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1. Introduction

In our earlier paper [1] we introduced the notion of elliptic curves with compact
parameters. These are fixed-coefficient elliptic curves having complex multiplication
over the rationals, but implemented as curves defined over a finite field Fp, where
each user can specify his own prime p. Finding an appropriate prime p is a simple
search process, beginning with a random start value. We suggested that this ran-
dom start value be determined by the hash output of an ID string chosen by the
user. A small integer – the offset – determines how far past the random start value
the user searched before finding p. To enable communication, the user need only
transmit the domain ID and (optionally) the offset to another user. This represents
a savings of bandwidth when compared to transmission of the typical set of elliptic
curve parameters (see [1] for a fuller discussion).

Compact elliptic curves are easy to use because they come equipped with conve-
nient base points, independent of the prime p. Furthermore, the complex-multipli-
cation feature, which enables the order of the curve to be quickly computed, also
enables the use of an ingenious speedup to scalar multiplication, as presented in [3].

In recent years, hyperelliptic curves (particularly of genus 2) have emerged as a
viable alternative to elliptic curves. (See, e.g. [7].) Since genus 2 curves achieve the
same security level using smaller base fields, they can sometimes be preferable to
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elliptic curves when used on embedded processors where memory and speed are
constrained.

The mathematics of compact elliptic curves generalizes to the genus-2 case. The
present paper explores this generalization. Our family of compact Jacobians is
based on the hyperelliptic curve H :y2=x5+8, together with the base point (1,3)
embedded in the Jacobian of H . As a curve defined over the rationals, H/Q has
genus 2 and admits complex multiplication by the 5th roots of unity. For p a
prime of the form p≡1 (mod 10) we consider the curve H/Fp, that is, the reduc-
tion of H to Fp. Since 5 divides the order of F×p , complex multiplication descends
to H/Fp. This means we can quickly compute the order #H(Fp) of the set of Fp-
rational points of H/Fp and the order #JH (Fp) of the group of Fp-rational points
in the Jacobian of H , using the technique of Jacobi sums. The user of this cryp-
tosystem will presumably want to work in a Jacobian group of prime order, so
several primes p will have to be tried until the associated Jacobian group order
#JH (Fp) is prime. In this case, the base point (1,3) is a generator of the group
JH (Fp).

The ‘compact’ aspects of compact elliptic curve cryptosystems – low-bandwidth
transmission of domain ID and offset, plus quick extraction of system parameters
– carry over to compact Jacobians. In addition, the speedup of Gallant et al. [3]
generalizes to scalar multiplication in the Jacobian of H .

2. A Cyclotomic Number Ring

We introduce notation which will remain fixed throughout the paper. Let

K=Q(ν),

where ν = e2πi/5 is a primitive 5th root of unity. Thus, ν satisfies the cyclotomic
polynomial �5(x)= x4+ x3+ x2+ x+ 1= 0. We will reserve the symbol ζ for the
particular 10th root of unity

ζ =−ν3= e2πi/10.

Let O be the ring of integers of K. By well-known results on cyclotomic fields
(see [12], for example), we have

O=Z[ν]=Z⊕Zν⊕Zν2⊕Zν3.

O is a principal ideal domain, and so O has unique factorization of elements.
We denote by F the maximal real subfield of K, namely

F =Q(ν+ν−1)=Q(ζ + ζ−1).

Let U denote the units group of O. There are no real embeddings and two con-
jugate pairs of complex embeddings of K, so by the Dirichlet Unit Theorem, the
Z-rank of U is 1. More precisely, we have

U ∼=Z/10Z⊕Z,
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where ζ generates the torsion part and the fundamental real unit ζ + ζ−1= (√5+
1)/2 generates the infinite cyclic part of U . (For details, see [4], p. 561–562.)

Let the Galois group of K/Q be {σ,σ 2, σ 3, σ 4 = 1}, where σ is the automor-
phism ν �→ ν3 (and hence also ζ �→ ζ 3). Thus, σ 2 is complex conjugation. We will
write the general element of O as

α=a+bν+ cν2+dν3, a, b, c, d ∈Z.

Then the four Galois conjugates of α are

α=a+bν+ cν2+dν3

σ(α)=a+bν3+ cν+dν4

σ 2(α)= ᾱ=a+bν4+ cν3+dν2

σ 3(α)=σ(ᾱ)=a+bν2+ cν4+dν

We need some information on the splitting of rational primes p in the ring O;
we follow the standard procedure outlined in [10], Chapter 3. The discriminant of
the integral basis [1, ν, ν2, ν3] of O equals 125, so the only rational prime which
ramifies is 5. We have

(5)= (1−ν)4 as ideals in O.

Primes congruent to ±3 (mod 10) are inert (pO is a prime ideal). Primes congru-
ent to −1 (mod 10) split into the product of two prime ideals of inertial degree
2. Primes congruent to +1 (mod 10) split into the product of four prime ideals of
inertial degree 1.

We are interested in describing those primes p>5 which can be written as p=
ππ̄ for some π ∈O. Clearly no prime congruent to ±3 (mod 10) can be written
thus. Neither is this possible for p≡−1 (mod 10), for we have the decomposition
pO=P1 ·P2 for prime ideals P1 and P2. Since σ fixes pO, the action of σ on the
set {P1,P2} is an involution of order at most 2. Hence P1= σ 2(P1)=P1. This
means that every product ππ̄ for π ∈P1 lies in the ideal P2

1 �=P1 ·P2 and thus
cannot equal p. Hence no prime p≡−1 (mod 10) can be written in this way.

We are left with the congruence class p≡1 (mod 10). We can always decompose
such a prime as p=ππ̄ . To see this, we observe that the factorization of pO into
principal prime ideals as

pO=P ·σ(P) ·σ 2(P) ·σ 3(P)

implies that there exist elements of norm p in O. If P=αO, we define

π =α ·σ(α),

and it follows that

ππ̄ =α ·σ(α) ·σ 2(α ·σ(α))=NormK/Q(α)=p.
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Lemma 1. π + π̄ is prime to p.

Proof. Suppose not. Then π + π̄ is contained in at least one of the prime ideals
into which p splits, say π + π̄ ∈αO. Then we have

ασ(α)+σ 2(ασ(α)) ∈ αO, giving

σ 2(α)σ 3(α) ∈ αO, which implies

σ 2(P) ·σ 3(P)⊂P;
this is impossible because the ideals σ i(P) are prime and distinct.

Lemma 2. Let p≡ 1 (mod 10). Then there are 40 distinct values of π which arise
as π =α ·σ(α), as α ranges over all (infinitely many) elements of O of norm p.

Proof. Select an element α∈O of norm p. This entails a choice of one of the four
ideals into which (p) splits in O, followed by selection of a generator of that ideal.
Set υ=ν+ν−1, so that υ−1 is the fundamental real unit. Then the complete set of
associates of α in O is given by {ζ kυ�α}, 0≤ k≤9, �∈Z. We replace α by ζ kυ�α
and compute

ζ kυ�α ·σ(ζ kυ�α)= (ζ k(ν+ν−1)�ζ 3k(ν3+ν−3)�)α ·σ(α)
= ζ 4k(ν+ν2+ν3+ν4)�α ·σ(α)
= (ν2k(−1)�)α ·σ(α)
= (ζ j )α ·σ(α) for some j in {0, . . . ,9}.

Thus, for the class of associates of a fixed α there are only 10 possibilities for π=
α ·σ(α). The other 30 values are σ(π), σ 2(π), σ 3(π).

Let β ∈O be relatively prime to 5. Then there is a unique 5th root of unity νk

such that νkβ is congruent (mod (1−ν)2) to a rational integer (see [5], p. 206). We
call νkβ the primary twist of β. If the primary twist of β is β itself (i.e., νk = 1)
then we call β primary. In general, a primary β might be congruent to any non-
zero value modulo 5. But for primary integers of the form π=α ·σ(α) we can say
more.

Lemma 3. Let p≡1 (mod 10) and suppose that p=ππ̄ with π primary. Then π≡
±1 (mod (1−ν)2).

Proof. Let a primary π be chosen as described, so there is a rational integer n
with π ≡n (mod (1− ν)2). Then π̄ ≡n (mod (1− ν)2) as well, whence p=ππ̄ ≡n2

(mod (1−ν)2). Expressed another way,

p−n2 ∈ (1−ν)2O,
so that

(p−n2)2 ∈ (1−ν)4O=5O.
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This implies that 5 divides p−n2, which in turn implies that n2≡ 1 (mod 5) and
hence n2≡1 (mod (1−ν)2).

We will call a factorization p=ππ̄ a primary splitting of p if π≡−1 (mod (1−
ν)2). Note that in any primary splitting p=ππ̄ , all four conjugates of π are con-
gruent to −1 (mod (1−ν)2).

3. Characters and Jacobi Sums

We review some standard notions first. For details on the material in this section,
see [9], Chapter 5. A character of a finite group G is a homomorphism of G into
the multiplicative group of the roots of unity. The characters of G form a group
under composition, called the character group of G. By a character on Fq we mean
a character χ of the multiplicative group F×q , extended to all of Fq by χ(0)= 0.
Thus, we do not count as a character of Fq the function ε: Fq −→{1}. The mul-
tiplicative group F×q is cyclic; once a generator is chosen, any character of F×q is
completely determined by the value it assigns to that generator.

Let p be a prime of the form p≡1 (mod 10) and let p=ππ̄ be a primary split-
ting of p, arising from π=ασ(α) for an α of norm p. Then π≡−1 (mod (1−ν)2).
The ideal πO factors into primes as

πO=P ·σ(P),
where we assume that α∈P. Let g be a fixed generator of F×p and define a char-
acter χP of Fp of order 5 by

χP(g)=νk,
where νk is the unique 5th root of unity for which

g(p−1)/5≡νk (mod P).

Now let h be a generator of F×
p2 and define the lifted character χ ′P on Fp2 by

χ ′P(h)=χP(NormF
p2/Fp (h)).

We should not view the lifted character χ ′P as an extension of χP, since χ ′P and χP
do not take the same values on Fp—note that χ ′P(g)=χP(g ·gp)=χP(g2).

For any n there is a unique non-trivial character ρ of Fpn of order 2. For n=1 this is
the familiar Legendre symbol modulo p; for n=2 it is the lift of the Legendre symbol.
Since ρ′(g)=ρ(g ·gp)=ρ(g)2, the lifted character ρ′ is identically equal to+1 on F×p .

We now define the Jacobi sum J (Fq;χ1, χ2) of two characters on Fq by

J (Fq;χ1, χ2)=
∑

u,v∈Fq
u+v=1

χ1(u)χ2(v)=
q−2∑

j=1

χ1(h
j )χ2(1−hj ),

where h is a generator of F×q .
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Lemma 4. Let p≡1 (mod 10) and q=pn. Let χ1, χ2 be characters of Fq of order
5. Then

J (Fq;χ1, χ2)≡−1 (mod (1−ν)2).

Proof. Let h be a generator of F×q . Replacing χi by 1−χi in the sum, we com-
pute the difference

q−2∑

j=1

χ1(h
j )χ2(1−hj )−

q−2∑

j=1

(1−χ1(h
j ))(1−χ2(1−hj ))

=−
q−2∑

j=1

1+
q−2∑

j=1

χ1(h
j )+

q−2∑

j=1

χ2(1−hj )

=−(q−2)+ (−1)+ (−1)=−q.
Hence we may write

J (Fq;χ1, χ2)=−q+
q−2∑

j=1

(1−χ1(h
j ))(1−χ2(1−hj ))

=−q+
q−2∑

j=1

(1−νkj )(1−ν�j )

≡−q (mod (1−ν)2)
≡−1 (mod (1−ν)2).

The exponents kj , �j are unspecified integers, but since 1− νkj is always divisible
by 1−ν (even when kj =0), each term in the sum is divisible by (1−ν)2. The last
line follows because (1− ν)2 divides 5, which divides p− 1, whence q ≡ 1 ( mod
(1−ν)2).

Lemma 5. With p,π,P, χP, and χ ′P defined as above, we have

J (Fp;χP, χP) = π

J (Fp;χ2
P , χ

2
P ) = σ(π)

J (Fp;χ3
P , χ

3
P ) = σ 3(π)=σ(π̄)

J (Fp;χ4
P , χ

4
P ) = σ 2(π)= π̄ ,

(1)

and

J (Fp2;χ ′P, χ ′P) = −π2

J (Fp2;χ ′2P, χ ′2P) = σ(−π2) (2)

J (Fp2;χ ′3P, χ ′3P) = σ 3(−π2)=σ(−π̄2)

J (Fp2;χ ′4P, χ ′4P) = σ 2(−π2)=−π̄2.
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Proof. Let g be a generator of F×p and define k ∈ {1,2,3,4} to be the unique
exponent for which g(p−1)/5 ≡ νk (mod P). Applying σ to this congruence yields
g(p−1)/5≡ ν3k (mod σ(P)), so that g2(p−1)/5≡ ν6k ≡ νk (mod σ(P)). Writing J for
J (Fp;χP, χP), we have the congruences

J ≡
p−1∑

u=0

u(p−1)/5(1−u)(p−1)/5 (mod P), (3)

J ≡
p−1∑

u=0

u2(p−1)/5(1−u)2(p−1)/5 (mod σ(P)). (4)

But in fact

p−1∑

u=0

u(p−1)/5(1−u)(p−1)/5≡
p−1∑

u=0

u2(p−1)/5(1−u)2(p−1)/5≡0 (mod p),

which follows from the fact that 1r + 2r + · · · + (p − 1)r ≡ 0 (mod p) as long as
(p−1) � r. Thus,

J ∈P ·σ(P)=πO.

We have |J | = |π | =√p (see, e.g., [5], p. 94), which implies that |σ(J )| = |σ(π)| =√
p. Thus, J/π is an algebraic integer all of whose conjugates have absolute value

1 and hence is a root of unity. But π and ±νkπ cannot both be primary unless
k= 0. The possibility π ≡−J (mod (1− ν)2) cannot occur because it implies 2∈
(1−ν)2O, whereas only 5 ramifies in O. Hence J (Fp;χP, χP)=π .

The other equations in (1) follow from the first by considering the action of σ
and by noting that χ4

P =χP.
Finally, the equations (2) follow from (1) by the Davenport–Hasse relation ([9],

p. 210).

4. Counting Points on Hyperelliptic Curves

Let p≡ 1 (mod 10) be a prime and let q = pn for some integer n. Let D be an
arbitrary integer and consider the hyperelliptic curve HD : y2= x5+D as a curve
defined over Fp. We write Nq(·) to denote the number of Fq -solutions (i.e., affine
solutions only) of an integer polynomial equation. Let χ be any character of F×q
of order 5, and let ρ denote the unique character of F×q of order 2. Let ππ̄ be a
primary splitting of the prime p. Including 1 for the unique (desingularized) point
at infinity, the number of points on H is

#HD(Fq)=1+Nq(y2=x5+D)
=1+

∑

u+v=D
Nq(y

2=u)Nq(x5=−v)
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=1+
∑

u+v=D
(1+ρ(u))(1+χ(−v)+χ2(−v)+χ3(−v)+χ4(−v))

=q+1+
∑

u+v=D
ρ(u)χ(v)+

∑

u+v=D
ρ(u)χ2(v)

+
∑

u+v=D
ρ(u)χ3(v)+

∑

u+v=D
ρ(u)χ4(v).

We change the variables of summation to u=Du′ and v=Dv′, factor out the D’s,
and rename u′, v′ back to u, v. This gives

#HD(Fq)=q+1+ρχ(D)
∑

u+v=1

ρ(u)χ(v)+ρχ2(D)
∑

u+v=1

ρ(u)χ2(v)

+ρχ3(D)
∑

u+v=1

ρ(u)χ3(v)+ρχ4(D)
∑

u+v=1

ρ(u)χ4(v)

=q+1+ρχ(D)J (ρ,χ)+ρχ2(D)J (ρ,χ2)+ρχ3(D)J (ρ,χ3)

+ρχ4(D)J (ρ,χ4).

Using the lemma in [5], p. 305, we can rewrite this as

#HD(Fq)=q+1+ρχ(4D)J (χ,χ)+ρχ2(4D)J (χ2, χ2)+ρχ3(4D)J (χ3, χ3)

+ρχ4(4D)J (χ4, χ4).

We now specialize to the curve H := H8 : y2 = x5 + 8. We have 4D = 25, so
χ(4D)=1 and ρ(4D)=ρ(2). We thus obtain

#H(Fq)=q+1+ρ(2)J (χ,χ)+ρ(2)J (χ2, χ2)+ρ(2)J (χ3, χ3)

+ρ(2)J (χ4, χ4).

Applying the results of Lemma 3 we have

#H(Fp)=p+1+ρ(2)TraceK/Q(π),

and using Fp2 -lifted characters χ =χ ′P and ρ=ρ′ we have

#H(Fp2)=p2+1−TraceK/Q(π2).

Since the curve H has genus 2, there exist algebraic integers α,β, γ, δ (called the
Weil numbers of H ) with αβ=γ δ=p and

#H(Fpn)=pn+1− (αn+βn+γ n+ δn)
for every n≥1. Our Jacobi sum computations (1) and (2) show that the Weil num-
bers of H are

−ρ(2)π, −ρ(2)σ (π), −ρ(2)σ 2(π), −ρ(2)σ 3(π).

With the Weil numbers in hand, we may now conclude (see [11], pp. 158–166) that
the order r of the Jacobian JH (Fp) of H is given by

r=NormK/Q(1+ρ(2)π).
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5. Choosing the System Parameters

We now sketch a method by which a suitable prime p≡1 (mod 10) may be chosen
so that the order r of the Jacobian JH (Fp) is prime.

Among primes p≡1 (mod 10), those primes which are congruent to ±1 (mod 8)
will be rejected out of hand, as the associated Jacobian orders are automatically
composite. Such primes have Legendre symbol ρ(2)=+1, which gives #JH (Fp)=
NormK/Q(1+π). Since π and its conjugates are primary, each factor in the norm
of 1+π is divisible by (1− ν)2 and the overall product consequently divisible by
(1− ν)8; thus, the integer NormK/Q(1+π) is divisible by 25.1 For this reason, we
shall require p≡±3 (mod 8) and hence ρ(2)=−1.

We will set up our search for parameters p and r with the condition π ≡−1
(mod (1−ν)2) built into the starting values. We begin by setting

α :=a+bν+ cν2+dν3, a, b, c, d ∈Z

and impose the condition α ·σ(α)≡−1 (mod (1−ν)2). Expanding α ·σ(α) in pow-
ers of (1−ν), we obtain

α ·σ(α)≡F −G(1−ν) (mod (1−ν)2),
where

F =a2+2ab+2ac−3ad−4b2+2bc+2bd+ c2−3cd+d2

G=4ab+3ac−3ad−6b2+2bc+bd+3c2−5cd+2d2.

The condition α ·σ(α)≡−1 (mod (1−ν)2) becomes

F +1≡G≡0 (mod 5).

These two congruences can be replaced by simpler ones. A reduced Gröbner Basis
calculation—using the computational algebra package MAGMA–for the ideal gener-
ated by F + 1 and G over the field F5 yields the following equivalent generators
for this ideal:

a2−2ac+ad+ c2− cd−d2+1 ≡ 0 (mod 5) (5)

b+2c−2d ≡ 0 (mod 5). (6)

The relation (5) does not contain b and (6) does not contain a. Also, relation (5)
factors, giving

(a− c−2d−2)(a− c−2d+2)≡0 (mod 5). (7)

If the first factor in (7) evaluates to 0 for (a, b, c, d), then the second factor eval-
uates to 0 for (−a,−b,−c,−d), and both 4-tuples generate the same value of
α ·σ(α). Without loss of generality, then, we require

a≡ c+2d+2 (mod 5) (8)

and are assured that every value of α ·σ(α) appears for some choice of a, b, c, d.
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The free parameters are c and d, and the dependent parameters a and b are
only determined up to an additive multiple of 5. However, we will treat the con-
gruences in (6) and (8) as equalities, adding no multiples of 5. Such an arbitrary
choice probably means that certain primes p cannot be obtained with our con-
struction, but a definite statement along these lines seems difficult to formulate. In
practice, there seem to be plenty of primes p arising from our choice of (a, b, c, d),
and among them, we seem to obtain ρ(2)=−1 about half the time.

Algorithm 1. (System Parameters)

Input: the hash value c of the user’s ID
Output: p, r, d

1. Set d←0
2. Set a← c+2d+2
3. Set b←−2c+2d
4. Set α←a+bν+ cν2+dν3

5. Set π←α ·σ(α)
6. Set p=ππ̄
7. If p≡±1 (mod 8), set d←d+1 and go to step 2
8. If p is composite, set d←d+1 and go to step 2
9. r←NormK/Q(1−π)

10. If r is composite, set d←d+1 and go to step 2
11. Output p, r, d

We conclude this section with explicit formulas for some of the system parame-
ters in terms of the free variables c and d.

We have

α=a+bν+ cν2+dν3

where

a= c+2d+2

b=−2c+2d,

π =A+Bν+Cν2+Dν3,

where

A = 4+4c−5c2+6d+10cd

B = −2c−5c2+2d+5cd

C = 2c−5c2−2d+10cd−5d2

D = −4c−5c2+4d+5cd,

(9)
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p=25c4−75c3d+100c2d2+50c2d+40c2−50cd3+40cd

+40c+25d4+50d3+60d2+40d+16, (10)

r=625c8−3750c7d+10625c6d2+2500c6d+2125c6

−17500c5d3−7500c5d2−4875c5d+1500c5+18750c4d4

+12500c4d3+9375c4d2+1250c4d+2225c4−13750c3d5

−12500c3d4−6875c3d3+4500c3d2+4325c3d+2550c3

+7500c2d6+12500c2d5+15625c2d4+13000c2d3

+10400c2d2+5250c2d+1665c2−2500cd7−5000cd6

−4250cd5+1500cd4+5675cd3+5250cd2+2340cd

+540c+625d8+2500d7+5375d6+7250d5+6725d4

+4350d3+1935d2+540d+81. (11)

One can also compute #H(Fp)=p+1−TraceK/Q(π); however, the cryptographic
application does not require that we know the number of points on the hyperellip-
tic curve itself. The compact cryptosystem is the Jacobian, where the group oper-
ation resides, so it is r that is needed.

For the remainder of the paper we assume p has been chosen to satisfy both
p≡1 (mod 10) and p≡±3 (mod 8).

6. Complex Multiplication on H/F̄FFp

The curve H/Q̄ : y2 = x5 + 8 admits complex multiplication by the 5th roots of
unity, namely by the map (x, y) �−→ (νx, y) and its powers. For a prime p ≡ 1
(mod 10), this structure descends to the curve H/F̄p. Namely, let v∈Fp be a prim-
itive 5th root of unity and define the map ψ and its powers by

ψ :H/F̄p−→H/F̄p

ψn(x, y) = (vnx, y), n≥0

The maps ψn extend pointwise to endomorphisms of the Jacobian JH (F̄p) and
satisfy the characteristic equation

ψ4+ψ3+ψ2+ψ+1=0.

The Frobenius endomorphism φ, defined by

φ :H(F̄p)−→H(F̄p)

φ(x, y) = (xp, yp),

also extends pointwise to an endomorphism of JH (F̄p) and satisfies a character-
istic equation involving the Weil numbers π,σ(π), σ 2(π), σ 3(π) of H , namely

3∏

i=0

(φ−σ i(π))=φ4−TraceK/Q(π)φ3+· · ·+p2=0.
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The Jacobian JH (F̄p) is ordinary for the prime p. This can be deduced from
the fact that π +p/π is prime to p (see [13] for background), which we showed
in Lemma 1. Consequently, the endomorphism ring End(JH (F̄p)) is commutative
and has rank 4 as a Z-module. The Frobenius φ thus has four representations in
the powers of ψ :

φ=Ak+Bkψk+Ckψ2k+Dkψ3k, k=1,2,3,4. (12)

Because the same quartic is satisfied by the Weil numbers of H/F̄p as by the four
representations of the Frobenius and the same quartic is satisfied by ν and its pow-
ers as by ψ and its powers, the representations (12) correspond to the Weil num-
bers of H/F̄p in some order. Thus, for some value of k we have

Ak=A, Bk=B, Ck=C, Dk=C,
corresponding to the particular Weil number π =A+ Bν + Cν2 +Dν3. We now
develop a criterion for determining this value of k.

Since H has genus 2, the F̄p-vector space of holomorphic differentials on the hy-
perelliptic curve H/F̄p is 2-dimensional, spanned by dx/y and x dx/y. Endomor-
phisms of JH (F̄p) induce linear pullback maps on differentials. In particular, the
endomorphism [N ] (multiplication by the integer N in the Jacobian) induces scalar
multiplication by N and φ induces scalar multiplication by 0 on each basis differ-
ential. We now compute the pullback map corresponding to ψ .

ψ∗
(
dx

y

)
= d(vx)

y
=v · dx

y
, (13)

and

ψ∗
(
x dx

y

)
= (vx) d(vx)

y
=v2 · x dx

y
. (14)

Applying (13) to (12) yields

φ∗
(
dx

y

)
= ([Ak]+ [Bk]ψ+ [Ck]ψ2+ [Dk]ψ3)∗

(
dx

y

)
,

0 · dx
y
=Ak dx

y
+Bkv dx

y
+Ckv2 dx

y
+Dkv3 dx

y
, (15)

0≡Ak+Bkv+Ckv2+Dkv3 (mod p).

Similarly, applying (14) to (12) yields

φ∗
(
x dx

y

)
= ([Ak]+ [Bk]ψ+ [Ck]ψ2+ [Dk]ψ3)∗

(
x dx

y

)
,

0 · x dx
y
=Ak x dx

y
+Bkv2 x dx

y
+Ckv4 x dx

y
+Dkv6 x dx

y
, (16)

0≡Ak+Bkv2+Ckv4+Dkv6 (mod p).
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Table 1. The Weil numbers of H/F̄p .

1 ν ν2 ν3

π A B C D

σ(π) A−D C−D −D B−D
σ 2(π) A−B −B D−B C−B
σ 3(π) A−C D−C B−C −C

Table 2. Choosing the correct k.

if (16), (15) are satisfied by rows then set k equal to

1,2 3
2,3 4
3,4 2
4,1 1

The congruences (15) and (16) are the mod p analogue of the fact that exactly two
of the characteristic roots of Frobenius are p-adic non-units, while the other two
are units.

Beginning with π=A+Bν+Cν2+Dν3, we repeatedly apply the action σ :ν �−→
ν3 and reduce by ν4=−ν3−ν2−ν−1 to compute the coefficients of the other Weil
numbers of H/F̄p. The results are shown in Table 1.

Note that the congruences (15) and (16) must correspond to adjacent rows
(modulo circular rotation) in Table 1. This is because non-adjacent rows represent
complex conjugate pairs of Weil numbers, which cannot both be non-units, since
their product equals p. Furthermore, since successive rows in the the table are con-
structed by ν �−→ν3, we see that (16) will precede (15).

Thus, having picked a primitive 5th root v at random, we construct the four lin-
ear combinations of {1, v, v2, v3} with coefficients from Table 1 and we proceed as
in Table 2.

Redefining ψ(x, y)= (vkx, y) for the correct k then yields

π =A+Bν+Cν2+Dν3 (17)

φ=A+Bψ+Cψ2+Dψ3 (18)

Finally, we use this infrastructure to determine the integer N giving the equiva-
lence

ψ∼= [N ] on JH (Fp).

Beginning with

φ=A+Bψ+Cψ2+Dψ3,



258 BROWN ET AL.

we compute

φ2=A′ +B ′ψ+C′ψ2+D′ψ3

φ3=A′′ +B ′′ψ+C′′ψ2+D′′ψ3,

where

A′ =A2−2BD+2CD−C2

B ′ =2AB−2BD−C2+D2

C′ =2AC+B2−2BD−C2

D′ =2AD+2BC−2BD−C2

and

A′′ =A3−6ABD−3AC2+6ACD−3B2C+3B2D+3BC2−D3

B ′′ =3A2B−6ABD−3AC2+3AD2−3B2C+6BCD+C3−D3

C′′ =3A2C+3AB2−6ABD−3AC2−3B2C+3BD2+3C2D−D3

D′′ =3A2D+6ABC−6ABD−3AC2+B3−3B2C+3CD2−D3.

We then have the matrix equation in End(JH (F̄p))





1
φ

φ2

φ3



=





1 0 0 0
A B C D

A′ B ′ C′ D′
A′′ B ′′ C′′ D′′









1
ψ

ψ2

ψ3



 (19)

and the analogous matrix equation in O




1
π

π2

π3



=





1 0 0 0
A B C D

A′ B ′ C′ D′
A′′ B ′′ C′′ D′′









1
ν

ν2

ν3



 . (20)

Applying the Galois action to the column vectors in (20) we have




1 1 1 1
π σ(π) σ 2(π) σ 3(π)

π2 σ(π2) σ 2(π2) σ 3(π2)

π3 σ(π3) σ 2(π3) σ 3(π3)



=





1 0 0 0
A B C D

A′ B ′ C′ D′
A′′ B ′′ C′′ D′′









1 1 1 1
ν ν3 ν4 ν2

ν2 ν ν3 ν4

ν3 ν4 ν2 ν



 (21)

The outer matrices in (21) are of Vandermonde form. Taking determinants and
using (9) and (10) we find that





1 0 0 0
A B C D

A′ B ′ C′ D′
A′′ B ′′ C′′ D′′



=125p(c−d)6(5c2+5cd+10c−5d2−10d−4). (22)
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Since c� d, p∼ c4, and r ∼ c8, we deduce that the determinant is nonzero and
cannot be divisible by the prime r. Then we can invert (19) and obtain





1
ψ

ψ2

ψ3



=





1 0 0 0
tA tB tC tD
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗









1
φ

φ2

φ3



 , (23)

where the denominators of tA, tB, tC, tD are prime to r. This gives

ψ= tA+ tBφ+ tCφ2+ tDφ3

= (tA+ tB + tC + tD)− tB(1−φ)− tC(1−φ2)− tD(1−φ3),

hence

ψ∼ [tA+ tB + tC + tD] on JH (Fp), (24)

because any endomorphism which factors through 1 − φ vanishes on JH (Fp).
Note that tA+ tB + tC + tD may be interpreted as an integer (mod r), because the
denominators of the t ’s are prime to r.

7. The Shamir–Gallant Speedup

We next apply this apparatus to enable the use of the Gallant–Shamir speed-ups
for scalar multiplication, as was done in [1] for elliptic curves. We develop a pro-
cedure which, given an integer N with 1≤N≤ r, produces integers e, f, g, h of size
around 4

√
#JH (Fp) such that [N ]P = [e]+ [f ]ψ+ [g]ψ2+ [h]ψ3(P ).

The ring Z[ν] is norm-Euclidean (see, for example, [8]). Thus, given γ ∈K, there
exists an element Round(γ )∈O such that

Norm(γ −Round(γ ))<1.

This leads to a bound on the norm of Round(γ ); however, this is not good
enough to control the individual coefficients of νk in Round(γ ), owing to the pres-
ence of non-torsion units in K. Instead, we will define a function Near(γ ) which
produces an element of O which does give control over the coefficients of νk.

An arbitrary γ ∈K can be written uniquely as

γ = (e+ ε0)+ (f + ε1)ν+ (g+ ε2)ν
2+ (h+ ε3)ν

3,

where e, f, g, h∈Z and −1/2≤ εi <1/2. Then we define

Near(γ )= e+f ν+gν2+hν3.

Thus, Near rounds each coefficient of νk to its nearest integer in the usual sense.
In the notation we have developed so far, let

δ=1−π =1−A−Bν−Cν2−Dν3.
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Then Norm(δ)= r=#JH (Fp), and the endomorphism corresponding to δ, namely
1−φ=1−A−Bψ −Cψ2−Dψ3, annihilates JH (Fp). For an arbitrary integer N
with 1≤N <r define

N mod δ=N − δ ·Near(N/δ). (25)

Then we have

N/δ−Near(N/δ)= ε0+ ε1ν+ ε2ν
2+ ε3ν

3

for εi as above. It follows that

N (mod δ)= δ · (N/δ−Near(N/δ))

= (ε0+ ε1ν+ ε2ν
2+ ε3ν

3)(1−A−Bν−Cν2−Dν3)

=A0+B0ν+C0ν
2+D0ν

3,

where

A0= ε0− ε0A+ ε1D+ ε2C− ε2D+ ε3B− ε3C

B0= ε1− ε0B− ε1A+ ε1D+ ε3B+ ε2C− ε3D

C0= ε2− ε0C− ε1B+ ε1D− ε2A+ ε2C+ ε3B

D0= ε3− ε0D− ε1C+ ε1D− ε2B+ ε2C− ε3A+ ε3B.

It is clear that

|A0|, |B0|, |C0|, |D0|≤4 max{|A|, |B|, |C|, |D|}.

Each of A,B,C,D has order of magnitude c2, since c�d. Since the order of the
Jacobian JH (Fp) is approximately c8, we have found the representation

N mod δ=A0+B0ν+C0ν
2+D0ν

3

which we sought.

8. Example Parameters

We illustrate by constructing parameters for a hyperelliptic cryptosystem of target
size 256 bits. We begin with the ID string

ID=brownmyerssolinas.

First we compute the SHA-1 hash of the ID, obtaining the hexadecimal number

df9c28d9d642b7ff02a44a478bac3c3f83195f0f.
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This is a 160-bit output; however, we only require 32 bits for the value of c in
Algorithm 1. The low-order word of the hash (83195f0f) converts to the deci-
mal number c=2199478031. Then a run of just over 1 minute using MAGMA on a
233 MHz laptop produces

p=585082181864813635386537995607105571411

r=342321159535690857663043680151780537625\
706105443175156728159583637018640403151

d=2786.

Here p has 129 bits and r has 258 bits. We easily verify with MAGMA that the
Jacobian of y2=x5+8 defined over Fp has order r.

Note

1. In fact, a result of Iwasawa [6] implies that π ≡−1 (mod (1− ν)3), so NormK/Q(1+π) is actually
divisible by 125.
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