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Many Threads

While leafing through a book [5] on elliptic curves—one of my favorite subjects—
I came across a little gem of a result that ties many mathematical threads together,
threads that originate in several different areas of mathematics. The result is that every
elliptic curve has nine points of inflection which can be arranged, in a very natural
way, to form a 3 × 3 magic square.

We are going to follow these threads. We’ll learn a little about magic squares and
finite planes, what elliptic curves are and how to add points on them, what points of
inflection are, and finally how all of these threads tie together.

Magic Squares and Finite Planes

To the ancient Greeks, arithmetic and geometry were as separate as, say, astronomy
and music. In fact, to the Pythagoreans, these four were the subjects of study—or
mathemata, whence the name of our fair discipline—on which their pupils were to
concentrate [2, p. 88]. In the Republic, Plato described them as essential to the educa-
tion of a citizen of the Republic [3, pp. 64–70]. This four–fold division became known
in the Middle Ages as the quadrivium, and even in our own times, arithmetic and ge-
ometry may appear to be separate subjects. Sooner or later, however, mathematicians
discover that they are not separate, and that there is some truly beautiful mathematics
where they meet.

My first encounter at the place where arithmetic meets geometry was undoubtedly
the 3 × 3 magic square, an arrangement of the numbers 1 through 9 in a 3 × 3 square
grid so that the numbers in each line of three—that is, each row, each column and the
two main diagonals—add up to 15, as

8 1 6

3 5 7

4 9 2

This magic square is full of surprises, including the fact (see [1]) that

8162 + 3572 + 4922 = 6182 + 7532 + 2942.

(See [4] for many more magic square musings.)
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However, what interests us here is that the 3 × 3 magic square is an example of a
nine–point plane. For, by viewing rows, columns and diagonals as sets of points, and
by allowing diagonals to “wrap” when they reach the edge of the grid, we find, not just
eight lines of three numbers each, but twelve—namely:

three rows: {1, 6, 8}, {2, 4, 9}, {3, 5, 7}
three columns: {1, 5, 9}, {2, 6, 7}, {3, 4, 8}

three main diagonals: {1, 4, 7}, {2, 5, 8}, {3, 6, 9}
three off diagonals: {1, 2, 3}, {4, 5, 6}, {7, 8, 9}

By a line, we mean a set of points—not necessarily connected, straight, or infinite. For
example, {1, 6, 8} is a line. This nine–point plane follows some fairly simple rules:

(1) Each pair of points lies on a unique line.

(2) Each pair of lines intersects in at most one point.

(3) Each point lies on the same number r of lines—in this case, r = 4.

(4) Each line contains the same number k of points—in this case, k = 3.

(5) There exist four points with no three on a line.

The first two rules are reminiscent of Euclidean plane geometry. Rules (3) and (4)
guarantee a certain regularity: that is, all points and lines have equal status. Rule (5)
states that the object at hand is nontrivial. Arrangements that satisfy (1–5) are called
finite planes—whence the name “nine–point plane.”

Now, in order to understand how the 3 × 3 magic square (the nine–point plane)
relates to elliptic curves, we need to talk about how to add points on an elliptic curve.
You may not know what an elliptic curve is, so let’s find out about them.

Adding Points on Elliptic Curves

For our purposes, an elliptic curve is the set of all solutions to the equation

y2 = x3 + px + q,

where x and y are complex numbers and the cubic polynomial x3 + px + q has no
repeated roots. Thus, y2 = x3 + 2 and y2 = x3 − 2x are elliptic curves, since x3 + 2
has one real and two complex conjugate roots, and the roots of x3 − 2x are 0 and
±√

2. On the other hand, y2 = x3 + x2 and y2 = x3 are not, since 0 is a double root
of x3 + x2 and a triple root of x3.

Partly due to their connection with Fermat’s Last Theorem (see [7]), elliptic curves
have recently become popular objects of study. Many mathematicians had a hand in
showing that the construction (called the chord–and–tangent method) can be used to
add points on an elliptic curve, and that this addition turns the set of points on such a
curve into a group.

Here’s how it works. Suppose P and Q are points on the elliptic curve E . Join P
and Q by the line l. Now l meets E in a third point we’ll call P ∗ Q. The sum P + Q
is defined to be the reflection of P ∗ Q in the x-axis, not P ∗ Q itself.

Let’s look at this algebraically. If P = (x1, y1) and Q = (x2, y2), then the line l has
an equation of the form y = mx + b; solving the simultaneous equations y = mx + b
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Figure 1. Chord and Tangent Addition

and y2 = x3 + px + q leads to the one–variable equation

x3 − m2x2 + (p − 2mb)x + q − b2 = 0. (1)

This cubic polynomial has three roots, namely x1, x2, and the x-coordinate x3 of
P ∗ Q = (x3, y3). Reflecting P ∗ Q in the x-axis gives us P + Q = (x3,−y3).

For example, let E1 be the curve y2 = x3 − 2x (on the left in Figure 1), P = (0, 0)

and Q = (−1, 1). Then l is the line y = −x and (1) becomes x3 − x2 − 2x = 0, whose
roots are 0, −1 and 2. Then P ∗ Q = (2,−2) and so P + Q = (2, 2).

Let E2 be the curve y2 = x3 + 2 (on the right in Figure 1); let us add R = (−1, 1)

to itself. Then l is the line y = (3x + 5)/2 tangent to E2 at R and (1) becomes (x +
1)2(x − (17/4)) = 0, whose roots are −1 (a double root) and 17/4. Then R ∗ R =
(17/4, 71/8), and so R + R = (17/4,−71/8).

If P and Q have rational coordinates, so do P + Q and P ∗ Q, because

x3 − m2x2 + (p − 2mb)x + q − b2 = (x − x1)(x − x2)(x − x3). (2)

Since m2 = x1 + x2 + x3 and since m, x1 and x2 are rational, so is x3. Finally, b =
y1 − mx1 is rational and so y3 = mx3 + b is also rational. This always works because
each line in the plane meets an elliptic curve in three points, provided you count
correctly. “Counting correctly” means three things:

• We allow complex coordinates. Thus, you can verify that y = 2 meets E1 in the
three points (2, 2), (−1 + i, 2) and (−1 − i, 2). Note that in Figure 1, what you see
are just the points on the curves with both coordinates real—if we include complex
points, then we would have a four–dimensional graph!

• We count multiplicities correctly. Thus, y = (3x + 5)/2 meets E2 doubly at
R = (−1, 1)—since −1 is a double root of (x + 1)2(x − (17/4))—and singly
at (17/4, 71/8).

As for the line x = 2, there is a third point. Look at it this way: the line through P +
Q = (2, 2) and S = (1.999,−1.9975 . . .) has equation y = 3997.5x − 7993, which
is almost vertical. It turns out that

(P + Q) ∗ S = (15980002.25 . . . , 63880049500.313 . . .).
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This third point is very far from P + Q and S, but it is on the curve. Moving S closer
to (2,−2) moves (P + Q) ∗ S farther away; passing to the limit, if S = (2,−2) =
P ∗ Q, then (P + Q) ∗ S is “infinitely far away.” This last point does not have finite
coordinates. We call it the point at infinity, label it O, and include it as a point on
every elliptic curve. The third rule for counting correctly is:

• We count the point at infinity, if necessary. Thus, x = 2 meets E1 in (2, 2), (2,−2)

and O; x = 0 meets E1 doubly at (0, 0) and singly at O; and x = 1 meets E1 at
(1, i), (1,−i) and O.

Note that if P is a point, then the line through P and the reflection of P in the
x-axis passes through O. Using this, we may now tell how to add points on an elliptic
curve so as to include the counting rules and the point at infinity. Suppose P and Q
are points on the elliptic curve E . To find P + Q, draw the line l through P and Q;
if P = Q, then l is the tangent line to E at P . Locate P ∗ Q, the third point at which
l meets E—counting correctly. Draw l ′, the line through O and P ∗ Q; P + Q is the
third point at which l ′ meets E .

As with addition of numbers, we write 2P for P + P , 3P for P + P + P , etc.
We can do this algebraically, too. If E : y2 = x3 + px + q is an elliptic curve, then

we can express the sum P1 + P2 of points P1 and P2 on E by means of the following
formulas. Let P1 = (x1, y1), P2 = (x2, y2) and P1 + P2 = (x3, y3).

If x1 = x2 and either y1 �= y2 or y1 = y2 = 0, then P1 + P2 = O, and we say that
P2 = −P1.

Otherwise, the slope m of the line l through P1 and P2 is given by

m =




y2 − y1

x2 − x1
, if x1 �= x2;

3x2
1 + p

2y1
, if x1 = x2.

(3)

Finally, it follows from the discussion following (2), the fact that P1 ∗ P2 = (x3,−y3),
and a little algebra, that

x3 = m2 − x1 − x2,
(4)

y3 = −(y1 + m(x3 − x1)).

For example, if E has equation y2 = x3 − x + 4, P1 = (0, 2) and P2 = (−1,−2), then
you can check that (0, 2) + (−1,−2) = (17,−70). Sure enough, (−70)2 = 4900 =
173 − 17 + 4, so (17,−70) is on E . To test these formulas, note that the point (15, 58)

is also on this curve. Find (17,−70) + (15, 58) for yourself; surprised?
We will use these formulas from here on out. And now, on to points of inflection.

Tangent Lines and Points Of Inflection

How many points of inflection does an elliptic curve have?
In order to answer this, let’s first agree on what we mean by a tangent line and a

point of inflection (PI). In calculus, when you meet the derivative, you also meet the
notions of tangent line, local extrema, concavity, and points of inflection. You learn that
the line tangent to a differentiable function f at P = (x0, f (x0)) is the line through
P with slope y′ = f ′(x0). One calculus book [6, pp. 210–211] states that the graph of

VOL. 32, NO. 4, SEPTEMBER 2001 THE COLLEGE MATHEMATICS JOURNAL 263



a differentiable function y = f (x) is concave up (respectively, down) on an interval
where y′ is increasing (respectively, decreasing). A point of inflection is a point at
which the graph of y = f (x) has a tangent line and where the concavity changes. So,
if f is twice–differentiable, then f has a PI where y′′ changes sign.

A point of inflection on an elliptic curve is, similarly, a point (x, y) on the curve
where y′′ is defined and changes sign. If we try to understand this in terms of “change
in “concavity” (as we do in calculus) then we might think that each of the elliptic
curves in Figure 1 has two PI’s. But looks can be deceptive.

Let’s find out by calculating y′′, where y2 = x3 + px + q. We write g(x) = x3 +
px + q and differentiate both sides of the equality y2 = g(x) twice; a bit of algebra
shows that

y′′ = 2g(x)g′′(x) − (g′(x))2

8yg(x)
= 3x4 + 6px2 + 12qx − p2

8yg(x)
.

whose numerator is equal to 3x4 + 6px2 + 12qx − p2. Hence, if P(x0, y0) is a PI of
the elliptic curve y2 = x3 + px + q, then x0 is a zero of the fourth–degree polynomial
I (x) = 3x4 + 6px2 + 12qx − p2.

Now, we’re counting complex points when invoking the rule that a line and an
elliptic curve meet in three points, so we want to include them when looking for points
of inflection. A fourth–degree polynomial has four complex zeros, xi for 1 ≤ i ≤ 4,
and to each there corresponds two points on the curve, (xi ,

√
g(xi)) and (xi ,−√

g(xi)).
Hence, it follows that the curve has, not just two points of inflection, but at least eight!

The graphs in Figure 1 reveal only two PIs, but don’t panic: for the other six PIs, at
least one of the coordinates is nonreal, so you don’t see all eight.

Well, nine, actually. Remember, we claimed that an elliptic curve has nine PIs. So,
in order to show this, first we must show that the four zeros of I (x) are distinct. Then,
we have to show that for none of the zeros xi is g(xi) = 0. Finally, we somehow have
to produce another PI.

Fortunately, we can do this. Let’s begin with the key lemma.

Key Lemma. If E : y2 = g(x) = x3 + px + q, and I (x) = 3x4 + 6px2 + 12qx −
p2, then I (x) has four distinct zeros, none of which are zeros of g(x).

Proof. Now I (x) is a polynomial with real coefficients. Hence, I (x) has distinct
zeros if and only if it has no nonconstant factors in common with its derivative I ′(x).
We have already found that I (x) = 2g(x)g′′(x) − (g′(x))2, and so

I ′(x) = 2g(x)g′′′(x) + 2g′(x)g′′(x) − 2g′(x)g′′(x) = 2g(x)g′′′(x) = 12g(x),

since g′′′(x) = 6.
Next, it is clear that any nonconstant divisor of I ′(x) is a nonconstant divisor of

g(x), so that any such divisor of I (x) also divides the difference I (x) − 2g(x)g′′(x) =
(g′(x))2. So, any such divisor is a nonconstant common factor of both g(x) and g′(x).
But we’re in luck: since y2 = g(x) is an elliptic curve, g(x) is guaranteed to have
distinct zeros, and so it has no nonconstant factors in common with g′(x).

We conclude that I (x) and I ′(x) have no common factors, and so the fourth–degree
polynomial I (x) has four distinct zeros.

This shows that g(x) and I (x) have no nonconstant common factors—hence, no
common zeros. Thus, no zero of I (x) is a zero of g(x), and so we have indeed found
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eight PIs of the curve y2 = g(x): namely, (xi ,±√
g(xi)), where xi is one of the four

zeros of I (x).
For our curve E2 : y2 = x3 + 2, it happens that I (x) = 3x4 + 24x = 3x(x3 + 8)

has the four zeros 0, −2, −2ω and −2ω2, where ω = −1+i
√

3
2 . We do a little algebra

and find that the eight known points of inflection are

(0,±√
2), (−2,±i

√
6), (−2ω,±i

√
6), (−2ω2,±i

√
6).

Well, where’s the ninth PI?
It’s O, the point at infinity! But in order to show this, we’re going to have to look

at tangents and PIs slightly differently. What works is to notice that if the line y =
mx + b is tangent to the curve y = f (x) at (u, v), then the equation mx + b = f (x)

has a double root at x = u. For example, the tangent line to y = x3 − 2x + 5 at (2, 9)

has equation y = 10x − 11, and we see that

x3 − 2x + 5 − (10x − 11) = x3 − 12x + 16 = (x − 2)(x − 2)(x + 4).

Thus, x = 2 is a double root of f (x) − (mx + b) = 0, since (x − 2)2 is a factor of
f (x) − (mx + b).

What about PIs? Just this: if (u, v) is a PI of the curve y = f (x), then the equation
mx + b − f (x) = 0 has a triple root at x = u. Continuing our example, P = (0, 5)

is a PI for y = x3 − 2x + 5, since the tangent line at P has equation y = −2x + 5,
f (x) − (mx + b) = x3, and so f (x) − (mx + b) = 0 has a triple root at x = 0.

For elliptic curves, we adopt this broader view of tangents and PIs. Let l be a line
that meets the curve C at a point P . We’ll say that l is a tangent line to C at P if l
and C intersect doubly at P . That is, if l has equation y = mx + b and C has equation
F(x, y) = 0, then l is a tangent line at P = (x0, y0) provided the equation F(x, mx +
b) = 0 has a double root at x0. Similarly, we’ll say that P is a point of inflection of the
curve C if l and C intersect triply at P—that is, if the equation F(x, mx + b) = 0 has
a triple root at P .

Under this definition, we can now show that O is the ninth PI on an elliptic curve.

The Magic Square Theorem

First, we need another lemma.

Lemma on Points of Inflection. Let P = (x, y) be a finite point on the elliptic curve
y2 = g(x)—that is, P �= O. Then P is a point of inflection if and only if 3P = O.

Proof. As we saw in the previous section, (x, y) is a PI of y2 = g(x) precisely when
(g′(x))2 = 2g(x)g′′(x). Now it just so happens that the doubling formulas from (3)
and (4) also involve (g′(x))2. For, if we let x1 = x2 = x , y1 = y, and 2P = (x3, y3),
then from (3) we have that

m = 3x2 + p

2y
= g′(x)

2y
,

and from (4) we have that

x3 = m2 − 2x =
(

g′(x)

2y

)2

− 2x = (g′(x))2 − 8xy2

4y2
= (g′(x))2 − 8xg(x)

4g(x)
.
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Hence, x3 = x if and only if x · 4g(x) = (g′(x))2 − 8xg(x), i.e., just when (g′(x))2 =
12xg(x). But g′′(x) = 6x , so the x-coordinates of P and 2P are the same just when
(g′(x))2 = 2g(x)g′′(x). This is the exact same condition for P to be a point of inflec-
tion.

We’ll be done when we know about the y-coordinate. But if P and 2P have the
same x-coordinate, then the only possibilities for the y-coordinate of 2P are y and
−y. That is, either 2P = P or 2P = −P . If 2P = P , then P = O (just add −P to
both sides). But that can’t happen since P is a finite point. Hence, 2P = −P . But
adding P to both sides shows that 3P = O. Hence, we have shown that if P is a finite
point, then P is a PI if and only if 3P = O. We are done.

As a corollary, we can show that O is also a point of inflection.
We merely count points. Suppose l is a tangent line to the elliptic curve E at O. By

point–counting, there must be another point where l meets E : call it R. Could R be a
finite point? No, for if R and O are on the line l, we have seen that −R is also on that
line. So, l contains R and −R—that makes two, even if R = −R—and also O doubly,
which makes four in all. Too many points! Hence, R cannot be a finite point, which
means that R = O. We conclude that a line tangent to E at O intersects the curve E
triply. Hence, O is a point of inflection of E , and we are done.

Since 3O = O, we now can say that the PIs of an elliptic curve are precisely those
points P for which 3P = O.

We are now ready for our main result, namely, that the nine PIs of an elliptic curve
can be arranged to form a nine–point plane.

The Magic Square Theorem. Every elliptic curve has nine points of inflection, and
these points form an affine plane of order 3. That is, each point of inflection lies on
exactly four lines, each of which contains two other points of inflection—making 12
lines in all—and each pair of points of inflection determines a unique line.

Proof. Let us first show that a line through two PIs meets the curve in a third PI.
The reason for this is that if P , Q and R are points of E which lie on a line, then
R = P ∗ Q = −(P + Q). Then, since 3P = 3Q = O, we see that

O = O + O = 3P + 3Q = 3(P + Q) = 3(−R) = −3R.

Hence, 3R = −O = O, and we conclude that R is also a PI.
Next, by point–counting, no more than three distinct PIs of E can lie on a line.

Since each pair of PIs on E lies on a unique line, each line containing two PIs contains
exactly one other, and that line accounts for three pairs of PIs. Now there are a total
of 36 pairs of PIs, 36 being the number of 2-element subsets of a 9-element set. Thus,
there are twelve lines in all, each containing three PIs.

Finally, a given PI Q must pair up with each of the other eight PIs. Since there are
three PIs on a line, that puts exactly four lines through Q, each containing two other
PIs. We are done!

For an example, let us look at E2 : y2 = x3 + 2, the curve on the right in Figure 1.
As we saw in the last Section, y′′ = 3x4+24x

2y3 , so that (x, y) is a finite PI if and only if

3x4 + 24x = 0. From this and a little algebra, we find that the nine PIs are

±A = (0,±√
2), ±B = (−2,±i

√
6), ±C = (−2ω,±i

√
6),

±D = (−2ω2,±i
√

6), and O,

where ω = (−1 + i
√

3)/2.
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How do these nine line up? Since three points on a line must sum to zero, it’s clear
that four of the lines are {O, A,−A}, {O, B,−B}, {O, C,−C}, and {O, D,−D}. To
find the other eight lines, just use the slope formula from analytic geometry, and don’t
worry if your slopes are nonreal! (For example, the line through A, −B and D has
slope −ω2

√
2.) When you are done, you will be able to arrange the points into this

3 × 3 magic square, which resembles the one in the book [5] I was reading on elliptic
curves:

B −A −D

C O −C

D A −B

This result ties together threads from finite geometry, recreational mathematics,
combinatorics, calculus, algebra, and number theory. Quite a feat!
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Digits

Paul Kaschube (kaschube@tri.sbc.com) was inspired by the twin primes in the
March 2001 issue, 665551035 · 280025 ± 1, to calculate all 24099 digits of both.
They start with 560 and end with 121 and 119, respectively. He will supply them
all to anyone who is interested. Who knows that secrets they contain? Do they
have 314159265358979 in them? Or perhaps, as 665551035, rather more 5s than
could be expected? They could be worth a look.
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