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Abstract: Let A be a k× k matrix over a ring R; let GM(A,R) be the digraph

with vertex set Rk, and an arc from v to w if and only if w = Av. In this paper,

we determine the numbers and lengths of the cycles of GM(A,R) for k = 2 in the

following two cases. (a) R = FFq, the q–element finite field, and (b) R = ZZ/nZZ

and GCD(n, det(A)) = 1. This extends previous results for k = 1 and R = ZZ/nZZ.

We make considerable use of the Smith form of a matrix; other than that, the most

powerful tool we use is the Chinese Remainder Theorem.

1. Introduction

For a an integer and n a positive integer, let G(a, n) (respectively, GP (a, n))

be the digraph with vertex set {0, 1, . . . , n − 1} = ZZ/nZZ such that there is an

arc from x to y if and only if y ≡ ax (mod n) (respectively, y ≡ xa (mod n)).

Unlike many iterative processes, linearity here leads to a high degree of symmetry

in the underlying graph. Previously (see [1]) we determined the number of cycles

in G(a, n) for n a positive integer, and in GP (a, n) for the case that n is a prime

power. This notion can be generalized in the following way. Let A be a k×k matrix

with coefficients in a ring R; let GM(A,R) be the digraph with vertex set Rk such

that there is an arc from v to w if and only if w = Av. We will also write GM(A,n)

to mean the digraph GM(A,ZZ/nZZ).

A few small examples are sufficient to exhibit the structure of these graphs.

Suppose R is either ZZ/nZZ or a finite field. If A is nonsingular then GM(A,R) is a

collection of disjoint directed cycles; if A is singular then GM(A,R) is a collection

of disjoint directed cycles with pendant trees. Among the salient features of these
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graphs are the numbers and lengths of the disjoint cycles, which we study in this

paper. In particular, we study the cycle structure of these digraphs GM(A,R) for

2× 2 matrices, limiting the scope of our investigation to these cases: (a) R = FFq,

the q–element finite field, and (b) R = ZZ/nZZ and GCD(n, det(A)) = 1.

For case (a), we are able to treat all matrices, using the result that similar

matrices induce isomorphic digraphs. For case (b), it suffices to consider n a prime

power by means of an argument using the Chinese Remainder Theorem; we also

make considerable use of the Smith form of a matrix. In Section 2, we prove a

theorem which allows us to simplify our work by making appropriate assumptions

about our matrices. In Section 3 we prove a structure theorem for all 2×2 matrices

over arbitrary finite fields. Section 4 is devoted to the development of results about

the Smith form, which we will use later. In Section 5 we study the structure of

GM(A, pj) for A nonsingular mod p, obtaining results about the order of A modulo

arbitrary powers of p; this study breaks naturally into two cases: p odd and p = 2.

In Section 6, we state some of the results which allow us to count the numbers and

lengths of the cycles of GM(A, q) for prime powers q; as these results are quite

complicated, not all of the results (as well as their proofs) are included, but are

available from the authors on request.

2. Digraphs defined by linear transformations

Let V be a vector space over the finite field F and let T be a linear transformation

of V to itself (i.e. a linear operator on V ). Let GM(T, F ) be the digraph with vertex

set V such that (v, w) is an arc if and only if w = T (v). A cycle in GM(T, F ) must

necessarily be a directed cycle — otherwise, there are arcs (v, w) and (v, x) with

w �= x, which is impossible, since T is well–defined. Hence, a cycle is of the form

C = (v, T (v), T 2(v), ..., T r−1(v))(2.1)

where T r(v) = v and r is the least such positive integer. The study of cycles in

GM(T, F ), then, involves the study of vectors of finite period under T .

We are mainly interested in the case in which both F and dim(V ) are finite, but

the general theory is also of interest. Our first observation, an easy consequence of

the definitions, is that similar linear transformations generate isomorphic digraphs.
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Lemma 2.1. Let V be a vector space over the field F . If T and Q are linear

operators on V and Q is invertible, then the map

Q : GM(T, F ) → GM(QTQ−1, F ),(2.2)

which maps v to Q(v), is a digraph isomorphism.

Now let A be a k×k matrix over the finite field FFq of order q = pn (p a prime).

The map LA : V → V defined by LA(v) = Av is a linear operator, and we write

GM(A, FFq) (instead of GM(LA, FFq)) for the relevant digraph. For such graphs,

the following useful corollary is an immediate consequence of Theorem 2.1.

Corollary 2.2. If A and B are similar matrices over FFq, then the digraphs

GM(A, FFq) and GM(B, FFq) are isomorphic.

3. The structure of GM(A, FFq) for 2 × 2 matrices

If α �= 0 lies in a finite extension of FFq, we define the order ordq(α) of α to

be the least positive integer r for which αr = 1. This work began as an effort to

extend the results of [1], which describes the cycle structure of G(a, n) the digraph

on {0, 1, . . . , n − 1} such that (x, y) is an arc if and only if y ≡ zx (mod n). If we

replace modular multiplication of numbers by multiplication of a vector by a 2× 2

matrix, all over a finite field FFq, then we have the following structure theorem.

Theorem 3.1. Let q = pn be a prime power, let FFq be the finite field with q

elements, let A be a 2 × 2 matrix over FFq, and let λ and µ be the roots of the

characteristic polynomial of A. Then the number of cycles in GM(A, FFq) is given

by the following table:
Case Conditions on λ, µ Number of cycles in GM(A, FFq)
I. λ, µ distinct and nonzero

I(a) λ, µ ∈ FFq 1 +
q − 1

ordq(λ)
+

q − 1
ordq(µ)

+
(q − 1)2

LCM [ordq(λ), ordq(µ)]

I(b) λ, µ /∈ FFq 1 +
q2 − 1
ordq(λ)

II λ �= 0, µ = 0 1 +
q − 1

ordq(λ)

III. λ = µ �= 0, one–dim. eigenspace 1 +
q − 1

ordq(λ)
+

q(q − 1)
p · ordq(λ)

IV. λ = µ �= 0, two–dim. eigenspace 1 +
q2 − 1
ordq(λ)

V. λ = µ = 0 1
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Proof. Let V = FF2
q be the 2–dimensional vector space over FFq. We note that v

is on a cycle of GM(A, FFq) if and only if Arv = v for some positive integer r. If

S ⊆ V , let < S > denote the subgraph of GM(A, FFq) induced by S.

Case I(a): λ, µ ∈ FFq, distinct, nonzero. Let eλ and eµ be eigenvectors

associated with λ and µ respectively. Since λ, µ ∈ FFq, it follows that {eλ, eµ} is

a basis for V , so that we may write each v ∈ V uniquely as v = vλeλ + vµeµ with

vλ, vµ ∈ FFq. It follows that

Av = vλλeλ + vµµeµ, and in general,(3.1)

Arv = vλλreλ + vµµreµ,(3.2)

for r a positive integer. Since λ and µ are nonzero, we have that

Arv = v if and only if




λr = µr = 1 (vλ �= 0 �= vµ);
λr = 1 (vλ �= 0, vµ = 0);
µr = 1 (vλ = 0, vµ �= 0.

(3.3)

Hence the cycle containing v has length

LCM [ordq(λ), ordq(µ)], if vλ �= 0 �= vµ;(3.4)

ordq(λ), if vλ �= 0, vµ = 0;(3.5)

ordq(µ), if vλ = 0, vµ �= 0.(3.6)

Now there are (q − 1)2 vectors v = vλeλ + vµeµ with both vλ and vµ nonzero

elements of FFq, q−1 with vλ = 0 and vµ a nonzero element of FFq, and q−1 with

vλ a nonzero element of FFq and vµ = 0. Since the above argument about cycle

length is independent of choice of v, we have that < {v : vλ �= 0 �= vµ} > contains
(q − 1)2

LCM [ordq(λ), ordq(µ)]
cycles, < {v : vλ �= 0, vµ = 0} > contains

q − 1
ordq(λ)

cycles,

and < {v : vλ = 0, vµ �= 0} > contains
q − 1

ordq(µ)
cycles. This leaves only the zero

vector, which lies on a cycle by itself, and establishes I(a).

Case I(b): λ, µ distinct and not in FFq. The analysis of Case I(a) applies,

with the following exception. If v ∈ V and λ /∈ FFq, then Av ∈ V , but λ /∈ FFq;

hence, no vector in V is an eigenvector of A. It follows that the eigenspaces of

A intersect V only in the zero vector. Now even though λ, µ /∈ FFq, they both

lie in a quadratic extension of FFq, so that ordq(λ) and ordq(µ) are both defined.

Furthermore, λ and µ are conjugate over FFq so that they have the same order over

FFq. Thus, each of the q2 − 1 nonzero vectors in V is on a cycle of length ordq(λ);
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together with the zero vector (a cycle on its own), this yields a total of 1+
q2 − 1
ordq(λ)

cycles in all.

Case II: λ �= 0, µ = 0. As before, let v = vλeλ +v0e0 be a nonzero vector. Then

Av = vλAeλ + v0Ae0 = vλλeλ (since µ = 0), and so Arv = vλλreλ. Hence, v lies

on a cycle if and only if λreλ = vλeλ + v0e0 for some r ≥ 1. It follows that the only

vectors on cycles are those for which v0 = 0, i.e. multiples of the eigenvector eλ.

There are clearly q − 1 such nonzero vectors, and as before, each one is on a cycle

of length ordq(λ). Together with the zero vector, this yields 1 +
q − 1

ordq(λ)
cycles in

all.

Case III: λ = µ, one–dimensional eigenspace. In this case, A is similar to

a matrix of the form

B =
(

λ b
0 λ

)
(3.7)

with b �= 0. By Theorem 1, the cycle structures GM(A, FFq) and GM(B, FFq) are

the same, so we may work with GM(B, FFq) instead. We see that

Br =
(

λr rλr−1b
0 λr

)
;(3.8)

let us write v = (v1, v2). If v2 = 0, then Bv = (λv1, 0) = λv. In this case, it is clear

that the cycle length is equal to 1 or ordq(λ) according as v1 = 0 or v1 �= 0, so that

< v : v2 = 0 > contains 1 +
q − 1

ordq(λ)
cycles.

If v2 �= 0, then Brv = (λrv1 + rλr−1bv2, λ
rv2), so that Brv = v if and only if

r = 0 in the field FFq, since λ �= 0 �= b, and λr = 1. This occurs if and only if

ordq(λ)|(q − 1) and p|r, where q = pn and p is a prime. Since ordq(λ)|(q − 1), we

know that p and ordq(λ) are relatively prime. Thus, if v2 �= 0, then v lies on a

cycle of length p · ordq(λ). Since there are q2 − q vectors with v2 �= 0, we see that

< v : v2 �= 0 > contains
q(q − 1)

p · ordq(λ)
cycles.

We conclude that if A has a single eigenvalue of multiplicity 2 and a one–

dimensional eigenspace, then GM(A, FFq) contains

1 +
q − 1

ordq(λ)
+

q(q − 1)
p · ordq(λ)

(3.9)

cycles in all.

Case IV: λ = µ �= 0, two–dimensional eigenspace. Such a matrix A is

similar to B = λI with λ �= 0. Hence, for all v, Brv = v if and only if either (1)
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v = 0 or (2) v �= 0 and λrv = v, i.e. ordq(λ)|r. It follows that every nonzero vector

— and there are q2 − 1 of them — is in a cycle of length ordq(λ), and there is also

the zero cycle. Hence, GM(A, FFq) contains 1 +
q2 − 1
ordq(λ)

cycles in all.

Case V: λ = µ = 0. In this case, the only vector that lies on a cycle is the

zero vector, as A is similar to a matrix of the form
(

0 b
0 0

)
. Hence, GM(A, FFq)

contains just one cycle.

4. The Smith form of a matrix, and reduction to prime powers

Let diag(a, b) denote the matrix
(

a 0
0 b

)
; let X be an integral 2×2 matrix. Then

there exist unimodular integral 2 × 2 matrices P and Q such that PXQ = D =

diag(d1, d2) where d1, d2 are non-negative integers, d1 divides d2, d1d2 = |det(X)|,
and d1 is the greatest common divisor of the entries of X. The matrix D is called

the Smith form of the matrix X. For a detailed discussion, see [4].

The Smith form of the matrix Aj − I can be used to give information about the

number and nature of solutions to the matrix congruence Ajv ≡ v mod n, where n

is an integer. We first establish some notation, to be used throughout this section;

in what follows X,P,Q are defined as above, and we let col(x, y) denote the column

vector
(

x

y

)
.

We will make use of the following key point throughout the paper:

Let C1, C2 be the columns of Q, and E1, E2 the columns of P−1. Let col(x, y) ∈
Z2

n. Then v = col(x, y) = Q·col(r, s) for some r, s ∈ Z, and putting col(r, s) = u,

we have Xv = XQu = P−1Du = d1rE1 + d2sE2. Since P−1 is unimodular, it is

invertible mod n for every positive integer n. In particular, its columns E1, E2 are

“independent” mod n, i.e. if a, b are integers, then aE1 + bE2 ≡ 0 mod n if and

only if a ≡ b ≡ 0 mod n.

Lemma 4.1. Let n = pt. Then the matrix equation Xv ≡ 0 mod n has a solution

v such that v �≡ 0 mod p, if and only if n divides d2.

Proof. Suppose first that n divides d2. Choose r = 0 and s = 1, and put col(r, s) =

u. Then col(x, y) = Qu �≡ 0 mod p, since Q is unimodular and u �≡ 0 mod p, and

Xv = XQu = d1rE1 + d2sE2 = d2E2 ≡ 0 mod n.
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On the other hand, suppose that Xv ≡ 0 mod n has a solution v such that v �≡ 0

mod p. Then Xv = XQu = d1rE1 + d2sE2 where v = Qu with col(r, s) = u, and

u �≡ 0 mod p (again, since Q is unimodular and v �≡ 0 mod p). Then n = pt must

divide d1r and d2s. Since u �≡ 0 mod p, then either r or s must be relatively prime

to p, and hence pt must divide either d1 or d2. But d1 divides d2, so in either case,

pt divides d2.

The equation Xv = d1rE1+d2sE2 then allows a count of the number of solutions

mod n.

Theorem 4.2. Let n = pt. Let N be the number of solutions v of the matrix

equation Xv ≡ 0 mod n, such that v �≡ 0 mod p. Suppose that N > 0. If pt divides

d1, then N = p2t − p2t−2, and if d1 = pim where m is relatively prime to p and

0 ≤ i < t, then N = piφ(pt).

Proof. Since N > 0, then by Lemma 4.1, d2 is a multiple of pt. Write d1 = pim,

where either m = 0 or p does not divide m.

If m = 0, or if i ≥ t, then every vector v mod n is a solution of Xv ≡ 0

mod n. Then N is the number of vectors v mod pt such that v �≡ 0 mod p and

N = p2t − p2t−2.

Suppose m �= 0 and 0 ≤ i < t. Write v =col(x, y) = Q·col(r, s) where r, s ∈ Z,

and put col(r, s) = u. Suppose that v is a solution of Xv ≡ 0 mod pt, with v �≡ 0

mod p. Then Xv = XQu = d1rE1 + d2sE2 ≡ 0 mod pt, and then pt−i must divide

r. In order for v �≡ 0 mod p it is necessary and sufficient that u �≡ 0 mod p (since

Q is unimodular). Since pt−i divides r, s must be relatively prime to p.

The number of integers r mod pt which are multiples of pt−i, is just pi, and the

number of integers s mod pt which are relatively prime to p, is φ(pt). Thus the

number of such vectors col(r, s) ≡ u mod pt is N = piφ(pt).

The final result in this section reduces the study of the structure of GM(A,n)

to that of GM(A, pr), where p is a prime.

Theorem 4.3. Let S(A, k, n) be the number of vectors w ∈ (ZZ/nZZ)2 for which

Akw ≡ w (mod n). If GCD(m,n) = 1, then S(A, k,mn) = S(A, k,m) · S(A, k, n).



DIGRAPHS AND MATRIX MULTIPLICATION (mod n) 9

Proof. Let w = col(x, y). Since GCD(m,n) = 1, there exist integers x1, x2, y1 and

y2 such that

u = mx1 + nx2 and v = my1 + ny2.

If k is a nonnegative integer, then

Ak

(
u

v

)
= m · Ak

(
x1

y1

)
+ n · Ak

(
x2

y2

)
.

Thus, Akw ≡ w (mod mn) if and only if

(Ak − I)
(

u

v

)
= m · (Ak − I)

(
x1

y1

)
+ n · (Ak − I)

(
x2

y2

)
≡ 0 (mod mn).

But since m and n are relatively prime, the Chinese Remainder Theorem implies

that this is true if and only if

(Ak − I)
(

x1

y1

)
≡ 0 (mod n) and (Ak − I)

(
x2

y2

)
≡ 0 (mod m)

are true. It follows that S(A, k,mn) = S(A, k,m) · S(A, k, n).

At this point, we should note that in all of our subsequent results concerning

the order of A mod pn, we are assuming that if Ak ≡ I mod pn, then Ak is not, in

fact, equal to the identity matrix I.

For suppose that A is a 2×2 integer matrix and Ak = I for some positive integer

k. Then (see [2]) the minimum polynomial for A has degree 1 or 2, and also divides

xk − 1; thus the eigenvalues of A are roots of unity, with algebraic degree either 1

or 2. Since (see [3]) a primitive m−th root of unity has algebraic degree φ(m), then

the eigenvalues of A can only be m−th roots of unity for m = 1, 2, 3, 4, 6. Then

A can have the following possible minimal polynomials, characteristic polynomials

and cycle lengths:

Minimal Characteristic Possible Cycle
Polynomial Polynomial Lengths

x − 1 (x − 1)2 1 (A =diag(1, 1))
x + 1 (x + 1)2 2 (A =diag(−1,−1))
x2 − 1 x2 − 1 1, 2
x2 + 1 x2 + 1 1, 2, 4
x2 + x + 1 x2 + x + 1 1, 3
x2 − x + 1 x2 − x + 1 1, 3, 6
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5. The Order of A mod pj

By Theorem 4.3, we need only study the structure of GM(A, q) for prime powers

q, so let p be a fixed prime and let A be an integral 2× 2 matrix. We are assuming

that A is non–singular mod pj , that is, det(A) is not divisible by p. Then A is a

member of the (finite) group of non–singular 2 × 2 matrices mod pj , and so it has

finite order in that group. From now on, we assume that A does not have finite

order in GL(2,ZZ), i.e. Ak �= I for any positive integer k.

Definition 5.1. Let kj denote the order of A mod pj, i.e. kj is the least positive

integer t such that At ≡ I mod pj.

Since Ak1 ≡ I mod p and Ak1 �= I, it follows that Ak1 = I + psB where B is an

integral 2 × 2 matrix, such that s > 0 and B �≡ 0 mod p. We will use the letters B

and s throughout in this sense.

Lemma 5.2. For all j = 1, 2, · · · , we have kj |kj+1.

Proof. Put m = kj+1. Since Am ≡ I mod pj+1, then it is also true that Am ≡ I

mod pj . Then the order of A mod pj must divide m, as required.

The next two theorems show that the quotient kj+1/k1 is always a power of p,

described in terms of the integer s defined above. We use the notation C(n, k) for

the binomial coefficient “n choose k”.

Theorem 5.3. If p is odd, or if s > 1, then k1 = k2 = · · · = ks and for all

i = 1, 2, · · · , ks+i = pik1.

Proof. Suppose that either p is odd, or p = 2 and s > 1. We have Ak1 = I + psB,

and clearly for every pj with j ≤ s, we have Ak1 ≡ I mod pj . Thus for these values

of j, it follows that kj |k1. By Lemma 5.2, we also have k1|kj and so kj = k1 for all

j = 1, 2, · · · s.

Next, we consider the case j = s + 1. By the Binomial Theorem, we know that

Apk1 = I + C(p, 1)psB + C(p, 2)p2sB2 + · · · + ppsBp.

Since s ≥ 1, the term ppsBp is a multiple of ps+1. If p is odd, then all the coefficients

C(p, i) with 1 ≤ i < p are multiples of p, and so all terms C(p, i)pisBi are also



DIGRAPHS AND MATRIX MULTIPLICATION (mod n) 11

multiples of ps+1. If s > 1, then for i = 2, 3, · · · , we have is > s + 1, and (since

C(p, 1) = p) again all terms with i > 0 are multiples of ps+1.

It follows that Apk1 ≡ I mod ps+1, and so ks+1|pks (since ks = k1). Since B �≡ 0

mod p, then Ak1 �≡ I mod ps+1, that is, ks+1 �= ks. It follows that ks+1 = pks.

Now note that for i > 1, the ith term above is actually a multiple of ps+2, and

so we have

Aks+1 = I + ps+1B1,

where B1 ≡ B mod p. Applying the same argument to this matrix equation, we

find that ks+2 = pks+1 and Aks+2 = I + ps+2B2 where B2 ≡ B mod p, and the

statement of the theorem follows by induction.

The case when p = 2 and s = 1 is a little different, since s + 1 = 2s.

Theorem 5.4. Suppose that p = 2 and s = 1. Then one of the following must

occur:

(i) ki = 2i−1k1 for all i = 2, 3, · · · .
(ii) There exists an integer t ≥2 such that ki = 2k1 for 2 ≤ i ≤ t, and ki = 2i−tk2

for all i > t.

Proof. We begin with the matrix equation Ak1 = I + 2B, where B �≡ 0 mod 2.

Then

A2k1 = I + 4B + 4B2 = I + 4C,

where it is possible that the matrix C satisfies C ≡ 0 mod 2. However, since we

are assuming that the matrix Ai �= I for any integer i, we can say that C �= 0.

If C �≡ 0 mod 2, then (i) follows, by the argument used in the proof of Theorem

5.3.

On the other hand, if 4C = 2tC1, where C1 �≡ 0 mod 2, then (again, as in

Theorem 5.3) we find that kj = k2 for all j = 2, 3, · · · t and for all i = 1, 2, · · · ,
kt+i = 2ik2, which is (ii).

6. Counting cycles of A (mod pj)

Throughout this section, let the prime p and the positive integer j be fixed, and

put n = pj . We also assume that there is no positive integer m such that Am = I.

Recall that Theorem 3.1, which gives the structure of GM(A, FFq) for matrices

over finite fields, is fairly straightforward. When we replace finite fields with the
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rings ZZ/pnZZ, the treatment divides into four cases, according to the nature of

characteristic and minimum polynomials for A mod p. We shall treat Case (i)

in its entirety. The other three cases produce an elaborate set of subcases, and

the results are straightforward but quite complicated. Hence, we will state a few

representative results from these cases; complete treatments of Cases (ii), (iii) and

(iv) are available from the authors.

Definition 6.1. Let p be a fixed prime, j an integer. Divide the set (ZZ/pjZZ)2 into

disjoint subsets Xi, for 0 ≤ i ≤ j, as follows: Xj = {col(0, 0)}, and if i < j, then

Xi = {col(pix, piy)|x or y �≡ 0 mod p and 0 ≤ x, y < pj−i}.

For example, X2(33) = {(0, 9), (0, 18), (9, 0), (9, 9), (9, 18), (18, 9), (18, 18)}. We

abuse the notation by just saying X0, e.g., instead of X0(pj). Note that the cardi-

nality of the set Xi, for 0 ≤ i < j, is given by |Xi| = p2(j−i) − p2(j−i−1)

As noted also in Section 4, since A is non-singular mod pj , v ∈ Xi if and only if

Av ∈ Xi; and if v ∈ Xi, v = pi·col(x, y) = piw, then Amv ≡ v mod pj if and only

if Amw ≡ w mod pj−i. Thus it suffices to find the cycle structure in the set X0,

mod pj , for each j = 1, 2, · · · .
Now let N(m, pj) denote the number of cycles of A, of length m, in the set X0,

and let M(k, pj) be the number of vectors v ∈ X0 mod pj such that Akv ≡ v mod

pj . These two quantities are related by the following result.

Lemma 6.2. Suppose that A is nonsingular mod p, and j > 0. Let L1 < L2 <

· · · < Lm be the lengths of the cycles (mod pj) in X0 (mod pj). If Li|Li+1 for

i = 1, . . . ,m − 1 then:

N(Li, p
j) =




M(L1, p
j)/L1, if i = 1;

(M(Li, p
j) − M(Li−1, p

j))/Li, if 1 < i < m;
(X0 − M(Lm−1, p

j))/LM , if i = m.

Proof. Let 1 ≤ i ≤ m. By definition, M(Li, p
j) is the set of solutions v (mod pj)

of (ALi − I)v ≡ 0 (mod pj). If k < i, then xLk − 1 divides xLi − 1, and so every

solution of (ALk − I)v ≡ 0 (mod pj) is also a solution of (ALi − I)v ≡ 0 (mod pj).

Hence if k < i, then M(Li, p
j)−M(Li−1, p

j) counts the number of vectors v whose

cycle length is Li if i > 1, and M(L1, p
j) counts the number of vectors v whose

cycle length is L1. The lemma follows.
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We compute the quantities N(m, pj) in four separate cases, according to the

nature of the characteristic and minimum polynomials for A mod p (f and g,

respectively):

CASE (i) f(x) = g(x) is irreducible mod p

CASE (ii) f(x) = (x − a)(x − b) mod p, with a �≡ b mod p

CASE (iii) f(x) = (x − a)2, and g(x) = x − a mod p

CASE (iv) f(x) = g(x) = (x − a)2 mod p

Since the finite field GF (p) is indeed a field, we have the following well-known

results of linear algebra. Let h(x) be any polynomial with integral coefficients.

Then:

(a) h(A) ≡ 0 mod p if and only if g(x) divides h(x) mod p,

(b) If v �≡ 0 mod p, and if h(A)v ≡ 0 mod p, then gcd(f(x), h(x)) �= 1 mod p.

CASE (i) f(x) = g(x) is irreducible mod p.

We will treat this case in its entirety. We first summarize some well–known

properties of such a polynomial mod p.

The polynomial f(x) factors in the finite field GF (p2); its roots are distinct and

have the same order, say m, in the multiplicative group of the field. Then the

polynomial f(x) divides xm − 1 mod p, and f(x) does not divide xk − 1 mod p for

any k less than m. Then Am ≡ I mod p, and if k is less than m, Ak �≡ I; that is m

is the order of the matrix A in the group of non-singular 2× 2 matrices mod p, or,

in the notation of Section 5, we have k1 = m.

Theorem 6.3. Let n = pt and suppose that f(x) is irreducible mod p. Then all

cycles of A in the set X0 have the same length kt, and N(kt, p
t) = |X0|/kt =

(p2(t) − p2(t−1))/kt.

Proof. Put m = k1. By the Division Algorithm, we have

xm − 1 = g(x)q(x) + psr(x),

where s ≥ 1 and r(x) is a polynomial of degree 0 or 1 which is not 0 mod p. (Note

that r(x) cannot be 0 since we always assume that Aj �= I for any positive integer

j.) Then

Am − I = g(A)q(A) + psr(A) = psr(A) = psB.
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It follows from Section 5 that we have k1 = · · · = ks, ks+i = pik1, and if j = ks+i

with i > 0, Aj − I ≡ ps+iB mod ps+i+1.

Since B = r(A) is a polynomial in A and gcd(f(x), r(x)) = 1, then B is non-

singular mod p, i.e. det(B) �= 0 mod p, and the Smith form S(B) of B is of the

form S(B) = diag(a, b), where a, b �≡ 0 mod p.

Then S(Am − I) = diag(psa, psb), and if j = ks+i with i > 0, S(Aj − I) ≡ diag

(ps+ia, ps+jb) mod ps+i+1.

Clearly, for any integer t and vector v �≡ 0 mod p, (Aj − I)v ≡ 0 mod pt if and

only if (Aj − I) ≡ 0 mod pt, and so every vector v ∈ X0 mod pt has the same cycle

length, namely kt. Since the cycles partition X0, the result follows.

CASE (ii) f(x) = (x − a)(x − b) mod p, with a �≡ b mod p.

Theorem 6.4. (One of nine subcases in all.) Let p be an odd prime. Suppose that

A = Dj + pjBj where Dj and Bj are integral matrices, and Dj = diag(aj , bj). Let

mj , nj denote the orders of aj , bj mod pj respectively, and define rj , sj by mj =

prj m1 and nj = psj n1; without loss of generality, assume that rj ≥ sj. Let kj be

the order of A mod pj and let k be the least common multiple of m1 and n1.Write

Ak1 = I + ptC, with C �≡ 0 (mod p) and t ≥ 1.

If rj > sj and m1 and n1 do not divide each other, then the distinct cycle lengths

in X0 (mod pj) are psj n1, p
rj m1 and prj−tk for 0 ≤ t ≤ rj −sj, and their numbers

are as follows:

N(ps
jn1, p

j) = ϕ(pj−sj )/n1,

N(prj m1, p
j) = ϕ(pj−rj )/m1,

N(prj k, pj) = (pj − 1)ϕ(pj−rj )/k,

N(psj k, pj) = (pu − 1)ϕ(pj−sj )/k, and

N(prj−tk, pj) = ϕ(pu)ϕ(pj−sj )/k (for 0 < t < rj − sj),

where u is defined as follows: for c = psj k, put ac
j = 1 + puα with p � α and

1 ≤ u < j.

CASE (iii) f(x) = (x − a)2, and g(x) = x − a mod p

Theorem 6.5. (Three of sixteen subcases.) Suppose that Ak1 = I + psB where

s ≥ 1, and B is singular mod p, B �≡ 0 mod p, and write det(B) = ptb, where t ≥ 1
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and b is relatively prime to p. Suppose also that either p is odd, or p = 2 and s > 1.

Then:

(i) If 1 ≤ j ≤ s, then N(k1, p
j) = |X0|/k1.

(ii) If j = s + r with 1 ≤ r ≤ t, so that the cycle lengths are k1, pk1, . . . , prk1,

then

N(k1, p
j) = N(prk1, p

j) = psϕ(pj)/k1,

and for 1 < i < r,

N(pik1, p
j) = ϕ(ps)ϕ(pj)/k1.

(iii) If j = s+t+k with k ≥ 1, so that the cycle lengths are pkk1, p
k+1k1, . . . , pk+tk1,

then

N(pkk1, p
j) = N(pk+tk1, p

j) = psϕ(pj)/k1,

and for 1 < i < t,

N(pk+ik1, p
j) = ϕ(ps)ϕ(pj)/k1.

CASE (iv) f(x) = g(x) = (x − a)2 mod p

Theorem 6.6. (One of sixteen cases.) Let p = 2 and assume A = I + E + 2B,

where E =
(

0 1
0 0

)
and B �≡ 0 mod 2. Then A2 = I + 2sC for some integer s ≥ 1

and C �≡ 0 mod 2 an integral matrix. Finally, suppose that |A + I| = 0 �= |A − I|
with s = 1. Then N(1, 2) = N(2, 2) = 1, N(1, 4) = N(4, 4) = 2N(2, 4) = 2 and if

j ≥ 3, then N(2, 2j) = N(2j , 2j) = 2N(2t, 2j) = 2j−1, where 1 < t < j.
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