was how to share a secret
using threshold schemes. We began with the following example.

You, a zillionaire, have locked your assets in a safe and only you know the combi-
nation. You want to share your estate with your seven children. Some of them are good
people, but the rest are untrustworthy scoundrels. To make matters worse, they do not
get along with each other. You tell them that three or more of them can discover the
secret by working together. Otherwise, your estate will go to your favorite niece and
nephew, whom your children loathe.

What you, the zillionaire, have just described is a threshold scheme.
That is, let n and w be positive integers with n ≤ w. An (n, w)-threshold scheme is

a way of sharing a secret number S among w participants such that any n of them can
easily reconstruct S but no subset of smaller size can reconstruct S. You, the zillionaire,
want a (3, 7)-threshold scheme; the secret S is the combination to the safe.

In a secret-sharing scheme, the person with the secret is the dealer, the participants
are the players, and each player is given a distinct share. Here is a threshold scheme
developed by Adi Shamir (the “S” in RSA) that works as follows. First, the dealer
constructs a polynomial P(x) of degree n − 1 whose constant term is the secret S.
(For you, the zillionaire, the polynomial is the quadratic P(x) = S + ax + bx2.) Then,
the dealer hands out shares to each of w players, the i th player’s share being a point
(xi , yi) = (xi , P(xi)) on the curve.

Table 1. The dealer’s shares in a (3, 7)-threshold scheme

Player 1 2 3 4 5 6 7

Share (1, 9) (2, 13) (3, 23) (4, 39) (5, 61) (6, 89) (7, 123)

A call for volunteers produced the required seven students and I handed out the
seven shares shown in Table 1. I instructed three students to pool their shares and solve
the resulting equations for the polynomial S + ax + bx2. The remaining four were to
pair up and do the same thing. Players 1, 4, and 6 pooled their share and obtained the
equations

S + a + b = 9,

S + 4a + 16b = 39,

S + 6a + 36b = 89.

Fingers flew over laptops; solving the resulting 3 × 3 system yielded the polynomial
11 − 5x + 3x2 so the secret number turned out to be 11. Any set of three players would
come to the same conclusion.

When players 2 and 5 tried this, their two equations in three unknowns yielded the
equations S = 10b − 19 and a = −7b + 16. Their underdetermined system had many
solutions and the constant term S could be anything at all. A similar thing happened
with players 3 and 7. Finally, if four or more players pool their shares, then the resulting
system will be consistent and the players will learn the secret S.

In general, if n cooperating players pool their shares, then they will find the polyno-
mial P(x) and hence its constant term, which is the secret S, but that no fewer players
can gain any information about the secret. This is a consequence of the following
theorem on passing a polynomial curve through a given set of points.
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Theorem 3 (Polynomial interpolation). Suppose (x1, y1), . . . , (xn, yn) are points
in the plane with the xi distinct. There is a unique polynomial P(x) of degree at most
n − 1 that passes through each of these points, i.e., P(xi ) = yi for 1 ≤ i ≤ n.

For a proof, see [1, pp. 105–116], [5, pp. 309–316], or [8, pp. 179–199].
Here is how the method works. Given the points (x1, y1), . . . , (xn, yn) with dis-

tinct x-coordinates, we want to find real numbers a0, . . . , an−1 such that the system of
equations yi = P(xi ) = a0 + a1xi + · · · + an−1xn−1

i has a unique solution. The result-
ing n × n linear system in the unknowns {ai } becomes the matrix equation Vn · a = y,
where

Vn =

⎡
⎢⎢⎢⎣

1 x1 . . . xn−1
1

1 x2 . . . xn−1
2

...
...

. . .
...

1 xn . . . xn−1
n

⎤
⎥⎥⎥⎦ , a =

⎡
⎢⎢⎣

a0

a1
...

an−1

⎤
⎥⎥⎦ , y =

⎡
⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎦ .

It turns out that the determinant of Vn (known as a Vandermonde matrix) is given by

det Vn =
∏

1≤i< j≤n

(x j − xi).

Since the xi are distinct, this formula means det Vn �= 0 so that the system has a unique
solution {a0, . . . , an−1} and the resulting polynomial is the unique polynomial of de-
gree at most n − 1 that passes through the given points.

In a serious cryptographic application, the secret S could be an integer of several
hundred bits. One chooses a prime q larger than the secret, and all calculations are done
in the integers mod q. The coefficients are chosen randomly from the set {1, 2, . . . , q},
each number being chosen with probability 1/q. The xi are chosen to be distinct mod
q, which implies that the coefficient matrix Vn of the resulting n × n linear system has
nonzero determinant mod q.

There is an alternative to finding the polynomial P(x) via matrix algebra, namely a
step-by-step method that leads to a formula for the polynomial.

First, we find a polynomial curve y = P(x) that passes through the point (x1, y1).
Then we modify P so that the curve passes through both (x1, y1) and (x2, y2). We
proceed in this way until we have constructed a polynomial curve that passes through
all the given points. We give the details for three points below.

If (x1, y1) is a point on the polynomial curve y = P(x), then we have y1 = P(x1).
When we divide a polynomial P(x) of positive degree by x − x1, the usual long-
division process produces a quotient q(x) and a remainder r(x) and, since x − x1

has degree 1, the remainder is a constant r . Thus P(x) = r + (x − x1)q(x). If we
substitute x = x1, then we see that r = P(x1) = y1 since the second term vanishes.
Thus, P(x) = y1 + (x − x1)q(x) is a polynomial that passes through (x1, y1).

For x = x2 we have y2 = P(x2) = y1 + (x2 − x1)q(x2). Again, the assumption that
the xi are distinct allows us to divide both sides of this equation by x2 − x1 and so
q(x2) = (y2 − y1)/(x2 − x1). As before, this implies q(x) = q(x2) + (x − x2)h(x)

for some polynomial h(x) and so

P(x) = y1 + (x − x1)(q(x2) + (x − x2)h(x))

= y1 + (x − x1)

(
y2 − y1

x2 − x1
+ (x − x2)h(x)

)
.
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For the third and last point, we use the fact that y3 = P(x3) to find the value of
h(x3). Substituting x = x3 leads to the equation

h(x3) = 1

x3 − x2

(
y3 − y1

x3 − x1
− y2 − y1

x2 − x1

)
.

P(x) goes through the three given points whenever h(x3) is as above, and, in particular,
whenever h(x) is constant with this value of h(x3). From this, we obtain the equation

P(x) = y1 + (x − x1)

(
y2 − y1

x2 − x1
+ x − x2

x3 − x2

(
y3 − y1

x3 − x1
− y2 − y1

x2 − x1

))
.

Indeed, P(xi ) = yi for i = 1, 2, 3. If there were a fourth point, we would write h(x) =
h(x3) + (x − x3)k(x) and use the fact that y4 = P(x4) to put (x4, y4) on the curve.

A student stated that the above formula for the solution looked too messy, and asked
whether there might be a cleaner-looking formula. This led me to ask the class to take
that “messy” formula for P(x) and separate out the terms that contain y1, y2, and y3.
They found

P(x) = y1
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
+ y2

(x − x1)(x − x3)

(x2 − x1)(x2 − x3)
+ y3

(x − x1)(x − x2)

(x3 − x1)(x3 − x2)
.

We see that the term whose coefficient is yi is equal to 1 if x = xi and 0 if x = x j for
j �= i . This form of the polynomial generalizes as follows.

Given n points (xi , yi) with the xi distinct, define the Lagrange interpolating poly-
nomials Li (x) by

Li(x) =
∏
j �=i

x − x j

xi − x j
.

Now Li (x j ) = 1 if j = i , 0 for j �= i , and the unique polynomial of degree at most
n − 1 passing through the n points is given by P(x) = y1L1(x) + · · · + ynLn(x). This
expression is called the Lagrange interpolation formula.

A student’s hand shot up. “Wait a minute. Isn’t this just like the Chinese remainder
theorem?”

The connection
I asked her to elaborate.

The student, who was in the number theory class, continued, “Look, last hour we
did the Chinese remainder theorem in number theory. You wrote out a general solution.
This hour, we just did the polynomial interpolation theorem, and again you wrote out a
general solution. The solutions to both problems look the same. So, this new theorem
is a polynomial version of the Chinese remainder theorem.”

The CRT had made an appearance earlier in the cryptography course. I wrote the
theorem on the board and said, “This is one more example of the many connections
between seemingly different areas of mathematics. In fact, the two theorems really are
the same.”

How is the polynomial interpolation problem like a system of congruences?
Let a, b, m be integers with m �= 0. The congruence a ≡ b mod m is a statement

that the integer a − b is an integer multiple of m.
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Let y1 = P(x1). When we divide P(x) by x − x1, we get a polynomial quotient
q(x) and a polynomial remainder r = P(x1). As we saw earlier, this leads to the equa-
tion P(x) − y1 = (x − x1)g(x). We can write this equation as a polynomial congru-
ence, namely P(x) ≡ y1 mod (x − x1). This makes sense, because a congruence is a
statement that the difference of two quantities is divisible by a third quantity.

In fact, the sum, difference, and product of polynomials are always polynomials.
Division of polynomials, like division of integers, is a different story, and so we make
a few definitions. (At this point, we note that because our polynomials have coefficients
in some arbitrary field, we expect that our polynomial division will involve not only
integers but also rational numbers.)

More formally, let a(x) and b(x) be polynomials with, say, rational coefficients and
b(x) not the zero polynomial. We say b(x) divides a(x) provided a(x) = b(x)d(x)

for some polynomial d(x). For example, let c(x) = 2x3 + 3x2 − 6x − 35. Factoring
c(x) = (x2 + 4x + 7)(2x − 5) shows that both 2x − 5 and x2 + 4x + 7 divide c(x).
On the other hand, c(x) = (x − (3/2))(2x2 + 6x + 3) − 61/2 so x − (3/2) does not
divide c(x). However, the difference c(x) − (−61/2) is divisible by x − (3/2) and we
can write this fact as the congruence

c(x) ≡ −61

2
mod

(
x − 3

2

)
.

From this algebra, the remainder theorem tells us that c(3/2) = −61/2 and the pre-
ceding congruence tells us that the polynomial y = c(x) passes through the point
(3/2, −61/2).

We say that a(x) and b(x) are relatively prime if their only common factors are
constant polynomials. We may now rewrite the polynomial interpolation theorem in
terms of congruences.

Theorem 4 (Polynomial interpolation, revisited). Suppose (x1, y1), . . . , (xn, yn)

are points in the plane with the xi distinct. Let

Pi (x) =
∏
j �=i

(x − x j ) and P∗
i = 1∏

j �=i

(xi − x j )
.

Then Li(x) = Pi (x)P∗
i , and the unique polynomial of degree at most n − 1 that passes

through those n points is given by

P(x) = y1 P1(x)P∗
1 + · · · + yn Pn(x)P∗

n .

For the Chinese remainder theorem, the assumption that the m j are pairwise rela-
tively prime is essential: It implies that the product Mi is relatively prime to mi . That
means Mi is invertible mod mi , a fact that is key to using the Chinese remainder for-
mula.

For the polynomial interpolation theorem, the assumption that the x j are distinct is
essential: It implies that

1

xi − x j
(x − x j ) + 1

x j − xi
(x − xi) = 1

so the polynomials x − x j are pairwise relatively prime. Hence the product Pi (x) is
invertible mod (x − xi ) and we may construct the Lagrange interpolating polynomials.

332 © THE MATHEMATICAL ASSOCIATION OF AMERICA



The polynomials x − x1, (x − x1)(x − x2), . . . , (x − x1)(x − x2) · · · (x − xn) that
turned up the step-by-step solution to the polynomial interpolation problem are the
Newton interpolation polynomials, and the Newton interpolation formula for the solu-
tion is given by P(x) = a0 + (x − x1)a1 + · · · + (x − x1) · · · (x − xn−1)an−1 for cer-
tain constants a0, . . . , an−1. The Newton interpolation polynomial representation of
the solution to the polynomial interpolation theorem corresponds to the solution to the
system of n integer congruences obtained by satisfying one congruence at a time.

Table 2 summarizes the close comparison of the two situations. These two theorems
are indeed special cases of a more general construct, so next we look at the big picture.

Table 2. Comparing the two problems

problem solve x ≡ ai mod mi solve P(x) ≡ yi mod (x − xi )

assume gcd(mi , mj) = 1 if i �= j xi �= x j if i �= j

existence Chinese remainder theorem polynomial interpolation theorem

technique Euclidean algorithm polynomial Euclidean algorithm

solving successive congruences Newton interpolation polynomials

formula Chinese remainder formula Lagrange interpolation formula

What is the big picture here?
The Chinese remainder theorem begins with a system of congruences of the form
x ≡ a mod n and gives sufficient conditions for the existence of a solution to that
system. The big picture takes place in those familiar algebraic systems called rings.

Let R be a commutative ring with unity element 1. Recall that an ideal I of R is
a subset of R that is closed under addition and subtraction and such that if a ∈ I and
r ∈ R, then ra ∈ I . The set {ka : k ∈ R} is the ideal generated by a, written (a). For
example, (3) is the ideal of integer multiples of 3 in the ring of integers and (x − 5) is
the ideal consisting of all polynomial multiples of x − 5 in the ring of polynomials.

The ideals A and B are called coprime provided there exist elements a ∈ A and
b ∈ B such that a + b = 1. In Z, the ideals (118) and (267) are coprime because
43 · 118 + (−19) · 267 = 1. For the polynomials with real coefficients, if a and b are
distinct real numbers, then

1

b − a
(x − a) + 1

a − b
(x − b) = 1,

and so the ideals (x − a) and (x − b) are coprime.
We have one more definition to go. Let I be an ideal of R and let x, y ∈ R. We

say that x ≡ y mod I provided x − y is an element of I . As is the case with both
congruence mod m for the integers and congruence mod p(x) for the polynomials
over a field, congruence modulo an ideal is an equivalence relation.

With all of this terminology in mind, here is one way to generalize our theorems.

Theorem 5 (General form of the Chinese remainder theorem). Let R be a
commutative ring with unity and let A1, . . . , An be pairwise coprime ideals of R. The
system of congruences

X ≡ y1 mod A1, . . . , X ≡ yn mod An

has a common solution X = X0 that is unique modulo the intersection A1 ∩ · · · ∩ An.
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Proof. For i < j , since Ai and A j are relatively prime, we can choose ai j ∈ A j and
a ji ∈ Ai such that ai j + a ji = 1. Then, for all i �= j , we have ai j ≡ 1 mod A j and
ai j ≡ 0 mod Ai . Now set Pi = ∏

j �=i ai j so that Pi ≡ 1 mod Ai and Pi ≡ 0 mod A j

for all j �= i . Then we can see that X0 = ∑
i yi Pi is a solution to the given system of

equations.
If X ′

0 is another solution, then x ′
0 − x0 ≡ 0 mod Ai for all i . Therefore X ′

0 − X0 ∈
A1 ∩ . . . ∩ An as desired.

Finally, we know that if the greatest common divisor of the integers a and b is equal
to 1, then we may write 1 as a linear combination of a and b; an analogous result is
true for polynomials over a field. That “special way to write 1” is the key to both of
our theorems, and coprimality of ideals is the key generalization.

And that is why the Chinese remainder theorem and the polynomial interpolation
theorem really are the same theorem.

Coda
Shamir describes his threshold scheme in [6] and Stinson gives an excellent treatment
of this and other secret-sharing schemes in [7, pp. 481–515]. Schroeder [5] treats both
the Chinese remainder and polynomial interpolation theorems and is an eminently
readable treatment of many applications of number theory. For the big picture, a good
source is the abstract algebra text by Hungerford [3, pp. 131–132].

The CRT finds applications in the areas of error-correcting codes; in cryptography,
especially in encryption, authentication, and key agreement protocols; and in algo-
rithms for counting the number of points on elliptic curves—to name just three. Ex-
ploring the CRT gives rise to much beautiful mathematics. And as my number theorist
colleague Theresa Vaughan (1941–2009) told me many times, “You can go a long way
into number theory with only the Euclidean algorithm, the pigeonhole principle, and
the Chinese remainder theorem.”

Finally, the solution to that problem from the number theory class that involved
large numbers is N = 804,155,562,959,699,457,504,628,440,626. The computer al-
gebra system Mathematica on my laptop computer found N in 222 microseconds—
using, of course, the Chinese remainder theorem!

Summary. The Chinese remainder theorem and the polynomial interpolation theorem are
foundational theorems of number theory and numerical analysis, respectively. These two
theorems are special cases of a construct in a more general setting and we describe a scenario—
namely, two back-to-back classes—in which students can discover this fact. We end by de-
scribing that general setting, in which the key idea is an ability to write 1 in a special way.
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