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he word cryptography comes from 
the Greek cryptos (hidden) and 
graphos (writing), so cryptography 
is the science of hidden or secret 
writing. More generally, cryp-
tography refers to the science of 
safeguarding information. If you 
have ever used a Web browser or 

a cell phone or bought anything over the Internet, 
you have used cryptography. And cryptography 
is becoming more and more important as we rely 
more and more on electronic—that is, digital—com-
munication in business and in our personal lives. 

Cryptography allows us to use a public medium 
such as the Internet to transmit private information 
securely, thus enabling a whole range of conve-
niences, from online shopping to personally printed 
movie tickets to (coming soon!) fraud-proof credit 
cards. To accomplish all this, cryptography must draw 
from the latest developments in mathematics and 
computer science, and its consequences define the 
cutting edge of privacy and intellectual property law. 

From an education viewpoint, cryptography—as 
a result of its position at the intersection of math-
ematics and computer science, its implications 
for our daily lives, and its image as an element in 

This colorful illustration of a primary component of modern 

cryptography—the Diffie-Hellman key exchange—draws students 

into the secret world of message encoding and decoding.
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international espionage—is a rich field for spurring 
students to further study in the sciences. Although 
some of the smartest people in the world are 
involved in building and breaking new crypto - 
graphic algorithms, the basics of the subject and 
even some of the modern algorithms in common 
use are accessible to the average high school algebra 
student. To illustrate this last point, we study one 
of the most popular cryptographic algorithms today 
using M&M’s for a demonstration by analogy. 

BACKGROUND
Modern encryption requires that the message 
sender and the message receiver share a common 
key, which determines the algorithms (keyed func-
tions) used for encryption and decryption. To com-
municate over digital media, such as the Internet, 
we must convert messages into a string of zeros and 
ones. Encryption involves transforming that string 
into another, seemingly random, string of zeros 
and ones that no one can interpret without the key 
for determining the decryption algorithm. The key 
for encryption and decryption is also a string of 
zeros and ones, but we can think of that string as 
the binary expansion of an integer. For example, 
11001 represents the integer 25. 

Keyed functions allow us to exchange secret 
messages with our friends as long as we share a key 
with each friend. Such a system is called a shared-
key system. The trouble with shared keys is that 
they have to be shared. If my friend lives halfway 
around the world, coming up with a key that both 

of us know but is secret from everyone else 
poses a real problem. It would be great 

if we could find a way to agree on a 
secret key (i.e., an integer) without 
exchanging secret information. 

In the following activity, we will 
not study the actual encryption and 
decryption of messages. Rather, 
we focus on how two people might 
develop a secret key that would 

be used to produce 
encryptions and 

decryptions. 

THE PROBLEM 
The following analogy shows how we might come 
up with a public method of agreeing on a secret 
key. We have conducted this activity with audi-
ences of all levels—from elementary school stu-
dents to national decision makers—and all seem 
to understand and enjoy it (probably because we 
always let them eat the keys afterward!). 

The setup includes a pair of empty cans with 
plastic lids (cans for nuts work well). In the lid of 
each can, cut a pair of crossed slits about a half-inch 
long; the slits allow the insertion of small objects 
into the cans without opening the lids but do not 
permit the can’s contents to be seen. Choose two 
students on opposite sides of the class, give each 
a can, and supply each with a small pile of plain 
M&M’s of many colors. For the duration of the 
demonstration, the students have to change their 
names to Alice and Bob (in cryptography, two peo-
ple trying to communicate are always named Alice 
and Bob). 

The cans will represent keys for encoding and 
decoding messages. We imagine that everyone in 
the class has an encryption-decryption machine 
that uses cans of M&M’s as keys. That is, the 
machine is some kind of box that has a slot in the 
shape of a can, an input chute, an output chute, and 
a crank that can go forward or backward. If Alice 
wants to send a message to Bob, she picks a key (a 
can of M&M’s), puts the key in the slot, puts her 
message in the input chute, and cranks forward 
so that an encrypted message comes out. She then 
sends the message to Bob. Even when she sends 
the message through a public network (such as the 
Internet), the message will remain secure unless 
someone else has the same key for encrypting-
decrypting.

When Bob receives the encrypted message, he 
will place his identical key (a can with the same 
numbers and colors of M&M’s as Alice has) in the 
slot of his encrypting-decrypting box. He will then 
put the encrypted message into the input chute 
and crank backward to get a decrypted message 
out. The tricky part is for Alice and Bob to obtain 
identical cans to begin with, without anyone else 
obtaining copies of those cans or guessing their 
contents (knowledge of the contents would allow 

someone else to create an identical can).
The rules of the game are as fol-

lows: Alice and Bob insert as 
many M&M’s of whatever 

colors they like into their 
respective cans. No 

one can open either 
can, not even 

Alice or Bob. 
However, J
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braic structure called a group. A group is a set of 
elements and an operation such that the set is 
closed under the operation, the elements obey the 
associative property with respect to the operation, 
there is an identity element in the group under the 
operation, and each element in the group has an 
inverse with respect to the operation. Any group 
will work, but let’s take a concrete example. We 
will use the numbers {1, 2, ..., 100} under the  
operation multiplication modulo 101—that is, after 
we multiply two numbers, we divide by 101 and 
use the remainder as our answer. For example,  
50 • 3 = 150, but because 150 is not one of the num-
bers in our group, we divide 150 by 101 and get a 
remainder of 49. So we say 50 • 3 ≡ 49 modulo 101 
(i.e., 50 • 3 is “congruent” to 49, modulo 101). We 
call this group Z*

101. 
Next, we choose a base element from the 

group—say, 12. We will work with the powers 
of our base element. Now, Alice and Bob need to 
agree on one of the numbers in the group Z*

101 to 
use as a shared key. They start by each choosing an 
exponent, as represented by choosing their respec-
tive sets of M&M’s. Let’s say that Alice chooses 4 
and Bob chooses 23. Then they compute their pow-
ers of 12, as represented by putting their collections 
of M&M’s into their respective cans. Alice com-
putes 124 ≡ 31 (modulo 101), and Bob computes 
1223 ≡ 35 (modulo 101). Then they send these num-
bers to each other, as represented by exchanging 
cans; Alice receives 35 from Bob, and Bob receives 
31 from Alice. Alice raises the number she received 
to the power that she knows, as represented by 
adding her M&M’s to the can Bob gave her. She 
computes 354 ≡ 68 (modulo 101), and similarly Bob 
computes 3123 ≡ 68. Voilà, they get the same num-
ber, and they can use it as a shared key.

Figure 1 illustrates the process and analogy. 
Alice puts some collection of M&M’s (integer a) 
into the can (function X ≡ 12a modulo 101) and 
exchanges cans with Bob, who has completed a 

any student holding a can is able to duplicate it 
magically, including its contents. In practice, this 
means that each student who has touched the can 
pretends that he or she still holds an identical copy, 
even after passing along the original can (but still 
one cannot open the copy to see what is inside). 
Students can also insert M&M’s into the copy. We 
assume that everyone has an encryption-decryption 
machine that uses cans of M&M’s as keys; thus, 
if two students have cans with identical contents, 
they can encrypt and decrypt messages to each 
other. If anyone else also has an identical can, then 
he or she can read all the messages encrypted by 
using that can as the key. The goal is for Alice and 
Bob—and no one else—to end up with cans with 
identical contents, but all their messages to each 
other must pass through the classroom so that 
every student can touch and copy them. How can 
Alice and Bob achieve this goal?

A SOLUTION 
Given enough time, most classes develop this solu-
tion themselves and often come up with some nice 
subtleties and side discussions. Allow students to 
investigate the concepts and arrive at a protocol, 
such as the following one. 

Alice and Bob each put some M&M’s in his or 
her can and remember which M&M’s they used. 
Then they exchange the cans by handing them from 
student to student through the classroom (note that 
many students will have a chance to handle and 
make copies of the cans but cannot see the contents 
of any can). Once Alice and Bob receive the other’s 
can, they each put the same M&M’s as before into 
this second can. Now Alice has a can with Bob’s 
M&M’s and a copy of her own, and Bob has a can 
with Alice’s M&M’s and a copy of his own. In other 
words, they have cans with identical contents. 

What about the other students who handled the 
cans? Many of them might have handled both cans, 
so under the rules of the game they could have cop-
ies of both cans. Could an eavesdropper use the cop-
ies of Alice and Bob’s original cans to produce a copy 
of the can that Alice and Bob use as their key? This 
question leads to the conclusion that the eavesdrop-
per would really like to open one of the cans. Then 
he or she would know everything that Alice (or Bob) 
knows and could produce the shared key. 

THE ANALOGY: THE DIFFIE-HELLMAN KEY 
EXCHANGE
Let’s do the same thing, replacing M&M’s and nut 
cans with numbers and functions, respectively. The 
algorithm we describe is called the Diffie-Hellman 
key exchange, and it is a part of many of the com-
munications systems we use every day. 

The context in which we will work is the alge-

Fig. 1  the group (Z*
101), the base (12), the value of X, and the value of Y may be 

known to all. 

Alice X

Bob
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X ≡ 12a

(mod 101)
Y ≡ 12b

(mod 101)
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similar process. During the exchange, everyone has 
access to X and Y (both cans) and possibly even 
the base and group used in the functions but not 
to a and b. That knowledge would require open-
ing the cans. Then Alice puts the same collection 
of M&M’s in Bob’s can that she put into her own 
(raising Y to the power of a). Likewise, Bob puts 
his same collection into Alice’s can (raising X to the 
power of b). Both processes yield the same result.

How secure is this? What about spies? A third 
person (named Charlie, of course) may see both the 
31 that Alice sent to Bob and the 35 that Bob sent 
to Alice, and he may also know that they are work-
ing in Z*

101 with 12 as their base element. He would 
love to know either Alice’s or Bob’s exponent 
because then he could compute their shared key. 
The problem of finding the exponent in this situa-
tion is called the discrete logarithm problem. 

How might Charlie find one of the exponents 
without opening either can? One way would be 
to start listing the powers of 12 (modulo 101). 
Because there are only 100 numbers in our group, 
we might expect that after about 100 tries he would 
have exhausted all the possibilities and would be 
bound to find one or both exponents. However, 
Fermat’s little theorem guarantees that 12100 ≡ 1, so 
if Charlie tries exponents larger than 100, he will 
find that he is repeating himself. In fact, he only 
has to list a few powers of 12 (121 ≡ 12, 122 ≡ 43, 
123 ≡ 11, 124 ≡ 31) before he notices the number 
Alice sent to Bob and determines that her exponent 
must be 4. 

Thus, we choose a very large group (and very 
large exponents) so that it is hard for Charlie to list 
powers and find our exponents. There are ways of 
finding exponents that are more clever than listing 
powers. For example, experts say that if you want 
to be sure that no one reads your mail, you should 
choose a group of size at least 21000, which means 
that the numbers you are using (both elements and 
exponents) will be at least 1000 bits, or about 300 
decimal digits, long. 

MATHEMATICAL CONNECTIONS
The cryptographic demonstration shared here 
introduces possibilities for several mathematical 
connections, some already included in the second-
ary school curriculum and others extending typical 
secondary school topics. The most obvious connec-
tion to the secondary school curriculum concerns 
exponents. Beyond computing exponents, investi-
gations of the Diffie-Hellman key exchange invite 
students to consider logarithms for inverting expo-
nential functions and properties of exponents that 
guarantee that Alice and Bob will arrive at the same 
result. And considering logarithms in a discrete 
context, such as working with the integers  

{1, 2, …, 100} in Z*
101, leads to the discrete loga-

rithm problem, which arises in college-level algebra 
and number theory courses (For more, see www 
.rsa.com/rsalabs/node.asp?id=2193). Likewise, 
the division algorithm used in modular arithmetic 
comes up in both high school and college-level alge-
bra, and it generalizes to polynomial long division.

Encrypting and decrypting messages over digital 
media, such as the Internet, introduces the need 
for binary arithmetic because computers deal with 
only zeros and ones (switches that are either off or 
on). All messages are translated as zeros and ones, 
which keyed functions can encrypt and computers 
can send to one another. Further, generating keyed 
functions for encryptions that eavesdroppers can-
not crack relies on the use of large groups of the 
form Z*

p, where p is a very large prime number. As a 
result, developing computer programs that generate 
very large primes is a hot topic in number theory 
and computer science. In fact, UCLA’s mathemat-
ics department recently earned acclaim for finding 
a thirteen-million-digit Mersenne prime (a prime 
number of the form 2p – 1 where p is itself a prime). 

CONCLUSION
We recommend this cryptography demonstration 
and analogy as an engaging and colorful activity 
that invites students to consider topics at the cut-
ting edge of mathematics and computer science. It 
is one classroom activity that will not be greeted 
with the ubiquitous “When are we ever going to 
use this?” 

We all use cryptography every day, whether we 
realize it or not. Acknowledging this reality allows 
students to be more informed and more mathemati-
cally efficient.  
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