
For n = 2, k ≥ 3, all pairs of nilpotent matrices satisfy (1), but not all nilpotent matri-
ces of size 2 commute, e.g.,

A =
[

0 1
0 0

]
, and B =

[
1 −1
1 −1

]
.
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REFERENCES

1. S. H. Weintraub, A Guide to Advanced Linear Algebra, The Dolciani Mathematical Expositions, Vol. 44,
MAA Guides, 6, Mathematical Association of America, Washington, DC, 2011.

2. M. Balaj, Romanian National Mathematical Olympiad, Problems and Solutions—11th grade, April 2011,
available at http://www.onm2011.isjbihor.ro/subiecte/finala11_sol.pdf (in Romanian).

Algorithms Project, Inria Paris-Rocquencourt, 78153 Le Chesnay, France
Alin.Bostan@inria.fr

Observatoire de Paris, 77 Avenue Denfert-Rochereau, 75014 Paris, France
Combot@imcce.fr

Generalizing Gauss’s Gem

Ezra Brown and Marc Chamberland

Abstract. Gauss’s Cyclotomic Formula is extended to a formula with p variables, where p is
an odd prime. This new formula involves the determinant of a circulant matrix. An application
involving the Wendt determinant is given.

Gauss’s Cyclotomic Formula [3, pp. 425–428, p. 467] is a neglected mathematical
wonder.

Theorem 1 (Gauss). Let p be an odd prime and set p′ = (−1)(p−1)/2 p. Then there
exist integer polynomials R(x, y) and S(x, y) such that

4(x p + y p)

x + y
= R(x, y)2 − p′S(x, y)2.

The goal of this note is to generalize this theorem. Denote a circulant matrix as

circ(x1, x2, . . . , x p) =




x1 x2 x3 · · · x p

x p x1 x2 · · · x p−1

x p−1 x p x1 · · · x p−2
...

...
...

. . .
...

x2 x3 x4 · · · x1



.
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Let
(

j
p

)
be the Legendre symbol, that is, for j 6≡ 0 (mod p),

(
j
p

)
= 1 or−1 according

as j is or is not a quadratic residue mod p. A multivariable generalization of Theorem
1 follows. Theorem 1 is a special case of Theorem 2 with x3 = · · · = x p = 0.

Theorem 2. Let p be an odd prime and p′ = (−1)(p−1)/2 p. Then there exist integer
polynomials R(x1, x2, . . . , x p) and S(x1, x2, . . . , x p) such that

4 · det(circ(x1, x2, . . . , x p))

x1 + x2 + · · · + x p
= R(x1, x2, . . . , x p)

2 − p′S(x1, x2, . . . , x p)
2.

Specifically, one can take R(x1, x2, . . . , x p) = A + B and S(x1, x2, . . . , x p) =
(A − B)/

√
p′ where

A =
∏
(

j
p

)
=1

(x1 + ζ j x2 + ζ 2 j x3 + · · · + ζ (p−1) j x p),

B =
∏

(
j
p

)
=−1

(x1 + ζ j x2 + ζ 2 j x3 + · · · + ζ (p−1) j x p),

and ζ is a primitive pth root of unity.

Proof. It is well-known [4] that

det(circ(x1, x2, . . . , x p))

x1 + x2 + · · · + x p
=

p−1∏

j=1

(x1 + ζ j x2 + ζ 2 j x3 + · · · + ζ (p−1) j x p). (1)

The choice of R and S given above then easily satisfy the desired equation,

R2 − p′S2 = (A + B)2 − p′
(

A − B√
p′

)2

= 4AB

= 4
p−1∏

j=1

p∑

i=1

xiζ
j (i−1)

= 4 · det(circ(x1, x2, . . . , x p))

x1 + x2 + · · · + x p
.

The challenge now is to show that both R and S are polynomials with integer coeffi-
cients.

Let p be a prime > 3, let p′ = (−1)(p−1)/2 p, let ζ be a primitive pth root of unity,
and let K = Q(ζ ) be the cyclotomic field of pth roots of unity. For any integer k such
that 1 ≤ k ≤ p − 1, define the mapping σk on K by setting σk(ζ ) = ζ k and extending
the map linearly. Then K is a Galois extension of degree p − 1 over the rational field
Q with cyclic Galois group G = {σk |1 ≤ k ≤ p − 1}. G also acts on Q(ζ )[x1, . . . , x p]
by setting σk(xi ) = xi and extending the action linearly; see [2, p. 596ff] for details
and further information.
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Let α =∑(r/p)=1 ζ
r and β =∑(n/p)=−1 ζ

n . A bit of algebra shows that β = −α −
1 and αβ = (1− p′)/4; thus, α = (−1±√p′)/2 and β = (−1∓√p′)/2, for some
choice of signs. The set of mappings H = {σk |(k/p) = 1} is a subgroup of G of
index 2, whose fixed field is the quadratic field Q(α). Note that both A and B are
in Z(ζ )[x1, . . . , x p]. We now show that A + B ∈ Z[x1, . . . , x p] and that A − B ∈
Z(α)[x1, . . . , x p].

The product rule for the Legendre symbol states that if j and k are relatively prime
to p then

(
jk

p

)
=
(

j

p

)(
k

p

)
.

Thus, if
(

k
p

)
= 1, then replacing ζ by ζ k in A and B permutes the factors of A and the

factors of B. Similarly, if
(

k
p

)
= −1, then replacing ζ by ζ k in A and B exchanges

the factors of A with the factors of B. It follows that if
(

k
p

)
= 1, then the action of σk

on Q(ζ )[x1, . . . , x p] fixes both A and B, while if
(

k
p

)
= −1, then the action of σk on

Q(ζ )[x1, . . . , x p] interchanges A and B. We conclude that σk(A + B) = A + B for
all k, so that A + B is invariant under the action of every element of the Galois group
G. Thus, the coefficients of A + B lie in the fixed field of G, namely the rational field
Q, and so A + B ∈ Q[x1, . . . , x p]. But A + B ∈ Z(ζ )[x1, . . . , x p], so it follows that
R = A + B is a polynomial with integer coefficients.

We now turn to S = (A− B)/
√

p′. By previous results, the coefficients of A and B
are in the field fixed by the index-2 subgroup H of the Galois group G, namely Q(α).
Since A, B ∈ Z(ζ )[x1, . . . , x p], it follows that both A and B are in Z(α)[x1, . . . , x p].
Hence, there exist polynomials f = f (x1, . . . , x p) and g = g(x1, . . . , x p)with integer
coefficients such that A = f + gα.

Let n be a fixed quadratic nonresidue mod p. The nontrivial automorphism of Q(α)
sends α to β. As A is not fixed by σn , we see that σn(α) = β. Hence,

B = σn(A) = σn( f + gα) = f + gβ.

It follows that A− B = g(α − β), where g has integer coefficients. Then, by previous
work and a little more algebra, we see that α − β = ±√p′. It follows that

S = A − B√
p′
= ±g

√
p′√

p′
= ±g,

a polynomial with integer coefficients.

In the case when p ≡ 1 mod 4, the functions R and S given in Theorem 2 are not
unique. The Pell equation

x2 − py2 = 1 (2)

has infinitely many integer solutions for any prime p (see [1]). Since

(x2
1 − py2

1)(x
2
2 − py2

2) = (x1x2 + py1 y2)
2 − p(x1 y2 + x2 y1)

2,

any solution (x, y) to equation (2) may be used in conjunction with the solution (R, S)
in Theorem 2 to produce another pair of polynomials
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R′ = x R + pyS, S′ = x S + y R.

which make Theorem 2 work. Indeed, infinitely many such R and S exist.
The polynomials R and S rapidly grow in size. For p = 5, one has

R = 2 x1
2 − x2x5 − x5x3 − x2x1 + 2 x2

2 − x1x3 − x5x4 − x3x2 − x1x4

− x2x4 + 2 x3
2 + 2 x5

2 − x1x5 − x4x3 + 2 x4
2

and

S = −x2x4 − x1x4 + x4x3 + x5x4 − x5x3 + x3x2 + x1x5 − x1x3 + x2x1 − x2x5.

For p = 7, R has 84 terms and S has 56 terms.
A simple application of Theorem 2 involves a determinant considered by Wendt

in conjunction with Fermat’s Last Theorem. The so-called Wendt determinant is de-
fined by

Wn = det

(
circ

((
n

0

)
,

(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n − 1

)))
.

E. Lehmer claimed (later proved by J.S. Frame [5, p.128]) that

Wn = (−1)n−1(2n − 1)u2

for some u ∈ N. Since

n−1∑

k=0

(
n

k

)
= 2n − 1,

if n is an odd prime p, Theorem 2 implies

(2u)2 = R2 − p′S2

for some integers u, R, and S. This equation clearly has a trivial solution if S = 0.
This situation occurs when p ≡ −1 (mod 4) since

B =
∏

(
j
p

)
=−1

(
(1+ ζ j )p − 1

)

=
∏
(

j
p

)
=1

(
(1+ ζ− j )p − 1

)

=
∏
(

j
p

)
=1

(
(1+ ζ j )p − 1

)

= A.

The first few cases where S 6= 0 are

222 = 1472 − 5 · 652,

154314145982 = 205223870910912 − 13 · 56918844641232,
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10627236924349428862 = 89544370675021535714607142

− 17 · 21717699910151280352033202

and

87189395724962931255918190553412248667067025506452753022

= 88018669156563977160215195322586873627724099621799807903740474067884272

−29 · 16344656534922192023242175836000067824599211903088364460383756684515252.
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Norms as a Function of p Are Linearly
Independent in Finite Dimensions

Greg Kuperberg

Abstract. We show that there are no non-trivial linear dependencies among p-norms of vectors
in finite dimensions that hold for all p. The proof is by complex analytic continuation.

Theorem 1. Let v1, v2, . . . , vn be non-zero vectors with vk ∈ Rdk . Suppose that

α1||v1||p + α2||v2||p + · · · + αn||vn||p = 0 (1)

for all p ∈ [a, b] with 1 ≤ a < b ≤ ∞. Then the equation is trivial in the following
sense. Call two of the vectors equivalent if they differ by adding zeros, permuting or
negating coordinates, and rescaling. Then the terms of (1) in each equivalence class,
with the given coefficients, already sum to zero.

The result was stated as a question by Steve Flammia on MathOverflow.
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