
Elliptic Curves from Mordell to Diophantus
and Back

Ezra Brown and Bruce T. Myers

1. DIOPHANTUS, MORDELL, AND RATIONAL POINTS ON ELLIPTIC
CURVES.
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Figure 1. The First Elliptic Curve.

Many years ago, one of us was reading through L. J. Mordell’s “Diophantine Equa-
tions” and was struck by a curious statement—namely, that the curve C : y2 = x3 + 17
contains exactly sixteen points (x, y) with x and y integers (see [6, p. 250]). A list of
the points followed.

Many questions immediately came to mind. How did they find these points, called
integer points? How did they prove that these were the only ones on that curve? Why
do some curves have many integer points and others, such as the one with equation
y2 = x3 + 13, have none? Are there curves with more integer points than C?

Many years later, we found some answers to these and other questions. The path
on which our investigations took us began with Mordell’s book and proceeded to
Diophantus, to the “Arithmetica,” to the first appearance of those wonders known as
elliptic curves, to a certain family of elliptic curves, and back to Mordell. What we’re
going to do in this paper is to tell the story of what we found. In particular, we will:

• tell you what elliptic curves are (C is one, by the way)
• describe Diophantus’ problem in which elliptic curves made their first appearance

in the mathematical world
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• exhibit a family of elliptic curves Em , some of which have many more integer points
than C

• tell about the rank of an elliptic curve (which was studied in great detail by Mor-
dell, incidentally) and give a simple proof that if m ≥ 2, then the rank of Em is at
least 2. By simple, we mean that—except for a couple of assumptions about ranks
of curves—the proofs use nothing more complicated than congruences, the Least
Integer Principle, elementary properties of finite groups, an old result of Fermat, and
a formula for the double of a point on an elliptic curve

• prove that for infinitely many m the rank of Em is at least 3.

And now, on to—yes? Oh. What are the eight integer points on C with positive
y-coordinates? Well, the x-coordinate has one digit in five of them and two digits in
two others. We’ll talk about the eighth point later.

And now, on to Diophantus!

2. DIOPHANTUS AND ELLIPTIC CURVES. For us, an elliptic curve is a curve E
defined over the rationals by an equation of the form

y2 = x3 + ax + b,

where a and b are rational and the cubic x3 + ax + b has distinct roots. They are
among the most closely studied and fascinating objects in all of mathematics, and they
make their mathematical debut in Diophantus of Alexandria’s Arithmetica [5]. This
book is a treasure trove for anyone interested in the early history of number theory,
and I. G. Bashmakova [1] has written a particularly insightful presentation of this
early gem for the modern reader. We first encounter elliptic curves in Problem 24 of
Book IV, which reads as follows: “To divide a given number into two numbers such
that their product is a cube minus its side.”

If we call Diophantus’ given number a, the task is to find x and y such that

y(a − y) = x3 − x . (1)

Diophantus solves the problem for a = 6 by substituting x = ky − 1 and choos-
ing the value k = 3; this causes the resulting polynomial in y to have only a cubic
and quadratic term. Ignoring the double root y = 0, he obtains y = 26/27 and thus
x = 17/9.

A modern interpretation of Diophantus’ solution goes like this: construct the tangent
line to the curve at the point (0, −1) and find the point (17/9, 26/27) where the tangent
re-intersects the curve. The solution to the problem is therefore 6 = 26/27 + 136/27,
and the product of those two numbers is (17/9)3 − (17/9).

Following Diophantus, set a = 6 in (1). If we subtract 9 from both sides and replace
y by y + 3 and x by −x , we transform the curve corresponding to (1) into the curve E3:
y2 = x3 − x + 9 (we will explain the name shortly). Since the cubic x3 − x + 9 has
distinct roots, E3 is an elliptic curve. The points (−1, 0) and (17/9, 26/27) correspond
to R = (1, −3) and R ∗ R = (−17/9, −55/27), respectively. (We define the opera-
tion ∗ in Section 3.) Reflecting R in the x-axis reveals the point 2R = (−17/9, 55/27),
which—as we shall see—is the double of the point R in the group E3 of points on this
curve. This reveals that Diophantus really discovered the method of doubling points
on elliptic curves—although he probably didn’t know it at the time.

The points of E are the pairs (x, y) of algebraic numbers that are solutions to this
cubic, together with a unique point at infinity, denoted O. It is a fact that the points
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of E form an abelian group with O as the identity point, under an operation known as
chord-and-tangent addition; we give a brief review of this operation in Section 3.

Before we go on, here is a bit of terminology we’ll need. A point (x, y) on E
is called a rational (respectively, integer) point if its coordinates x and y are in Q
(respectively, in Z); O is considered an integer (hence, a rational) point. This implies
that our curve C : y2 = x3 + 17 has exactly 17 integer points. As noted, the set of
points on E forms an abelian group, of which the rational points E(Q) are a subgroup.
A torsion point of E is a point of finite order in this group. The rational torsion points
of E form a subgroup E(Q)TORS of the group ETORS of all torsion points of E .

One of the major results in the field is that E(Q) is a finitely generated abelian group
isomorphic to Zr ⊕ E(Q)TORS for some integer r ; r is called the rank of E . Learning
that this theorem is due to none other than L. J. Mordell was a revelation to one of us,
as was the fact that E(Q) is called the Mordell–Weil group.

Back to E3: A bit of numerical experimentation revealed that E3 has several obvious
integer points, namely P := (0, 3), Q := (−1, 3), R := (1, −3), and (9, 27), as well
as the nonobvious points (35, 207) and (37, 225) and the completely unanticipated
point (46584, 10054377). It turned out that in the group Em(Q) of rational points on
Em , R = P + Q, (9, 27) = P + 2Q, (35, 207) = 2P + Q, (37, 225) = −P + Q, and
(46584, 10054377) = 3P .

Struck by this unexpected turn of events, we wondered if this is true in a more
general setting, so we looked for integer points on the family of curves

Em : y2 = x3 − x + m2 (2)

for m a nonnegative integer, which we call Diophantine elliptic curves in honor of
their originator. We discovered that this pattern does persist. That is, Em always has
the following integer points:

P = (0, m),

Q = (−1, m),

P + Q = (1, −m),

P + 2Q = (m2, m3), (3)

2P + Q = (4m2 − 1, 8m3 − 3m),

P − Q = (4m2 + 1, −8m3 − 3m),

3P = (64m6 − 8m2, 512m9 − 96m5 + 3m),

together with their negatives—the negative of (x, y) is (x, −y)—and the point at in-
finity O, for a total of 15 integer points. Oddly enough, although 3P is always integral,

2P =
(

1

4m2
, −8m4 − 1

8m3

)

is never integral.
But there’s more: Em often has many integer points besides these (Table 1).
In the elliptic curve world, an important problem is to determine the rank and ra-

tional torsion of a given curve. The rational torsion points are easy to determine, but
in general, the rank is not. Using high-powered algorithms of Cremona, the rank can
be computed in some cases [4, pp. 78–97]. It is unknown whether there exist elliptic
curves of arbitrarily high rank.
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TABLE 1. Numbers of integer
points on Em : y2 = x3 − x + m2.

Em Integer points found

E5 31
E25 37
E113 51
E337 77
E8765 85
E297779 107
E765617 181

We ran many experiments using MAGMA and PARI, and found another compelling
aspect of the family of curves Em . Namely, it appears that if m > 1, then their rank is
always at least 2, and frequently much higher, as we can see from Table 2. In addition,
if m > 1, then the points P and Q are always independent in Em(Q)—that is, no
nonzero integers n and k exist for which n P + k Q = O.

TABLE 2. Minimal ranks of some Em : y2 = x3 − x + m2.

r First few m such that rank(Em(Q)) = r

2 2, 3, 4, 6, 9, 10, 18, 21, 26, 30
3 5, 7, 8, 11, 12, 13, 14, 15, 16, 17
4 24, 25, 27, 31, 36, 41, 46, 58, 61, 63
5 113, 127, 163, 176, 181, 209, 215, 245, 283, 317
6 337, 599, 734, 853, 938, 1015, 1153, 1303, 1405, 1907

≥ 7 6310, 8765, 10327, 13411, 13777, 17207, 19013, 21937, 22361
≥ 8 78560, 83459, 146287, 170981, 265919, 297779, 420065, 464855, 466551,

467335
≥ 9 423515, 1395829, 1510627, 1533293, 1741033
≥ 10 765617

Intrigued, we investigated further and were able to prove the following theorem.

Theorem 1. Let m be a nonnegative integer, and let Em be the elliptic curve with
equation y2 = x3 − x + m2.

(a) If m ≥ 1, then Em(Q)TORS = {O}.
(b) If m ≥ 2, then rank(Em(Q)) ≥ 2, and P and Q are independent points.

(c) There are infinitely many values of m for which rank(Em(Q)) ≥ 3.

In contrast with many results in the elliptic curve world, this one has a fairly simple
proof that uses very little heavy machinery. We present this proof in the remainder of
this paper.

Before we do that, let’s talk about how to add points on elliptic curves.

3. ADDITION OF POINTS ON AN ELLIPTIC CURVE. The exact nature of what
Diophantus accomplished in the solution of his Problem 24, Book IV took over 1500
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years to reveal itself completely. In the seventeenth century, Bachet and Fermat de-
scribed algebraic formulas for, in essence, doubling a point, and Newton showed how
the geometry of chords and tangents tied in with the formulas of Bachet and Fermat.
In the nineteenth century, Jacobi and Weierstrass connected these efforts with elliptic
integrals and elliptic functions, and in 1901 Poincaré unified and generalized this work
to algebraic curves.

The point of this work is that if E is an elliptic curve, and if each of A and B is a
point on E , then the chord joining A and B (or the tangent to the curve at A, if A = B)
meets the curve in a unique third point called A ∗ B. The reflection of A ∗ B in the x-
axis yields a unique point, which we call A + B; if A = B, we call this reflection 2A.

For example, in Figure 1 on the right we see the curve E3 : y2 = x3 − x + 9.
This contains the points P = (0, 3), Q = (−1, 3), and R = (1, −3), R correspond-
ing to the point where Diophantus drew his tangent line. The chord joining P and Q
meets E3 in P ∗ Q = (1, 3), and the reflection of P ∗ Q in the x-axis is the point
P + Q = (1, −3). This shows that (0, 3) + (−1, 3) = (1, −3), i.e., P + Q = R. Fur-
thermore, the line tangent to E3 at R meets E3 in R ∗ R = (−17/9, −55/27), and
the reflection of this point in the x-axis is the point 2R = (−17/9, 55/27), the double
of R.

The work of Poincaré showed that the set of points on an elliptic curve E is a group
under this chord-and-tangent addition, the point at infinity O is its identity element, and
the set E(Q) of rational points is a subgroup. Among other curiosities, three points on
the curve are collinear if and only if they sum to O, and the hardest part about verifying
the group axioms is proving associativity!

In Section 5 we make use of a formula for the x-coordinate of the double of a
point, but for the sake of completeness, here are some general formulas for adding and
doubling points on the curve E . Suppose that each of P1 = (x1, y1) and P2 = (x2, y2)

is a point on E : y2 = x3 + ax + b. If x1 = x2 and either y1 �= y2 or y1 = y2 = 0, then
P1 + P2 = O, and we write P2 = −P1. Otherwise, define k by

k =




y2 − y1

x2 − x1
if x1 �= x2,

3x2
1 + a

2y
if x1 = x2.

(4)

Then P1 + P2 = (x3, y3), where

x3 = k2 − x1 − x2,
(5)

y3 = −(y1 + k(x3 − x1)).

As with addition of numbers, we write 2P = P + P, 3P = P + 2P , etc. For example,
for that point R = (1, −3) on E3, you can show that

3R =
(

664

169
,

17811

2197

)
, 4R =

(
257299

27225
,

130479157

4492125

)
.

Exercise. Use these formulas to verify the equalities in equation (3).
Notice that each of the rational points we’ve met so far is of the form (u/r 2, v/r 3)

for integers u, v, and r—for example,

4R =
(

257299

1652
,

130479157

1653

)
.
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In the next section, we prove that this always happens, along the way to showing that
if m > 0, then Em contains no rational points of finite order other than O, the point at
infinity.

4. RATIONAL TORSION AND CURVES OVER FINITE FIELDS. The follow-
ing lemma greatly simplifies our work. The heaviest hammer in the proof is, appropri-
ately, one of Fermat’s theorems from the margin of his copy of Diophantus. We say
that a divides b (or that a is a divisor of b) and write a|b if a, b, and b/a are integers; if
p is a prime, write pe‖a if pe|a and pe+1 � a. Finally, GCD(a, b) refers to the greatest
common divisor of a and b.

Lemma 2. (a) If (x, y) is a rational point on the elliptic curve E : y2 = x3 +
ax + b, then x = u/r 2 and y = v/r 3 for some integers u, v, r with GCD(u, r) =
GCD(v, r) = 1. (b) The only rational points on E0 : y2 = x3 − x are (0, 0), (1, 0),
(−1, 0), and O.

Proof.

(a) Put x = u/s and y = v/t with GCD(u, s) = GCD(v, t) = 1. A little algebra
yields

s3v2 = t2(u3 + aus2 + bs3).

If pe‖s then p3e|s3v2. Since p � u and p|aus2 + bs3, it follows that p3e|t2. No
higher power of p can divide t2; otherwise p|v, contrary to the assumption
that GCD(v, t) = 1. Hence, p3e‖t2. If p f ‖t , then it follows that 3e = 2 f , i.e.,
f = 3c and e = 2c for some integer c. Thus, p3c‖t and p2c‖s. Since this holds
for each prime p, we conclude that s = r 2 and t = r 3 for some integer r .

(b) Now O is a rational point, by definition. Suppose (x, y) is a finite rational point
of E0; by (a), x = u/r 2 and y = v/r 3 for integers u, v, and r , with r relatively
prime to u and v. Substituting and expanding, we find that

v2 = u(u2 − r 4).

If u = 0, 1, or −1, then v = 0, accounting for the points (0, 0), (1, 0), and
(−1, 0). Let g = GCD(u, v), so that u = gu1, v = gv1, and GCD(u1, v1) = 1.
We find that

gv2
1 = u1(g

2u2
1 − r 4).

Since u1 and v1 have no common factors, it follows that u1|g; writing g = u1u2

leads to the equation

u2v
2
1 = u4

1u2
2 − r 4.

Hence u2|r 4. But GCD(u, r) = 1, so u2 = 1 and we are led to the equation

v2
1 = u4

1 − r 4,

which, Fermat assures us, has no solutions in nonzero integers. Hence, the only
rational points on E0 are (0, 0), (1, 0), (−1, 0), and O.
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Now, if E : y2 = x3 + ax + b is an elliptic curve with a and b in Z, and if p is a
prime, then we may regard E as a “curve” over the p-element field Fp, with a, b, x ,
and y elements of the field Fp. If the discriminant �(E) = −16(4a3 + 27b2) is prime
to p, then the cubic x3 + ax + b has distinct roots and E is an elliptic curve over Fp.
If this happens, E is said to have good reduction at p, and E(Fp) is called the group
of Fp-points of E .

This matters because if E has good reduction at p, then the Reduction mod p
Theorem ensures that there is an injection (i.e., a one-to-one mapping) of the group
E(Q)TORS of rational torsion points into the group E(Fp) [7, p. 123]. This theorem
makes it easy to prove the main result of this section.

Theorem 3. If m ≥ 1, then Em(Q)TORS = O.

Proof. The discriminant �(Em) = −16(27m4 − 4) is never divisible by 3 or 5, so Em

has good reduction at 3 and 5.
If 3|m, then Em reduces to y2 = x3 − x over F3, and Em(F3) = {O, (0, 0), (1, 0),

(−1, 0)}, the Klein Four Group. Since Em(Q)TORS injects into Em(F3), it follows that
Em(Q)TORS is a subgroup of the rational points of order 2 of Em . Such a point of Em

is necessarily of the form (r, 0), where r is a rational root of x3 − x + m2 = 0, i.e.,
a rational solution to m2 = (−x)3 − (−x). But there are no such rational roots, by
Lemma 2. Hence E(Q)TORS = {O}.

If 3 � m, then m2 ≡ 1(mod 3) and Em reduces to y2 = x3 − x + 1 over F3. Here,
|Em(F3)| = 7, so that |E(Q)TORS| = 1 or 7. In addition, Em reduces over F5 to
y2 = x3 − x , y2 = x3 − x + 1, or y2 = x3 − x − 1 according as m ≡ 0, ±1, or ±2
(mod 5), respectively. In each case, |Em(F5)| = 8. Hence, |E(Q)TORS| = 1, 2, 4, or 8.
Thus, |E(Q)TORS| = 1, and we conclude that E(Q)TORS = {O}.

Keep an eye on this theorem: it reappears at a crucial moment.

5. COMPUTING THE RANK OF Em. There are several ways to find the rank
of E(Q), or at least a lower bound on the rank, but most of them are complicated
and rely on lots of heavy machinery. The task is daunting, especially when the curve
at hand has trivial rational torsion—as our curves do. So, we looked for, and found, a
simple proof that Em(Q) has rank at least 2 for m > 1; it relies on only one piece of
heavy machinery. We state the theorem for our special case; the full-blown result can
be found in [4, p. 78]. Recall that an elementary abelian 2-group is an abelian group
in which every nonidentity element has order 2.

Theorem 4. Let E(Q) (respectively, 2E(Q)) be the group of rational points (respec-
tively, doubles of rational points) on an elliptic curve E, and suppose that E has triv-
ial rational torsion. Then the quotient group E(Q)/2E(Q) is an elementary abelian
2-group of order 2r , where r is the rank of E(Q).

Our strategy is to show that the points P , Q, and P + Q from (3) are not doubles of
rational points. This implies that the set of cosets {[O], [P], [Q], [P + Q]} is a four-
element subgroup of Em(Q)/2Em(Q) and, together with Theorem 3, that P and Q are
independent. We begin by describing sufficient conditions for a rational point A not to
be the double of a rational point B on Em .

Theorem 5. Let A = (u/s2, v/s3) and B = (w/t2, z/t3) be points on Em, with
GCD(uv, s) = GCD(wz, t) = 1. If either (a) u is even, (b) u and s are odd and
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m is even, (c) u ≡ 1 mod 4 and s and m are odd, or (d) u = −1, s = 1, and m > 1,
then A �= 2B.

Proof. If B = (x, y) and A = (x0, y0) = 2B, then (4) and (5) imply that

x0 = x4 + 2x2 + 1 − 8m2x

4(x3 − x + m2)
.

Substituting x0 = u/s2 and x = w/t2 and expanding leads to the equation

4u(wt2(w2 − t4) + m2t8) = s2((w2 + t4)2 − 8m2wt6). (6)

The proofs in cases (a), (b), and (c) are straightforward; we leave them as exercises,
along with these hints: look at (6) mod 8 for (a) and (b), and mod 16 for (c).

As for (d), let u = −1 and s = 1, i.e., x0 = −1. Then (6) becomes

−4(wt2(w2 − t4) + m2t8) = (w2 + t4)2 − 8m2wt6,

which we can expand and rearrange, yielding

(w + t2)4 = 4t4(w2 + 2wt2 + m2t2(2w − t2)).

This implies that t |(w + t2), so that t |w. But t and w are relatively prime, and so t = 1.
If we substitute t = 1, rearrange, and simplify, we are led to the equation

(w2 + 2w − 1)2 = 4m2(2w − 1).

This implies that (2w − 1)|(w2 + 2w − 1)2, so that (2w − 1)|w2. But again,
GCD(2w − 1, w2) = 1, so we conclude that w = 1, and so m = 1. Thus, if u = −1,
s = 1, and m > 1, then A is not the double of a rational point.

Remark. As a corollary, we know that if m ≥ 1 then P = (0, m) /∈ 2Em(Q) (by (a))
and P + Q = (1, −m) /∈ 2Em(Q) (by (b) and (c)); and if m > 1, then Q = (−1, m) /∈
2Em(Q) (by (d)).

We’re almost there.

Lemma 6. Let m > 1, with P = (0, m) and Q = (−1, m). Then H = {[O], [P], [Q],
[P + Q]} is a four-element subgroup of Em(Q)/2Em(Q).

Proof. By the preceding remark, we know that [P] �= [O], [Q] �= [O], and [P + Q] �=
[O]. If [P] = [Q], then [P + Q] = [P] + [Q] = [P] + [P] = [2P] = [O], which is
impossible. In a similar way, we can show that [P] and [P + Q] are distinct (else
[Q] = [O]), and that [Q] and [P + Q] are distinct (else [P] = [O]). We conclude
that [O], [P], [Q], and [P + Q] are distinct classes of Em(Q)/2Em(Q), so H is a 4-
element subgroup of Em(Q)/2Em(Q).

The following lemma is the last piece of the puzzle.

Lemma 7. P and Q are independent points in Em(Q) for m ≥ 2.

Proof. Suppose that, to the contrary, there exist integers n and k such that n P + k Q =
O. Without loss of generality, we may assume that n is positive and minimal among all
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such representations. If n is even and k is odd, then [O] = [n P + k Q] = [Q], contrary
to Lemma 6. Similarly, n odd and k even imply that [O] = [P], and both n and k odd
imply that [O] = [P + Q], both contrary to Lemma 6. Finally, if n = 2n′ and k = 2k ′,
then 2(n′ P + k ′ Q) = O, which implies that n′ P + k ′ Q is a rational 2-torsion point.
But Em has trivial rational torsion by Theorem 3 (remember, we said to keep an eye
on Theorem 3!), so that n′ P + k ′ Q = O, contrary to the minimality of n.

Theorem 1(b), which is the main result that rank(Em(Q)) ≥ 2 for m ≥ 2, now fol-
lows from Lemma 7 and the fact that the rank of Em(Q) is just the size of a maximal
independent subset of Em(Q).

6. RANK 3 AND BEYOND. The strategy for finding curves of rank at least 3 is
based on the following generalization of Lemma 7.

Lemma 8. Let R be a rational point on E(Q), and let {P1, . . . , Pk} be independent
points in E(Q). If [R] /∈< [P1], . . . , [Pk] > in E(Q)/2E(Q) and if E has trivial ra-
tional 2-torsion, then P1, . . . , Pk, and R are independent in E(Q).

Proof. Suppose that there exist integers a0, a1, . . . , ak , not all zero, such that

a0 R + a1 P1 + · · · + ak Pk = O; (7)

without loss of generality, we may assume that a0 is positive and minimal among all
such representations.

If a0 is odd, then [a0 R] = [R] and (7) implies that [R] = [a1 P1 + · · · + ak Pk],
contrary to assumption.

If a0 is even, then [a0 R] = [O], and (7) implies that [a1 P1 + · · · + ak Pk] = [O];
since the Pi are independent, this means that all the ai are even. Writing ai = 2bi , we
see that (7) implies that

2(b0 R + b1 P1 + · · · + bk Pk) = O.

This means that b0 R + · · · + bk Pk = O, since E(Q) has only trivial 2-torsion; but this
contradicts the minimality of a0.

Since our curves Em have trivial torsion for m > 0, Lemma 8 applies to these
curves. All we need now is one more result, similar to Theorem 5, about certain points
not being doubles of other points. Here it is:

Lemma 9. Let A = (u/s2, v/s3) and B = (w/t2, z/t3) be points on Em, with
GCD(uv, s) = GCD(wz, t) = 1. If m ≡ 0 mod 3 and s �≡ 0 mod 3, then A �= 2B.

Proof. Putting A = 2B and expanding leads, as in the proof of Theorem 5, to equa-
tion (6):

4u(wt2(w2 − t4) + m2t8) = s2((w2 + t4)2 − 8m2wt6).

Considerations modulo 3 imply that if m ≡ 0 mod 3 and s �≡ 0 mod 3, then

4uwt2(w2 − t4) ≡ (w2 + t4)2 (mod 3). (8)

Now w and t cannot both be divisible by 3, since they are relatively prime; hence, the
right side of (8) is nonzero mod 3. But for all w and t , wt2(w2 − t4) is a multiple of 3.
This is impossible, and so A is not the double of a rational point.
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Finally, using Lemma 9 in conjunction with other results, we may construct some
infinite families of curves with rank at least 3. For example, if R = (36n + 17, 54n2 +
267n + 114) and m = 54n2 − 165n − 90, then R is a point on Em with m ≡ 0 mod 3.
It is not hard to show that none of the points R, P + R, Q + R, and P + Q + R is
in 2Em :

• R and P + R = (−36n − 127, −54n2 + 607n − 1434) are integer points, so s = 1;
by Lemma 9, R /∈ 2Em and P + R /∈ 2Em .

• The x-coordinate of Q + R has even numerator and a denominator that is a divisor
of 9(2n + 1)2, so u is even and s is odd. By Theorem 5, Q + R /∈ 2Em .

• The denominator of the x-coordinate of P + Q + R is a divisor of (36n + 16)2;
hence, s �≡ 0 mod 3, and so by Lemma 9, P + Q + R /∈ 2Em .

Since P and Q are independent, Em has trivial rational torsion, and [R] /∈ 〈[P], [Q]〉
in E(Q)/2E(Q),we may now apply Lemma 8 to see that P, Q, and R are independent
points. This implies that for m = 54n2 − 165n − 90, Em has rank at least 3.

Hence there are infinitely many values of m such that Em has rank at least 3.

7. QUESTIONS AND PROBLEMS.

• How did you find the family of curves with rank at least 3? We looked for val-
ues of x for which the points R = (x, y), P + R, Q + R, and P + Q + R sat-
isfied at least one of the conditions of Theorem 5 and Lemma 9. We began with
x = 6n + 3 and made adjustments where needed. For example, if the denominator
of the x-coordinate of a point might be divisible by 3, we made sure that the denom-
inator was odd and the numerator was even. There are probably many more such
families. Problem 1: Find some.

• Are there infinite families of curves Em with rank at least 4, and if so, how do you
prove it? The tables suggest that there are infinitely many curves Em of rank at least
4, 5, and even 6. Proving that a certain set of four points is independent amounts to
showing that 15 distinct points are not doubles of rational points. Raising the rank
by one, in short, doubles the work. Problem 2: Find some.

• Are there families of elliptic curves other than Em, all of which have high ranks?
No doubt about it. For example, the curves Cm : y2 = x3 − m2x + 1 appear to have
rank at least 3 for all m ≥ 4, and they may be amenable to the elementary techniques
we’ve described here. A bit of sleuthing should turn up others. Problem 3: Use the
techniques of this paper to prove that the curves Cm have rank ≥ 3 for m ≥ 4.

An attempt to prove that the point (m, 1) is not the double of a rational point
failed—because it is false in a few cases. Problem 4: Prove that (m, 1) is the double
of a rational point on Cm : y2 = x3 − m2x + 1 if and only if m = 3, 7, or 24. Equiv-
alently, prove that the polynomial x4 − 4mx3 + 2m2x2 + (4m3 − 8)x + m4 − 4m
has a rational root if and only if m = 3, 7, or 24.

• What about those eight points on C : y2 = x3 + 17 from Section 1? A direct search
turns up all eight points. It is more fun, however, to start with the two points
A = (−1, 4) and B = (−2, 3) and generate the other six from linear combinations
of A and B using the techniques of Section 3.
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