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1. Introduction. Let a and n > 0 be integers, and define G(a, n) to be the
directed graph with vertex set V = {0, 1, . . . , n− 1} such that there is an arc from
x to y if and only if y ≡ ax ( mod n). Recently, Ehrlich [1] studied these graphs in
the special case a = 2 and n odd. He proved that if n is odd, then the number of
cycles in G(2, n) is odd or even according as 2 is or is not a quadratic residue mod
n. The aim of this paper is to give the analogous results for all a and all positive n.
In particular, we show that if a and n are relatively prime, and n is odd, then the
number of cycles in G(a, n) is odd or even according as a is or is not a quadratic
residue mod n.

Define GP (a, n) be the directed graph with vertex set V = {0, 1, . . . , n − 1}
such that there is an arc from x to y if and only if y ≡ xa ( mod n). We determine
the number of cycles in GP (a, n) for n a prime power.

2. Preliminary Results. We require a few lemmas. In what follows, write d|n to
mean that d is a divisor of n, and let (x, y) and [x, y] denote the greatest common
divisor (GCD) and least common multiple (LCM), respectively, of x and y. If
(a,m) = 1, then (a/m) denotes the familiar Legendre–Jacobi quadratic residue
symbol. Finally, let Un = {x : 1 ≤ x ≤ n and (x, n) = 1}, let ϕ(n) denote the Euler
phi–function, and if (a, n) = 1, then let ordn(a) be the least positive integer r such
that ar ≡ 1 (mod n).

Lemma 1. Let (a, n) = 1. If (x1, x2, . . . , xr) is a cycle in G(a, n), then (n, xi) is
the same for each i, 1 ≤ i ≤ r.

Proof. Let (x1, x2, . . . , xr) be a cycle in G(a, n). Since (a, n) = 1, it follows that
(n, x2) = (n, ax1) = (n, x1) = 1, and so for each i, (n, xi) = (n, x1) by induction.
[We shall call this common value of (n, xi) the GCD of the cycle (x1, x2, . . . , xr).]

For arbitrary a and n, let C(a, n) denote the number of cycles in G(a, n), and
let c(a, n, d) be the number of cycles in G(a, n) with GCD d.

Lemma 2. Let (a, n) = 1. Then c(a, n, 1) =
ϕ(n)

ordn(a)
.

For example, let a = 3 and n = 65. Then ϕ(65) = 48, ord5(3) = 4, ord13(3) = 3
and so ord65(3) = 12. Thus, c(3, 65, 1) = 48/12 = 4, and the four relevant cycles
are

(1, 3, 9, 27, 16, 48, 14, 42, 61, 53, 29, 22),

(2, 6, 18, 54, 32, 31, 28, 19, 57, 41, 58, 44),

(4, 12, 36, 43, 64, 62, 56, 38, 49, 17, 51, 23), and

(7, 21, 63, 59, 47, 11, 33, 34, 37, 46, 8, 24).

Proof. Let r = ordn(a). Then the elements of the cycle (1, a, . . . , ar−1) form a
subgroup < a > of Un of order r. The claim is that the cosets of < a > in Un and
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the cycles in G(a, n) with GCD 1 are in one–to–one correspondence. For, writing
x ∼ y to mean that x and y are in the same coset of < a > in Un, we see that
x ∼ y if and only if x−1y ≡ ai (mod n), for some integer i. But this is precisely
the condition that x and y lie on a cycle in G(a, n). Hence, c(a, n, 1) is equal to
the number of cosets of < a > in Un, i.e. the index of < a > in Un. But since the

group Un has order ϕ(n), this index is just
ϕ(n)

ordn(a)
.

Lemma 3. If (a, n) = 1, and d|n, then c(a, n, d) = c(a,
n

d
, 1).

For example, the cycles in G(2, 45) with GCD 3 are (3, 6, 12, 24) and (21, 42, 39, 33);
the corresponding cycles in G(2, 15) with GCD 1 are (1, 2, 4, 8) and (7, 14, 13, 11).

Proof. Let (x1, x2, . . . , xr) be a cycle in G(a, n) with GCD d. Then x2 ≡ ax1, . . . ,
xr ≡ ar−1x1 and x1 ≡ arx1 (mod n) with r positive and minimal. This is true if and
only if (1, a, . . . , ar−1) is a cycle in G(a,

n

(n, x1)
) = G(a,

n

d
) (clearly with GCD 1).

Hence, each cycle in G(a, n) with GCD d has length r = ordn/d(a). Furthermore,
x and y lie on a cycle in G(a, n) with GCD d if and only if y ≡ xai (mod n), i.e.
y

d
≡ x

d
ai (mod

n

d
) — which is precisely the condition that

x

d
and

y

d
lie on a cycle

in G(a,
n

d
). Hence the number of cycles in G(a, n) with GCD d is the same as the

number of cycles in G(a,
n

d
) with GCD 1. That is, c(a, n, d) = c(a,

n

d
, 1).

We are now ready for the main result of this section.

THEOREM A. If (a, n) = 1, then

C(a, n) =
∑

d|n

ϕ(d)
ordd(a)

.

Thus,

C(5, 77) =
ϕ(1)

ord1(5)
+

ϕ(7)
ord7(5)

+
ϕ(11)

ord11(5)
+

ϕ(77)
ord77(5)

=
1
1

+
6
6

+
10
5

+
60
30

= 1 + 1 + 2 + 2 = 6.

Proof. For,

C(a, n) =
∑

d|n
c(a, n, d)

=
∑

d|n
c(a,

n

d
, 1) (by Lemma 3)

=
∑

d|n
c(a, d, 1) (by reordering the sum)

=
∑

d|n

ϕ(d)
ordd(a)

(by Lemma 2).



3

3. The parity of C(a, n) for (a, n) = 1. Next, we determine the parity of the
number of cycles in G(a, n) with GCD 1; from that, we determine the parity of
C(a, n) for (a, n) = 1.

Lemma 4. Let p be an odd prime, let r be a positive integer and let (a, p) = 1.
Put p − 1 = 2sq, where q is odd. (a) If (a/p) = 1, then ordpr (a)|2s−1qpr−1. (b) If
(a/p) = −1, then 2s|ordpr (a).

Proof. Euler’s criterion for the Legendre symbol states that (a/p) ≡ a(p−1)/2 (mod
p). Thus, if p − 1 = 2sq, where q is odd, then (a/p) ≡ a2s−1q (mod p). We have
two cases:

(a) If (a/p) = 1, then a2s−1q ≡ 1 (mod p), so that ordp(a)|2s−1q. If
the statement is true for some r ≥ 1, then a2s−1qpr−1

= 1 + kpr; raising both
sides to the pth power, we have a2s−1qpr

= (1 + kpr)p ≡ 1 (mod pr+1). Hence,
ordpr (a)|2s−1qpr−1 by induction.

(b) If (a/p) = −1, then a2s−1q ≡ −1 (mod p), so that 2s|ordp(a). Since
ordp(a) is a divisor of ordpr (a) for r ≥ 1, we are done.

Lemma 5. Let (a, n) = 1 with n odd. If n = pr, where p is a prime and if
(a/p) = −1, then c(a, n, 1) is odd; in all other cases, c(a, n, 1) is even.

Proof. Let p−1 = 2sq, where q is odd. By Lemma 4, if (a/p) = −1, then ordpr (a) =
2sk with k odd. Since ϕ(pr) = pr−1(p − 1) = pr−12sq, it follows from Lemma 2
that

c(a, pr, 1) =
ϕ(pr)

ordpr (a)
=

pr−1q

k
,

which is an odd number. Hence c(a, pr, 1) is odd.
We must now show that in all other cases, c(a, n, 1) is even.
First, if n = pr with p as above, and if (a/p) = 1, then the highest power of

2 dividing ordpr (a) is 2s−1. Since 2s|ϕ(pr), it follows that the fraction ϕ(pr)
ordpr (a) is

even.
Next, if n =

∏g
i=1 pei

i with g > 1 and pi − 1 = 2siqi, then

ordn(a) | [pe1−1
1 · 2s1q1, . . . , peg−1

g · 2sgqg

]
=

g∏

i=1

pei−1
i

[
q1, . . . , qg

] · 2M ,

where M = max(s1, . . . , sg). Now let S =
∑g

i=1 si. Since n is divisible by at least

two distinct odd primes, it follows that S > M , so that c(a, n, 1) =
ϕ(n)

ordn(a)
is

divisible by 2S−M . Hence, c(a, n, 1) is even.

A slight modification of the above proof yields the following:

Lemma 6. Let (a, n) = 1 with n even.
(a) If n is divisible either by 8 or by more than one odd prime, or if n = 4pe

with p an odd prime, then c(a, n, 1) is even.
(b) If p is an odd prime, then c(a, pe, 1) = c(a, 2pe, 1).

(c) c(a, 1, 1) = c(a, 2, 1) = 1 and c(a, 4, 1) =
(−1/a) + 3

2
.

We may now prove our main results.
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THEOREM B. Let a and n be relatively prime, and let n be odd. Then the
number of cycles in G(a, n) is odd or even according as a is or is not a quadratic

residue mod n. That is, C(a, n) ≡ 1 + (a/n)
2

( mod 2).

For example, C(3, 1001) is even because (3/1001) = (1001/3) = (2/3) = −1.
A bit of direct calculation reveals that ord7(3) = 6, ord11(3) = 5 and ord13(3) = 3,
so that

C(3, 1001) =
∑

d|1001

ϕ(d)
ordd(a)

= 1 +
6
6

+
10
5

+
12
3

+
60
30

+
72
6

+
120
15

+
720
30

= 1 + 1 + 2 + 4 + 2 + 12 + 8 + 24 = 54,

which is indeed even. Somewhat more tricky is the evaluation of C(2159, pq), where
p = 2059094018064827312345603 and q = 534286141271831814831333517 are both
primes. However, since pq ≡ 3 (mod 4), we see that (2159/pq) = − (pq/2159) =
− (743/2159) = (2159/743), which reduces to the product (2/673)(8/35), or −1.
Hence C(2159, pq) is even.

Proof. Let n =
∏g

i=1 pei
i with each pi odd, and suppose (a, n) = 1. It follows from

Theorem A and Lemma 5 that

C(a, n) =
∑

d|n

ϕ(d)
ordd(a)

≡ 1 +
g∑

i=1

ei∑

j=1

ϕ(pj
i )

ordpj
i
(a)

( mod 2),

since all other terms are even. If we order the primes pi so that for some integer f
(which might be 0), (a/pi) = 1 if and only if i > f , then we see that

C(a, n) ≡ 1 +
∑

i≤f

ei∑

j=1

1 (mod 2)

≡ 1 +
∑

i≤f

ei (mod 2).

On the other hand, since n is odd and (a, n) = 1, we use the well–known properties
of the Legendre and Jacobi symbols to see that

(a/n) =
g∏

i=1

(a/pi)ei

=
∏

i≤f

(−1)ei (since (a/pi) = 1 for i > f)

= (−1)
∑

i≤f ei , so that

(−1)C(a,n) ≡ (−1)1+
∑

i≤f ei ≡ − (a/n) (mod 2).

Hence C(a, n) is odd if (a/n) = 1, and C(a, n) is even if (a/n) = −1, and we are
done.
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THEOREM C. Let a and n be relatively prime, let n be even, and write n = 2en′,
where n′ is odd.

(a) If e = 1, then G(a, n) has an even number of cycles.
(b) If e ≥ 2, then the number of cycles in G(a, n) is even or odd according as

−1 is or is not a quadratic residue mod n′. That is,

C(a, n) ≡ 1 − (−1/n′)
2

( mod 2).

Proof. Theorem C follows from Theorem A and Lemma 6 in the same way thatThe-
orem B follows from Theorem A and Lemma 5.

4. The parity of C(a, n) for arbitrary a and n. We are now ready to extend
Theorems B and C to the graphs G(a, n), where a and n are not relatively prime.
The principal observation is the correspondence between the cycles in G(a, qm) and
the cycles in G(a,m). Specifically, we have the following:

Lemma 7. Suppose (m,a) = 1 and suppose that each prime divisor of q divides a.
Then C(a, qm) = C(a,m).

Proof. Let x be an integer mod qm. We may write x = (xa, y), where (y, a) = 1
and each prime divisor of xa divides a. Thus, (xa, q) = 1. Now let i ≥ 0 and r > 0
be minimal and satisfy

ai+rx ≡ aix (mod qm).

This happens if and only if y(ar − 1)(aixa) ≡ 0 (mod qm). But (aixa, q) = 1, and
(y(ar − 1),m) = 1. Hence, the above congruence holds if and only if

q|y(ar − 1) and m|aixa.

Thus, (aix, . . . , ai+r−1x) is a cycle in G(a, qm) if and only if i is the least non-
negative integer such that m|aix and (y, ay, . . . , ar−1y) is a cycle in G(a, q), where
y is the largest divisor of x relatively prime to m. But this means that the cy-
cles of G(a, qm) and the cycles of G(a, q) are in one–to–one correspondence, i.e.
C(a, qm) = C(a,m).

As a direct consequence of Lemma 7, we have the following result:

THEOREM D. If a and n are positive integers, then the parity of C(a, n) is equal
to the parity of C(a, n′), where n′ is the largest divisor of n that is relatively prime
to a.

5. The cycle structure of the graphs GP (a, n) for n a prime. Let GP (a, n)
be the directed graph with vertex set V = {0, 1, . . . , n − 1} such that there is an
arc from x to y if and only if y ≡ xa ( mod n). Let CP (a, n) denote the number of
cycles in the graph GP (a, n).

There are some interesting differences between the graphs GP (a, n) and G(a, n).
For example, if (a, n) = 1, then every vertex of G(a, n) lies on a cycle. This is not
the case for the vertices of GP (a, n). If pn is a prime power, then GP (a, pn) looks
like a union of charm bracelets, with each charm a tree that corresponds to a
coset of a certain subgroup U of roots of unity mod pn. In particular, if we write
ϕ(pn) = qr, where (q, a) = 1, every prime divisor of r divides a, and m is the least
positive integer such that r|am, then U consists of the amth roots of unity mod
ϕ(pn).

Our principal result of this section is the following theorem:
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THEOREM P. If pn is an odd prime, then there is a one–to–one correspondence
between the cycles of GP (a, pn) and the cycles of G(a, q), where q is the largest
divisor of ϕ(pn) that is relatively prime to a. Furthermore,

CP (a, pn) = 1 +
∑

d|ϕ(pn), (d,a)=1

ϕ(d)
ordd(a)

.

The following lemma leads us to the proof of Theorem P.

Lemma 8. Let pn be a prime power; let g be a primitive root (mod p); let (a, p) = 1
and write ϕ(pn) = qr, where (q, a) = 1 and every prime divisor of r divides a. Then
x and y lie on a cycle in GP (a, pn) if and only if either (a) there exist integers j
and k such that x ≡ grj (mod pn), y ≡ grk (mod p), and j and k lie on a cycle of
G(a, q), or (b) x = y = 0.

Proof. If p|x, then for some positive integer s, xas ≡ 0 (mod pn). Thus, if p|x, then
x lies on a cycle in GP (a, pn) if and only if x ≡ 0 (mod pn). From here on, we
assume that x and y are relatively prime to p.

If x is a vertex of GP (a, pn), then we may write x ≡ gt (mod pn) for some
integer t with 0 ≤ t < ϕ(pn). Let us first show that x lies on a cycle of GP (a, pn)
if and only if r|t. We have the following sequence of equivalent statements:

x lies on a cycle of GP (a, pn)

if and only if xas ≡ x ( mod pn) for some positive integer s

if and only if gt(as−1) ≡ 1 ( mod pn) for some positive integer s

if and only if ϕ(pn)|t(as − 1).

Hence, if x lies on a cycle of GP (a, pn), then rq|t(as − 1). Now each prime divisor
of r divides a, so it follows that (r, as − 1) = 1. We conclude that r|t.

Conversely, suppose that r|t, so that x ≡ grj (mod pn) for some integer j. If
j = 0, then x = 1, which is clearly on its own cycle; since gϕ(pn) ≡ 1 (mod pn), we
may assume that 1 ≤ j ≤ q − 1. The above argument shows that x is on a cycle
if and only if rq|rj(as − 1) for some integer s. Since 1 ≤ j ≤ q − 1, it follows that
q|(as−1). In particular, if s = ordq(a), then we may conclude that x lies on a cycle
of length s.

Next, x and y will lie on a common cycle if and only if x ≡ grj (mod pn) and
y ≡ grk (mod pn) lie on a common cycle of GP (a, pn). It is straightforward to
verify that this happens if and only if there exists an integer m such that jam ≡ k
(mod q) — i.e., that j and k lie on a cycle of G(a, q).

Finally, if
(j, ja, . . . , k ≡ jam, . . . , jas−1)

is a cycle in G(a, q), then it follows that s = ordq(a), which means that

(grj , grja, . . . , grjam

, . . . , grjas−1
)

is a cycle in PG(a, pn), and we are done.

Theorem P now follows from Lemma 8 and Theorem A, and from the fact that
there is one extra cycle in PG(a, pn) — the cycle consisting of the directed loop
from the vertex 0 to itself.
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