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1 Introduction

An r−set is an r−element set. The problem we consider in this paper was

suggested by a theorem of Bjorn Poonen [1] in connection with finite union-

closed families of sets. Poonen showed that if a finite union-closed family of sets

S contains three of the 3−sets in some 4−set, then one of the elements of that

4−set is contained in at least half the members of the family S. This condition

intrigued us, and we began to investigate collections of 3−sets for which it fails.

The alternative statement that no 4−set contain more than two 3−sets in the

collection is reminiscent of conditions for Steiner systems. A Steiner system

S(r, s, t) is a collection C of s−subsets of a t−set T such that every r−set in

T lies in exactly one s−set of C. The most familiar of these are the Steiner

triple systems, or Steiner systems S(2, 3, n), namely a collection C of 3−sets in

an n−set N in which every 2−set in N lies in exactly one of the 3−sets of C.

In contrast with Steiner systems, we consider collections C of r−sets in

{1, . . . , n} such that every s−set in {1, . . . , n} contains at most t of the r−sets

in C. That is, we remove the “exactly” condition, and the collection of smaller

sets is restricted—not the collection of larger sets. Obviously, we could generalize

this condition in many ways, but in this paper we treat the original condition.

Let P(n) be the power set of {1, . . . , n}. An [r, s, n, t]−configuration is a

subset C of the r−sets of P(n) such that each s−set in P(n) contains at most

t of the r−sets in C. In this paper, we consider only [3, 4, n, 2]−configurations,

and refer to them as n−configurations; by an (n, k)−configuration we mean an

n−configuration containing exactly k 3−sets. An (n, k)−configuration is maximal

if it is not contained in any (n, k + 1)−configuration; finally, L(n) is the largest

integer k for which an (n, k)−configuration exists.

In this paper, we determine L(n) for 4 ≤ n ≤ 9; these values are given by the

following table:

1



n 4 5 6 7 8 9
L(n) 2 5 10 15 22 32

In addition to some general results, we characterize all the maximal n− con-

figurations for n = 4, 5 and 6, as well as the (n, L(n))− configurations for n = 7, 8

and 9. The approach we take in our proofs involves an analysis of the structure

of certain graphs associated with the configurations.

2 Notation, the W (i) graphs and the Main Bound

Theorem

In this section, we give the definitions and general results which are used in

carrying out the analysis for specific cases. To simplify notation, we will often

denote a 3−set {a, b, c} merely as abc; a 2−set {a, b} as ab, and so on. Naturally,

abc = acb, ab = ba, etc.

Definition 1. Let S be a collection of 3−sets in P(n). Let N = N(S) be the

number of members of S, let WS(i) = W (i) = {(a, b)|{a, b, i} ∈ S} and set

ti(S) = ti = |W (i)|. The score of S is the vector [t1, t2, . . . , tn], and if σ is any

permutation of {1, 2, . . . , n}, then σ(S) = {{σ(a), σ(b), σ(c)}|{a, b, c} ∈ S}. If S

and T are collections of 3−sets, and if S = σ(T ) for some permutation σ, then

we say that S and T are permutation-isomorphic, or just isomorphic, and write

S ∼= T . The map σ is called an isomorphism (or an automorphism if S = T ).

The graph G(S) of S is the graph with vertex set S in which two 3−sets are

adjacent provided they belong to the same 4−set or, equivalently, if they contain

a common 2−set. The group of automorphisms of S is denoted by H(S).

The members of W (i) can also be regarded as the edges of a graph on the

vertex set {1, 2, . . . , n} − {i}, and for simplicity we will use the name W (i) for

this graph. We recall a few definitions from graph theory: a triangle in W (i) is a

set of three edges of the form (a, b), (a, c), (b, c); an independent set in W (i) is a

set of vertices no two of which are connected by an edge; and the independence

number of W (i) is the size of the largest independent set in W (i).

Definition 2. For an n-configuration S, the independence number of the graph

WS(i) will be denoted by IS(i) = I(i).
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It is clear that ∼= is an equivalence relation and so we may speak of iso-

morphism classes of configurations. It is also clear that if two configurations

have different scores, then they are not isomorphic; however, we shall see that

there exist nonisomorphic configurations with the same scores. Evidently, two

permutation-isomorphic collections of 3−sets will have correspondingly isomor-

phic W (i)-graphs. Moreover, if S is a collection of 3−sets, then S is an n−configuration

if and only if the graph of S contains no triangles of the form abc, abd, acd.

Our first result includes a graph-theoretic characterization of n−configurations

and a restriction on the score of an n−configuration.

Lemma 1. a) S is an n-configuration if and only if for each i = 1, 2, . . . , n, the

graph W (i) contains no triangles. (b)
∑n

i=1 ti = 3N .

Proof. (a) Suppose that W (i) contains a triangle, say ab, ac, bc. Then the 3−sets

abi, aci, bci are all members of S, and then the 4−set abci contains three 3−sets

from S, and S is not an n-configuration. On the other hand, suppose some 4−set

xyzw contains three of the 3−sets of S. Then, since any three of the 3−sets of

a 4−set must have a common element, these three 3−sets must have the form

(say) xyz, xyw, xzw. Then W (x) contains the triangle yz, yw, zw.

(b) Since ti is just the number of members of S which contain i, then since

every member of S is a 3−set, the sum of the ti is equal to 3|S| = 3N .

The next theorem gives a bound on the size of L(n), which is sharp in some

cases.

Theorem 1. (The Main Bound) For n ≥ 5, L(n) ≤ n

n − 3
· L(n − 1).

Proof. Let n ≥ 5. Evidently L(n) ≥ L(n − 1) + 1, since if S is an (n − 1)-

configuration, and we add on a 3−set containing n, the result will be an n-

configuration.

Thus, suppose that L(n) = L(n − 1) + k for some positive integer k, and let

S be an n-configuration with N(S) = L(n) . For any 1 ≤ i ≤ n, consider the

configuration C consisting of the members of S which do not contain i. This is

(isomorphic to) an (n−1)-configuration, and N(C) = L(n)−ti = L(n−1)+k−ti.

Since N(C) ≤ L(n − 1), it follows that ti ≥ k.

Thus, 3L(n) =
∑n

i=1 ti ≥ nk, from which we get 3(L(n− 1) + k) ≥ nk and so

k ≤ 3L(n − 1)

n − 3
. Then L(n) = L(n − 1) + k ≤ n

n − 3
· L(n − 1), as required.
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The basic idea of our constructions, is to extend an n-configuration to an

(n + 1)-configuration, by “adding on” more 3−sets. We will reserve the use of

the word “add” for the situation when a given configuration S , together with

the new 3−sets, is still a configuration. If S together with a new 3−set abc is not

a configuration, then we would say that we “cannot add” abc to S. Finally, we

also use the word “add” in referring to the new edges which appear in the graphs

W (i) when new 3−sets are added on to S, and to the corresponding vertices of

the W (i)-graphs for S itself. This usage is best illustrated by an example.

Suppose S = {123, 234, 345, 451, 512} , so that WS(1) = {23, 45, 52}. We

draw the graph W (1) as 3−2−5−4, and observe that the independence number

I(1) is two, and the independent sets of size two are {3, 5}, {3, 4}, and {2, 4}.
Since T = {123, 234, 345, 451, 512, 136, 126} is not a configuration (the 4−set

1236 has three 3−sets from T ), we would say that we cannot add 136 and 126 to

S, and we cannot add the edges 36, 26 to WS(1).

We may add the 3−sets 136, 156 to S; when we do this, we obtain a con-

figuration T = {123, 234, 345, 451, 512, 136, 156}. In T , we now have WT (1) =

{23, 45, 52, 36, 56}, and we say that we have added the edges 56 and 36 to WS(1).

This last statement will usually be abbreviated to “add 5, 3 to W (1)”, to avoid

cumbersome notation; it is always understood that in using this phraseology,

there is only one new vertex (in this case, 6), and the new edges all involve that

new vertex.

It is clear that in adding new edges of the form a6 to WS(1), the vertices

adjacent to the new vertex 6 must be an independent set in WS(1), since otherwise

we would get a triangle. Furthermore, if we add 136 and 156 to S, we cannot

also add 356 (for then 1356 would have three 3−sets present). That is, in adding

these new edges to W (1), we eliminate certain possibilities from W (3) and W (5):

we cannot add the edge 56 to W (3) and we cannot add the edge 36 to W (5).

This reflects the fact that WT (6) already has edges 13 and 15, so cannot have an

edge 35. These observations are summed up in the following lemma.

Lemma 2. Let n ≥ 5, and let S be an (n − 1)-configuration. Suppose that T

is an n-configuration containing S, such that every 3−set in T − S contains the

element n. Put W (i) = WS(i), ti = |WS(i)|, I(i) = IS(i), and ui = |WT (i)|. For

each i = 1, 2, . . . , n − 1 put K(i) = {a|{a, n} ∈ WT (i)}. Then:

(a) For each i = 1, 2, . . . , n−1, K(i) is an independent set in the graph W (i).

(b) For each i = 1, 2, . . . , n − 1, ui ≤ ti + I(i).
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(c) If a, b ∈ K(i), a 6= b, then WT (a) does not contain the edge bn.

Proof. (a) If K(i) were not an independent set in W (i), there would be an edge

connecting two members a, b of K(i); then the graph WT (i) would contain the

triangle an, bn, ab, a contradiction. The statement (b) follows immediately.

(c) If a, b ∈ K(i), a 6= b, then T contains the 3−sets nai, nbi and therefore

does not contain abn. That is, WT (n) contains the edges ai, bi, WT (n) does not

have an edge ab; and WT (a) does not contain the edge bn.

Throughout this paper, if one configuration is contained in another, then we

will use ti (resp., ui) for the size of W (i) in the smaller (resp., larger) configura-

tion.

3 The Cases n = 4 and n = 5

In this section we characterize the maximal n−configurations for n = 4, 5, deter-

mining L(4) and L(5) in the process.

Theorem 2. L(4) = 2 and there are unique (4, 1)− and (4, 2)−configurations.

Proof. By inspection, the only 4−configurations contain either one or two 3−sets,

all (4, 1)−configurations are isomorphic to {123} and all (4, 2)−configurations are

isomorphic to M4 := {123, 234}. Hence, L(4) = 2 and there are unique (4, 1)−
and (4, 2)−configurations.

We need one more definition before proceeding to the case n = 5. If S is an

n−configuration and i ∈ {1, . . . , n}, then we define S − i to be the collection of

3−sets in S not containing i. It is clear that S − i is an (n − 1)−configuration.

Theorem 3. L(5) = 5, and there is a unique (5, 5)−configuration up to isomor-

phism, namely M5={123, 234, 345, 451, 512}. Furthermore, there are two isomor-

phism classes of maximal (5, 4)−configurations, namely

54a := {123, 124, 125, 345} and 54b := {123, 124, 135, 145}.

Proof. Let S be a 5−configuration. By Theorem 1, L(5) ≤ (5/2)L(4) = 5. It is

easy to check that M5 is a 5−configuration, so L(5) = 5.

If k = 5, then each If k = 5, then each ti ≥ 3) (by Lemma 2) and
∑5

i=1 ti = 15

(by Lemma 1) so the only possible score is [3, 3, 3, 3, 3]. If k = 4, then each ti ≥ 2

and
∑5

i=1 = 12, and the only possible scores are [4, 2, 2, 2, 2] and [3, 3, 2, 2, 2].
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Since P(5) contains just ten 3-sets, it is easy to check cases directly. We find

that if S contains 123, 124, 125, then S cannot contain any other 3-set containing

either 1 or 2, and so S must have k ≤ 4, and if k = 4, S must be (up to

isomorphism) the configuration 54a (which is therefore maximal). If S has t1 = 4

and does not contain three 3-sets with a common 2-set, then k = 4 and S is the

configuration 54b (up to isomorphism).

Suppose now that k = |S| = 5. Since each of the five 3-sets in S contains

three 2-sets, there must be some repeated 2-sets, i.e., S must contain two three

sets of the form abc, abd. (From above, S cannot contain three 3-sets with a

common 2-set.) Thus suppose that S − 5 = {123, 234}. Since each ti = 3,

there must be at least two additional pairs of the form 15a, 15b and one of a, b

must be 4, and the remaining 3-set must then have the form 45c. The only

possibilities are M5 = {123, 234, 345, 451, 512 and {123, 234, 245, 145, 135}, and

these are isomorphic by the transposition (23). Thus M5 is (up to isomorphism)

the only (5,5)-configuration.

As for their graphs, G(M5) is a 5-cycle, G(54a) is a triangle together with an

isolated point, and G(54b) is a 4-cycle. This completes the proof.

4 The case n = 6

In this section we show that L(6) = 10 and characterize the maximal (6, k)−
configurations for k = 8, 9 and 10. Let i, j ∈ {1, . . . , 6}. If S is a 6−configuration,

then let ui be the number of 3−sets in S containing i, and let ti be the number

of 3−sets in S − j.

Theorem 4. Let M6 ={123, 234, 345, 451, 512, 163, 264, 365, 461, 562}. Then M6

is the unique (6, 10)−configuration, L(6) = 10, and G(M6) is the Peterson Graph

PG.

Proof. By Theorem 1, L(6) ≤ 6L(5)/3 = 30/3 = 10. If S is a (6, 10)− configu-

ration, then ui ≥ 5 for all i: otherwise, S − i would be a (5, k)−configuration for

k ≥ 6. Since 30 ≤ 3L(6) ≥ ∑6
i=1 ui ≥ 6 · 5 = 30, it follows that L(6) = 10 and

that ui = 5 for all i. Since S − 6 is a (5, 5)−configuration, we may assume that

S − 6 = {123, 234, 345, 451, 512}. Now S − 5 is a (5, 5)−configuration containing

123 and 234, so it follows that

either S − 5 = {123, 234, 346, 461, 612} or S − 5 = {132, 324, 246, 461, 613}.
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In any case, S contains 461; in order to maintain ui = 5 for all i, S also contains

256 and 356. If S − 5 = {123, 234, 346, 461, 612}, then S would contain 125, 126,

and 256, which cannot happen. It follows that S − 5 = {132, 324, 246, 461, 613},
and so

S = M6 := {123, 234, 345, 451, 512, 163, 264, 365, 461, 562}.

Hence, L(6) = 10, the (6, 10)−configuration M6 is unique, and by inspection,

G(M6) is the Peterson Graph PG.

The following theorem tells the story about (6, 8)− and (6, 9)−configurations.

Theorem 5. There is a unique (nonmaximal) (6, 9)−configuration (which con-

tains M5), and there are seven (6, 8)−configurations, three of which contain M5

and four of which do not.

Proof. First, suppose that S is a (6, k)−configuration which contains M5, with

k = 8 or 9. If S contains only 3−sets in M6, symmetry considerations reveal that

there are three nonisomorphic possibilities, namely

M ′
6 := M6 − 562 = {123, 234, 345, 451, 512, 163, 264, 365, 461},

68a := M5 ∪ {163, 264, 365}, with score [4, 4, 5, 4, 4, 3], and

68b := M5 ∪ {163, 264, 461}, with score [5, 4, 4, 5, 3, 3].

(Note that none of H(M ′
6), H(68a) and H(68b) are transitive groups.) If S con-

tains a 3−set not in M6, then it can contain at most one other such 3−set. For

example, if 126 ∈ S, then 136, 156, 236 and 256 are excluded from S, and so S

contains a subset of {146, 246, 346, 356, 456}. Moreover, at most one of 346, 356

and 456 ∈ S, so S must contain a 3−set ab6 ∈ M6. Without loss of generality,

we may assume 163 ∈ S. Again, symmetry considerations reveal that there are

no (6, 9)−configurations and two nonisomorphic (6, 8)−configurations, namely

68c := M5 ∪ {163, 264, 465}, with score [4, 4, 4, 5, 4, 3], and

68d := M5 ∪ {163, 364, 165}, with score [5, 3, 5, 4, 4, 3].

(Note that H(68c) is trivial.) Hence there are four (6, 8)−configurations con-

taining M5, two maximal and two nonmaximal, and a unique (nonmaximal)

(6, 9)−configuration (which contains M5).

Now suppose that S is a (6, 8)−configuration not containing M5; then ui ≥ 4

for all i, and since 24 = 3 ·8 =
∑

ui ≥ 6 ·4 = 24, it follows that ui = 4 for all i. If
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S − 6 ∼= 54a = {125, 135, 145, 234}, then u6 = 4 implies that S contains 1x6 and

2y6 for distinct x, y ∈ {3, 4, 5}. The remaining two triples must be 356 and 456,

implying that S contains 135, 136 and 356, which cannot happen. Hence S − 6

does not contain a copy of 54a.

Let {a, b, c, d, e, f} = {1, . . . , 6}. If S contains a copy of 54b, we may assume

that S − f = {abc, abd, ace, ade}, that a and e are not together in any pair of S,

and that f appears with each of b, c, d, e twice. A brief exhaustive search reveals

that there are two nonisomorphic ways to do this, namely

68e := {123, 234, 345, 145, 126, 156, 246, 356}, with score [4, 4, 4, 4, 4, 4], and

68f := {123, 234, 345, 135, 126, 156, 246, 456}, with score [4, 4, 4, 4, 4, 4].

Although they have the same score, these two are not isomorphic: the graph of

68e has four vertices of degree 3 and four of degree 2, and the graph of 68f is

isomorphic to Q3, the familiar cube.

Finally, if S contains neither 54a nor 54b, then without loss of generality we

may assume S − 6 = {123, 234, 345, 451}. Since u1 = u6 = 4, two of the 3−sets

126, 136, 146, 156 ∈ S, not both of 126, 136 ∈ S, and not both 146, 156 ∈ S. If

126, 146 ∈ S, the only possibility is if

S = 68g := {123, 234, 345, 451, 126, 146, 256, 356}, with score [4, 4, 4, 4, 4, 4].

The graph of 68g has six vertices of degree 2 and two of degree 3. If 126, 156 ∈ S,

then 256 and 456 are excluded; this is impossible since u5 = 4. Including 136 and

146 leads to either 68e or 68g, and including 136 and 156 leads to either 68c or

68g. Thus, there are seven (6, 8)−configurations, three of which contain M5 and

four of which do not.

With that, we have finished the case n = 6.

5 The case n = 7

In this section we show that L(7) = 15, and characterize the (7, 15)-configurations

and the (7, 14)-configurations.

Theorem 6. L(7) = 15, and all (7, 15)-configurations are isomorphic to M7 =

M6 ∪ {173, 274, 375, 471, 572}.
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Proof. By Theorem 1, L(7) ≤ 17; we show first that L(7) ≤ 15.

Suppose that T is a (7, 17)-configuration. Then every ui ≥ 7, and also
∑7

i=1 ui = 3 × 17 = 51, and so we may assume that u7 = 7. Then S = T − 7

is a (6, 10)-configuration , so in S, every W (i) is a cycle on five vertices, and

hence every W (i) has independence number 2. It follows that ui ≤ 5 + 2 = 7 for

1 ≤ i ≤ 6; but then
∑7

i=1 ui ≤ 49, a contradiction. So L(7) ≤ 16.

Suppose that T is a (7, 16)-configuration. Then every ui ≥ 6, and also
∑7

i=1 ui = 3 × 16 = 48, and so we may assume that u7 = 6. Then S = T − 7

is a (6, 10)-configuration; we assume that S = M6. As above, every ui ≤ 7 for

1 ≤ i ≤ 6, and it follows that the score can only be [7, 7, 7, 7, 7, 7, 6]. There are

two triples in T containing both 6 and 7, say a67 and b67. Then ab6 cannot be in

T , so ab must be one of the pairs 12, 15, 23, 34, 45. Suppose that 167 and 267 are

in T ; then T cannot contain any of 137, 147, 247, 257, 127. The remaining pairs

containing 7 and not 6 are 157, 237, 347, 357, 457, and of these we can have at

most one of 347, 357, 457 (since 345 is in T ). Then u7 ≤ 5, a contradiction. The

argument is similar for the other possible values for the pair ab. Thus L(7) ≤ 15.

Put M7 = M6 ∪ {173, 274, 375, 471, 572}. It is easy to verify that M7 is

a (7, 15)-configuration, so L(7) = 15, and it remains only to show that M7 is

unique up to isomorphism.

Suppose that T is a (7, 15)-configuration. Then every ui ≥ 5, and also
∑7

i=1 ui = 3 × 15 = 45, so we can assume u7 ≤ 6. Then T − 7 is either a

(6, 10)-configuration or a (6, 9)-configuration, and from this (considering the in-

dependence numbers of the W (i)-graphs for T −7), we can say that every ui ≤ 7,

and then the only two possible scores are (up to permutations) [7, 7, 7, 6, 6, 6, 6]

and [7, 7, 7, 7, 7, 5, 5].

For the score [7, 7, 7, 7, 7, 5, 5] we may assume without loss of generality that

u7 = 5. Since H(M6) is a transitive group, we may also suppose that u6 = 5;

then T − 7 and T − 6 are both isomorphic to M6 and both T − 7 and T − 6

contain M5. Then the graphs W (6) in T − 7, and W (7) in T − 6 are identical,

and it follows that T = M7.

We next show that the score [7, 7, 7, 6, 6, 6, 6] is not possible. Suppose that

the score is [7, 7, 7, 6, 6, 6, 6] and that u7 = u6 = 6. Then T − 7 and T − 6 are

both (6, 9)-configurations, and we may assume they both contain M5; then T

contains precisely ten triples containing either 6 or 7 (or both). Then W (6) in
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T −7, and W (7) in T −6 are subsets (of cardinality four) of W (6) in M6, that is,

of {13, 24, 35, 41, 52}; so they must have at least three common pairs. Suppose

for example that T contains 137, 136, 247, 246, 357, 356. Then T cannot contain

any of the triples 167, 367, 267, 467, 367, 567, which implies that T has no more

than eight triples containing either 6 or 7, whence |T | ≤ 13, a contradiction.

A similar argument applies to any choice of three common pairs, and so the

score [7, 7, 7, 6, 6, 6, 6] is not possible. It follows that all (7, 15)-configurations are

isomorphic to M7 := M6 ∪ {173, 274, 375, 471, 572}.

For (7, 14)-configurations, there are eight different isomorphism types, as the

following theorem shows.

Theorem 7. There are eight isomorphism types of (7, 14)−configurations. Two

contain M6; three contain M6 − {abc} but no copy of M6; two contain M5 but

no (6, 9)-configuration or (6, 10)-configuration; and one contains no copy of M5.

The eight different types are as follows:

T1 = M7 − {572} (score [7, 6, 7, 7, 6, 5, 4]))

T2 = M6 ∪ {712, 714, 726, 735} (score [7, 7, 6, 6, 6, 6, 4])

T3 = (M6 − {562}) ∪ {723, 725, 726, 745, 716} (score [6, 7, 6, 6, 6, 6, 5])

T4 = M6 − {562} ∪ {712, 714, 734, 756, 726} (score [7, 6, 6, 7, 5, 6, 5])

T5 = M6 − {562} ∪ {712, 716, 724, 745, 756} (score [7, 6, 5, 7, 6, 6, 5])

T6 = 68g ∪ {713, 715, 724, 725, 736, 746} (score [6, 6, 6, 6, 6, 6, 6])

T7 = 68c ∪ {762, 765, 761, 753, 723, 714} (score [6, 6, 6, 6, 6, 6, 6])

T8 = 68d ∪ {167, 267, 467, 237, 257, 457} (score [6, 6, 6, 6, 6, 6, 6])

Proof. Suppose that T is a (7,14)-configuration. Then
∑7

i=1 ti = 42, and every

ti ≥ 4. If some ti = 4, then T contains (a copy of) M6, and the possible scores

are [7, 7, 6, 6, 6, 6, 4] and [7, 7, 7, 6, 6, 5, 4]. If every ti > 4 and some ti = 5, then

T contains a (6, 9)-configuration and the possible scores are [7, 6, 6, 6, 6, 6, 5] and

[7, 7, 6, 6, 6, 5, 5]. If every ti > 5, then it must be that every ti = 6 (the score is

[6, 6, 6, 6, 6, 6, 6]); then for 1 ≤ i ≤ 7, T − i is a (6, 8)-configuration.

Suppose that T has the score [7, 7, 7, 6, 6, 5, 4], with t7 = 4. Since the score for

M6 is [5, 5, 5, 5, 5, 5], then for some 1 ≤ i ≤ 6, T contains no triple having both i

and 7. In view of the transitivity of H(M6), we may assume that i = 6; then T−6

is a (6, 9)-configuration containing M5, and so W (7) is a subset (of cardinality
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four) of W (6), i.e. T results from removing one of the triples containing 7 from

the configuration M7. This is the first isomorphism type: T1 = M7 − {572}.
Suppose that T has the score [7, 7, 6, 6, 6, 6, 4], with t7 = 4, so that T contains

M6. In view of the transitivity of H(M6), we may assume that t1 = t2 = 7, and

ti = 6 for 3 ≤ i ≤ 6. We adjoin four triples to M6, say 71a, 71b, 7cd, 7ef . Since

the vertices a, b must be independent in W (1,M6), then ab can only be one of

24, 26, 56, 53, 43, and since ti = 6 for 3 ≤ i ≤ 6, one of c, d, e, f must be equal to

either a or b. We are requiring t2 = 7, so we assume that a = c = 2. Then we

have either 712, 714, 72d, 7ef or 712, 716, 72d, 7ef . If we have 712, 714, 72d, 7ef

then d cannot be 4, 3, 5, 1 so d = 6, and then e, f can only be 3, 5. Similarly, if

we have 712, 716, 72d, 7ef , we find that d must be 4 and e, f must be 3, 5. The

automorphism (12)(35) transforms one of these into the other, so this is the only

automorphism type with this score: T2 = M6 ∪ {712, 714, 726, 735}.
If every ti > 4 and some ti = 5, then T contains a (6, 9)-configuration and

the possible scores are (up to isomorphism) [7, 6, 6, 6, 6, 6, 5] and [7, 7, 6, 6, 6, 5, 5].

Assume without loss of generality that u7 = 5, and T − 7 = M6 − {562}. The

score for T − 7 is [5, 4, 5, 5, 4, 4], and the corresponding independence numbers

are 2, 3, 2, 2, 3, 3, and so ti ≤ 7 for every 1 ≤ i ≤ 6.

In T − 7 = M6 −{562}, note that 2, 5, 6 are interchangeable under the action

of H(M6 − {562}), and so are 1, 3, 4. We will consider two cases: first, if some

ti = 7 for i = 2, 5, 6, and second, if ti ≤ 6 for i = 2, 5, 6.

Without loss of generality, suppose that u2 = 7. There is only one independent

set of size three in W (2, T − 7), i.e. 5, 3, 6; so we adjoin 725, 723, 726. The only

remaining possible triples with 7 are easily seen to be 754, 716, and the score is

[6, 7, 6, 6, 6, 6, 5]. If t5 = 7 or t6 = 7, we get an isomorphic configuration. This

gives the third isomorphism class:

T3 = (M6 − {562}) ∪ {723, 725, 726, 745, 716} (score [6, 7, 6, 6, 6, 6, 5]).

Now suppose that ti ≤ 6 for i = 2, 5, 6. Then two of t1, t3, t4 must be equal to 7,

and we may suppose without loss of generality that t1 = 7. The independent pairs

in W(1) are: 24, 26, 34, 35, 56; under the automorphism (3, 4)(2, 5) ∈ H(M6 −
{562}), 24 transforms into 35, and 26 into 56; so we need only consider the three

possibilities 24, 26, 34.

Case 1. Add 24 to W (1): adjoin the triples 712, 714. We have either t3 = 7 or

t4 = 7. If t3 = 7, we must adjoin 736, 734, and then also t4 = 7 and either t5 = 4

or t6 = 4, a contradiction. So t4 = 7; we must adjoin 734, 756, 726; the resulting
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configuration is C1 = M6 − {562} ∪ {712, 714, 734, 756, 726}.
Case 2. Add 26 to W (1): adjoin the triples 712, 716. Then the only possible

triple of the form 73a is either 734 or 735, so that t3 ≤ 6; then t4 = 7 and we must

have 724, 745. The only remaining possibility is 756; the resulting configuration

is C2 = M6 − {562} ∪ {712, 716, 724, 745, 756}.
Case 3. Add 34 to W (1): adjoin the triples 713, 714. Either t3 = 7 or t4 = 7,

and from the automorphism (3, 4)(2, 5), it does not matter which one; assume

that t3 = 7. Then the only possibility is to adjoin 735, 726, 725; the resulting

configuration is C3 = M6 − {562} ∪ {713, 714, 735, 726, 725}.
In C2, there is no triple of the form a37; in C1 and C3, for every pair xy there

is some triple of the form axy; thus C2 is not isomorphic to either C1 or C3. The

map (1, 3, 4)(5, 6, 2) transforms C1 into C3, so they are isomorphic.

Suppose now that T has the score [6, 6, 6, 6, 6, 6, 6] (i.e. T contains no (6, 9)-

configuration or (6, 10)-configuration).

Suppose first that T does not contain an M5. Then for every pair i 6= j,

1 ≤ i, j ≤ 7, there must be precisely two members of T containing the pair ij.

To see this: since ti = tj = 6, the number of members of T containing either i

or j is 12 − k where k = k(i, j) is the number of members of T containing the

pair ij, so the number of members of T not containing either i or j is k + 2. If

k(i, j) = 3, we would have an M5, so k(i, j) ≤ 2. Since
∑

k(i, j) = 3 × 14 = 42,

and there are just 21 pairs in P(7), it must be that every k(i, j) = 2.

Evidently a (6, 8)-configuration not containing an M5 must be an extension

of one of 68e, 68f , or 68g, and we consider these in turn.

In the configuration 68e (respectively 68f), the pair 25 (resp. the pairs

14, 25, 36) is not contained in any triple, so in any extension to a 7-configuration,

the pair 25 (resp. 14, 25, 36) would appear at most once. So neither 68e nor 68f

can be extended to a (7, 14)-configuration not containing M5.

In the configuration 68g, there are precisely six pairs appearing once only

(13, 15, 24, 25, 36, 46) and all other pairs appear twice. So the only possible ex-

tension is to add on 713, 715, 724, 725, 736, 746; it is easy to check that this gives

a (7, 14)-configuration not containing M5.

Now suppose that T contains an M5. Using the same methods as before, we

find that any extension of 68a or 68b to a (7, 14)-configuration, must contain some

(6, 9)-configuration. For example, to extend 68a, requiring all ti = 6, we begin by

adjoining three triples of the form 76a; these can only be either 761, 765, 762 or
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761, 765, 764; neither of these allows an extension without a (6, 9)-configuration.

Extending 68c and requiring all ti = 6, we must begin by adjoining either

(i) 762, 765, 761 or (ii) 762, 765, 763 since 68c has just three triples containing

6, and the independent sets of size 3 for W (6) in 68c are 1, 2, 5 and 3, 2, 5.

Proceeding as usual, we find that Case (i) leads to the (7, 14)-configuration

68c ∪ {762, 765, 761, 753, 723, 714}, and Case (ii) does not admit any extension

not containing a (6, 9)-configuration.

Extending 68d and requiring all ti = 6, we must begin by adjoining either

(i) 762, 764, 761 or (ii) 762, 764, 765 (there are other independent sets in W (6),

but using the group H(68d), we need only consider two of them); Case (i) leads

to the (7, 14)-configuration 68d∪{167, 267, 467, 237, 257, 457}, and Case (ii) does

not admit any extension not containing a (6, 9)-configuration.

6 The Case n = 8

In this section, we prove that L(8) = 22 and characterize the (8, 22)− configura-

tions.

Theorem 8. L(8) = 22, and there are exactly four isomorphism classes of

(8, 22)−configurations. Three of them contain M7, namely

S1 := M7 ∪ {158, 168, 178, 238, 268, 278, 358}, score [10, 10, 9, 7, 9, 7, 7, 7],

S2 := M7 ∪ {138, 158, 268, 348, 478, 578, 678}, score [9, 8, 9, 9, 9, 7, 8, 7], and

S3 := M7 ∪ {158, 168, 268, 348, 478, 578, 678}, score [9, 8, 8, 9, 9, 8, 8, 7].

One of them does not, namely

S4 :=
6⋃

i=0

{{1 + i, 2 + i, 3 + i}, {1 + i, 2 + i, 5 + i}}
⋃

{138, 148, 168, 248, 268, 278, 358, 578}, score [9, 9, 8, 8, 8, 8, 8, 8].

where the addition in S4 is mod 7, and we write 7 instead of 0.

Proof. By Theorem 1, we see that L(8) ≤ 8L(7)/5 = 24. In any (8, 24)−
configuration S, we have ui ≥ 9 for all i; otherwise, S − i would contain a

(7, 16)−configuration, which cannot happen. Hence, S − 8 ∼= M7; by renumber-

ing if necessary, we may suppose that t7 = 5. In M7, W (7) consists of the edges

13, 35, 52, 24, 41 and the isolated point 6. Since I(W (7)) = 3, it follows that
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u7 ≤ 8, which contradicts the assumption that an (8, 24)−configuration exists.

Hence L(8) ≤ 23.

If S is an (8, 23)−configuration, then the previous argument shows that all

ui ≥ 8, and since 69 = 3|S| =
∑

ui, S must have a score of [9, 9, 9, 9, 9, 8, 8, 8].

Without loss of generality, let u8 = 8, so that S − 8 ∼= M7. By relabeling if

necessary, we may set t6 = t7 = 5, recalling that M7 has score [7, 7, 7, 7, 7, 5, 5].

Now in M7, I(W (6)) = I(W (7)) = 3, so that u6, u7 ≤ 8. Since ui ≥ 8 we see that

u6 = u7 = 8 and that 6 and 7 are each in three 3−sets with 8. The only way this

can happen is that 678 ∈ S (otherwise we violate the Pigeonhole Principle).

If, say, 178, 278 ∈ S, then a study of the W (i) graphs reveals that 128, 168, 138

and 148 are excluded; the only other possible 3−set containing both 1 and 8 is

158. But then u1 = 8, contrary to the assumption that u1 = 9. The four other

possible pairs of 3−sets {a78, b78} ∈ S, namely {278, 378}, {378, 478}, {478, 578}
and {578, 178} lead similarly to contradictions. We conclude that L(8) ≤ 22.

Let S be an (8, 22)−configuration, and first suppose that S contains a copy

of M7. Then some ui = 7, and by renumbering if necessary, we may suppose that

u8 = 7 and the W (i) graphs in M7 are as follows:

W (1) = {23, 25, 36, 37, 45, 46, 47}
W (2) = {13, 15, 34, 46, 47, 56, 57}
W (3) = {12, 16, 17, 24, 45, 56, 57}
W (4) = {15, 16, 17, 23, 26, 27, 35}
W (5) = {12, 14, 26, 27, 34, 36, 37}
W (6) = {13, 24, 35, 41, 52} ∪ {7}
W (7) = {13, 24, 35, 41, 52} ∪ {6}

It is easy to check that I(W (i)) = 3 for all i, and so ui ≤ 3 + ti for all i; hence,

u6 ≤ 8, u7 ≤ 8 and ui ≤ 10 for 1 ≤ i ≤ 5. We will appeal to the symmetry

of M7—both (1, 2, 3, 4, 5) and (6, 7) are automorphisms of M7—to streamline the

argument.

First, suppose u1 = 10 (the same argument works for ui = 10 for 2 ≤ i ≤ 5).

Then S contains 168, 178 and either 128 or 158. Including 158 excludes all other

3−sets ab8 except 238,248,268,278,348 and 358, of which four must be in S. The

W (i) graphs reveal that the only way to do this is to include 238, 268, 278 and

358, i.e. if S = S1. A similar argument shows that if 128 ∈ S, then S ∼= S1.

Next, suppose u1 = 9 and ui ≤ 9 for all i (again, the same argument works for
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ui = 9 and 2 ≤ i ≤ 5.) There are eight possible pairs of 3−sets {1a8, 1b8} ∈ S;

by symmetry, the choices are {138, 148}, {138, 158}, {158, 168}, and {168, 178}.
Including 138 and 148 excludes all 3−sets except 248, 258, 268, 278, 358, 568,

578 and 678; a study of the W (i) graphs reveals that at most four of these can

be in S, which would imply that u8 ≤ 6, contrary to assumption.

Including 138 and 158 excludes all 3−sets except 248, 268, 278, 348, 468, 478,

568, 578 and 678. Again, the W (i) graphs reveal that there are only two ways

to include five of them: the five are either {268, 348, 478, 578, 678}, in which case

S = S2, or {278, 348, 468, 568, 678}, in which case S ∼= S2.

Similarly, including 158 and 168 leads, by analyzing the W (i) graphs, to eight

possible configurations. Two of these are isomorphic to S1, one to S2, and five to

S3.

Finally, including 168 and 178 excludes all but ten triples, at most four of

which could be in S, contrary to the assumption that u8 = 7.

We conclude that if S is an (8, 22)−configuration which contains a copy of

M7, then S is in one of three isomorphism classes, namely those of S1, S2 and S3

as defined in the statement of the theorem.

Now suppose that S is an (8, 22)−configuration which does not contain a copy

of M7. Then min(ui) ≥ 8, and if min(ui) ≥ 9, then
∑

ui ≥ 72 > 66 = 3 · 22, a

contradiction. Hence min(ui) = 8, so we set u8 = 8 without loss of generality, and

see that T = S − 8 is one of the eight types of (7, 14)−configurations. A tedious

but straightforward analysis of the W (i) graphs, as done in the previous cases,

reveals the following information. Up to permutation isomorphism: (a) T1 and T8

each have only one extension to an (8, 22)−configuration, which is isomorphic to

S4; (b) T2, T6 and T7 have no extensions; (c) T4, T5 and T6 each have extensions,

but each such extension also contains a copy of T8 and is isomorphic to S4.

7 The Case n = 9

In this section, we show that L(9) = 32, describe the six different isomorphism

types for a (9, 32)− configuration, and sketch the main idea for the proof. The

argument is similar to that used for n = 8, namely analysis of the graphs W (i).

Theorem 9. L(9) = 32 and there are six isomorphism types for a (9, 32)− con-
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figuration. These are:

R1 = S1 ∪ {239, 259, 369, 379, 459, 469, 479, 589, 689, 789},
R2 = S2 ∪ {179, 189, 239, 289, 369, 459, 469, 489, 579, 679},
R3 = S2 ∪ {179, 189, 239, 279, 289, 369, 459, 469, 489, 679},
R4 = S3 ∪ {129, 169, 289, 379, 389, 459, 479, 569, 589, 679},
R5 = S3 ∪ {129, 169, 279, 289, 379, 389, 459, 569, 589, 679},
R6 = S3 ∪ {179, 189, 239, 279, 289, 369, 459, 469, 489, 679}.

R1 has a score consisting of three 12’s and the rest 10’s. The others have scores

consisting of one 12, four 11’s and four 10’s.

Proof. By Theorem 1, L(9) ≤ 9L(8)/6 = 33. Now, in a (9, 33)− configura-

tion we have
∑

ui = 99 with each ui ≥ 11, so that ui = 11 for all i. Thus,

a (9, 33)−configuration must contain one of the four (8, 22)−configurations Si.

Similarly, in a (9, 32)−configuration we have
∑

ui = 96 with each ui ≥ 10, so

that ui = 10 for some i. Thus, a (9, 32)−configuration must also contain one of

the four Si.

We will not give all the arguments in detail, since all of them are based on

the following idea, which we call “the coloring procedure”. (This amounts to

successive applications of Lemma 2.) Suppose it is desired to extend an (8, 22)-

configuration T to a (9, k)-configuration U . Let ti = ti(T ) and ui = ti(U). Draw

the graphs W (i), and list the maximal independent sets in each W (i). Choose

a value of i, 1 ≤ i ≤ 8, and a (non-empty) independent set B = {a, b, . . . } of

vertices in the graph W (i), and let R be the set of vertices of W (i) which are

adjacent to some member of B. The vertices in B are colored blue, and the

vertices in R are colored red. Then:

1. For each j ∈ B, the vertex i in the graph W (j) is colored blue, and all

vertices adjacent to i in W (j), are colored red.

2. For each j ∈ R, the vertex i in the graph W (j) is colored red.

3. For every pair of vertices a, b ∈ B, the vertex a in W (b) is colored red, and

the vertex b in W (a) is colored red.

4. Iterate: For any 1 ≤ x, y ≤ 8, if vertex x in W (y) is colored red, then also

vertex y in W (x) is colored red. Continue until no new vertices can be colored

red.

It is possible that some W (k), 1 ≤ k ≤ 8, has a non-empty set of independent

vertices which have not yet been colored. Then we may color these vertices blue,
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and repeat the procedure described above. Continuing in this way, at some point

we will have all the vertices in the W (i) colored either red or blue, and then there

can be no further extension to a configuration. The triples in the configuration

which we get, are those of the form ab9 where vertex a is colored blue in W (b);

if there is a total of 2k blue vertices in the graphs W (i), then the configuration

we get has k new triples adjoined to T .

We will examine each of the (8, 22)−configurations and show that none of

them can be extended to a (9, 33)−configuration; since (9, 32)−configurations

exist (e.g., R1), it will follow that L(9) = 32. If U is a (9, 33)−configuration then

u9 = 11 and U − 9 is isomorphic to one of the Si.

For S1, the vertices 4, 6, 7 and either 3 or 5 form a maximal independent set

in W (8) . Since t8 = 7, it follows that U must contain 489 and 689. But since

t4 = 7, examining W (4) reveals that 469 must be in U . This is a contradiction,

so S1 cannot be extended to a (9, 33)−configuration.

For S2, t8 = 7 but W (8) does not contain an independent set of size 4, so

u8 ≤ 10, which means that S2 cannot be extended to a (9, 33)−configuration.

For S3, t8 = 7 and W (8) does contain an independent set of size 4—namely,

{1, 2, 3, 7}—so that U must contain 189, 289, 389, and 789. Their presence in U

eliminates all other 3−sets containing 9 except for 149, 249, 259, 359, 369, 459,

469 and 569. But examining W (5) shows that at most two of 259, 359, 459 and

569 can be in U , which implies u9 ≤ 10. But then U cannot have 33 3−sets.

Thus, S3 cannot be extended to a (9, 33)−configuration.

Finally, for S4, t8 = 8 and W (8) contains six independent sets xyz of size 3,

namely 125, 346, 347, 367, 456 and 457. Examining each of these in turn, as

above, reveals that including all of the 3−sets x89, y89, z89 and assuming that

ui = 11 for all i leads to a contradiction. That is, S4 cannot be extended to a

(9, 33)−configuration.

We will go through some of the details for finding the (9, 32)−configurations

which extend S3, which is both representative and the most interesting of the

cases. The other cases are similar in approach but differ in the outcome. As

stated in the theorem, S1 admits one extension, S2 admits two, S3 admits three

and S4 admits none.

The (8, 22)-configuration S3 is equal to M7∪{158, 168, 268, 348, 478, 578, 678}.
Its score is [t1, t2, . . . ] = [9, 8, 8, 9, 9, 8, 8, 7] and its automorphism group is trivial;

for, an automorphism must fix 8, and none of the non-trivial automorphisms of

M7 extend to W (8).
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We list first the maximal independent sets for the graphs W (i) of S3 together

with the bounds on the ui given by ti + ki (recall that ki is the size of the largest

independent set). We shall see that in fact several of these cannot be attained,

i.e. these bounds are not all exact.

For W (1) : 384, 627, 657, 428, 287; u1 ≤ 12

For W (2) : 418, 518, 617, 637, 358, 178, 378; u2 ≤ 11

For W (3) : 185, 467, 582, 2678; u3 ≤ 12

For W (4) : 736, 756, 258, 128, 568; u4 ≤ 12

For W (5) : 238, 167, 467, 248, 468; u5 ≤ 12

For W (6) : 127, 157, 237, 348, 458, 347, 457; u6 ≤ 11

For W (7) : 128, 238, 346, 456, 156, 126, 236; u7 ≤ 11

For W (8) : 1237, 456, 356, 124, 245, 235; u8 ≤ 11

Suppose that U is a (9, 32)-configuration containing S3. As previously noted,

every ui ≥ 10, and u8 = 12 is impossible (as is u3 = 12 if u8 = 11), so we may

assume that u3 ≤ 11 and u8 = 10. We consider the independent sets of size

3 in W (8); from the coloring procedure we find that just two of them, namely

124, 235, will allow extensions to a (9, 32)-configuration, and each of these leads

to three possibilities.

Using 235 for W (8) — i.e. we adjoin triples 982, 983, 985 to S3 initially — de-

termines the set of triples X = {982, 983, 985, 945, 965, 937, 967, 916, 912}, and

leaves a choice of one of 947, 924, or 927. Using 124 for W (8) — we ad-

join triples 981, 982, 984 to S3 initially — determines the set of triples Y =

{981, 982, 984, 945, 946, 967, 963, 923, 917}, and leaves a choice of one of 957, 925,

or 927. These result in the following six possibilities:

U1 = S3 ∪ X ∪ {947}
U2 = S3 ∪ X ∪ {942}
U3 = S3 ∪ X ∪ {927}
V1 = S3 ∪ Y ∪ {957}
V2 = S3 ∪ Y ∪ {952}
V3 = S3 ∪ Y ∪ {927}

Now (1, 5, 4, 3, 2)(6, 7)(8, 9) is an isomorphism from U2 to R2, (1, 2, 8, 4, 5, 6, 7)(3, 9)

is an isomorphism from V1 to U3, and (1, 2)(3, 5)(6, 7)(8, 9) is an isomorphism from
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V2 to R3. It remains to show that R4 := U1, R5 := U3, and R6 := V3 are not

isomorphic to each other or to any of R1, R2, R3.

In each configuration, we color the vertices of the graphs W (i) as follows: i is

red if ui = 11, i is green if ui = 10, and i is yellow if ui = 12. The degree sequence

of W (i) is (n0, n1, n2, . . . ), where nj is the number of vertices of degree j in W (i).

An isomorphism from configuration C to configuration D must preserve degree

sequences, and if W (i, C) is assigned to W (m,D), then W (i, C) and W (m,D)

must have not only the same degree sequence, but the same color pattern.

In V3 there are four W (i) with degree sequence (0, 0, 2, 6), and none of the

other configurations has more than two W (i) with this degree sequence.

While U1 and R2 have the same set of degree-sequences, they differ in color

patterns: In U1, W (2) and W (3) have degree sequence (0, 0, 4, 4), and the four

vertices of degree 3 are colored red, red, red, yellow. In R2, every W (i) with

degree sequence (0, 0, 4, 4) has the four vertices of degree 3 colored red, red,

green, yellow.

While U3 and R3 have the same set of degree-sequences, they differ in color

patterns: In U3, W (2) and W (7) are the only ones with degree sequence (0, 0, 2, 6)

and the two vertices of degree 2 are colored green, green in W (2) and red, red in

W (7). In R(3), W (2) and W (7) are the only ones with degree sequence (0, 0, 2, 6),

but in each one the two vertices of degree 2 are colored red, green.

Since R1, R2, R3 all have different degree sequences, this accounts for all pos-

sibilities. Similarly, one verifies that R4, R5 and R6 are the only other possible

isomorphism types for a (9, 32)−configuration. This completes the proof of The-

orem 9.

8 Questions for Further Study

In this paper, we have determined L(n) for n ≤ 4 ≤ 9; the work has raised several

questions which point the way to further research:

• Is the bound on L(n) given by Theorem 1 sharp—i.e., is

L(n) =
n

n − 3
· L(n − 1)

for infinitely many values of n?
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• Find a good estimate for the number of isomorphism types of [r, s, n, t]−
configurations of a given size — in particular, for [3, 4, n, 2]−configurations

of size L(n).

• Is there a way to compute L(n) without checking the extendibility of a large

number of [3, 4, n − 1, 2]−configurations?

• Are there special values of k for which there are systematic ways of con-

structing [r, s, n, t]−configurations of size k — e.g., the circular construction

of M5?

• What can be said about the maximum size of an [r, s, n, t]−configuration

for general r, s, n and t?
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