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S
uppose you know everything there is to 
know about calculus: You understand the 
Fundamental Theorem of Calculus, the 
Chain Rule, the Mean Value Theorem, 
implicit differentiation, the whole lot. But 

mysteriously, every trace of trigonometry has been 
erased from your memory. You’re in luck though, be-
cause it is a little-known fact that with the clever use 
of calculus you can re-create the whole subject of trigo-
nometry from the formula for the arc length of a circle, 
without the use of any triangles whatsoever—particu-
larly ironic, considering that the word “trigonometry” 
literally means “triangle measuring”! 

Another fact that deserves to be better known is that 
all trigonometric functions are ultimately based on the 
sine function: 

tanu = sinu
1 − sin2 u

,

Trigonometry 
Triangles 

The sine can also be defined as 

 
as well as a solution to the initial-value problem

 
All these starting points have their advantages and dis-

advantages—each is elegant in its own way and brings a 
different characteristic of the sine function to the fore. Yet 
to establish one of the most fundamental properties  
of the sine function—its periodicity—is not at all straight-
forward under any of these definitions. By way of con-
trast, we will begin by constructing a new function,  
from scratch and derive three fundamental properties that 
reveal it to be none other than our old friend  We 
will show that our function  is odd ( ) 
and periodic. But the main advantage of our approach is 
the deduction of the addition formula

 
This turns out to be the familiar addition formula for 

the sine function in disguise:

without

and so on. Thus, if you can deduce all the key properties 
of the sine function, pretty much all of trigonometry will 
follow from these foundations. 

There are several ways to define the sine, of which the 
schoolbook “opposite over hypotenuse” version is, in the 
end, the least useful. One way is as the infinite power 
series 

 
another is as the infinite product 

 

Of course the sine will forever be 
linked to its triangular heritage, 

which makes it all the more  
interesting that it is possible to  

define, develop, and apply  
trigonometry in all its abundant  

glory—with nary a triangle in sight!
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Let’s get started. We’ll work backwards, starting with 
the addition formula, which, in common with everything 
else in this article, will be derived without the use of a 
single triangle. 

Defining the function s(u)

Let  satisfy  The length of the arc along 
the unit circle between the point  and the point 

 (see figure 1) is given by 

Squaring both sides of this equation leads to 
, and differentiating gives 

. Thus, 
Now, let  be a constant between and π 2,  

and set . (Remember: a constant minus a 
variable is still a variable!) Because and 

, it follows that 

(2)
 

So, for example, if , then this integral gives the 
length of a quarter of the circle’s circumference, or 

 
 For values of  satisfying the top limit of 

integration is smaller than the bottom limit, and the arc 
length is computed with a negative sign attached. The 
result is that  is an increasing, one-to-one function  
of  on the interval  with range [                   ]. 
This implies that  is invertible. In other words, we may 
write  as a function of with [                   ], 
where  and . And this 
turns out to be the “right” point of view.

Now by the Fundamental Theorem of Calculus, 

 
and the Inverse Function Theorem gives 

Figure 1. The arc length u in terms of s. 

(1)

intermission

We now come to a bit that seems complicated . . . 
but bear with us: it’s worth it! First note that since 

,

Secondly, notice that if the expression 

(3)
     

is differentiated with respect to , we get something that 
at first looks intimidating— 

 
—but that is in fact quite simple. Because , 
this expression reduces to 

which we already know equals zero from equation (2). 
Because the derivative of expression (3) is zero, it must be 
a constant, and so

(4) 
 

for some constant . 
Okay. The complicated stuff is over. Everyone still with 

us? Good. We’re almost there! 

Deriving the ADDition formulA

Because , equation (1) implies 

 If we set  then  and 
equation (4) reduces to

  
Since , we are led to conclude that 

 

∫=
−

u
x
dx

s
1

1
.

2
0

P

Q

s

u

−π π    2, 2 .

−π π    2, 2 .

http://www.maa.org/mathhorizons::
http://www.maa.org/mathhorizons::
http://www.maa.org/mathhorizons::


If we now define , we obtain 
the addition formula 

(5)
 

and with a few extra lines of formula crunching, it is not 
hard to derive a similar addition formula for our newly 
defined function  namely, 

(6)
 

It should come as no great surprise that, in more familiar 
notation, this is really 

 
and

But we’re not done yet. It turns out that these addition 
formulas are just what we need to prove periodicity. 

PerioDicity

At the moment, the addition formulas in (5) and (6) 
are valid as long as  and are in the domain of 

 which is currently the interval  However, if 
we set  in equation (5), the resulting expression

(7)
          

can be used to extend the domain of  to include the 
interval  by letting range over (( π0, 2 ] and 
treating equation (7) as the definition of . The same 
trick works in the negative direction if we set 
and let range over  

In a similar fashion, we can use (6) to extend the do-
main of  to , and continuing in increments of 

, we can extend the domains of and  to the 
whole real line in a way that preserves the validity of the 
two addition formulas.

To see that  is periodic on this larger domain, first 
observe that 

 

Then, by this result and the addition formula for 
 

 
Simple algebra then gives us 

 
which shows that  is periodic with period . 

oDD or even?

Because  is  periodic, to show it is odd we just 
need to prove  for all in the one full 
period  On the smaller interval , the 
function  was defined via the inverse of the arc length 
integral 

 

and the symmetry of this integral gives us , 
at least for all  (See figure 2.)

To extend this conclusion to the larger domain 
we again turn to the addition formulas. Given in 

, 

Because , and because derivatives of odd func-
tions are even, it follows that  is an even function, at 
least on . Therefore,

π π− + = − − = − = − +s u c u c u s u( ( 2)) ( ) ( ) ( 2),

so that is odd (and  is even) on . Periodic-

Figure 2. Why s(−u) = −s(u) for u∈[−π 2,π 2].  
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ity allows us to extend this conclusion to the whole real 
line. 

But is our s(u) reAlly sin (u) ? 

Have we convinced you that our function is really 
just the sine function yet? If none of the above is good 
enough, perhaps using it to calculate a very recognizable 
sine, say, of  will do the trick. 

Since we know that , it follows that 
 and ; thus,  is infinitely 

differentiable and has Taylor series expansion 

 
about the origin. Since 

 

= ′′ = = =

′ = = =
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we get the familiar expansion 

 
To calculate  set , and our expansion 

becomes 

 

The first five terms give a value of 0.5, correct to 10 
decimal places. Not a proof, but pretty convincing. Inci-
dentally, a pocket calculator uses precisely this method 
(and no triangles!) to get the same result. 

conclusions

Trigonometry, and trigonometric functions in particu-
lar, are incredibly useful in everyday life, and the most 
pervasive uses of trigonometry have nothing to do with 
triangles at all. For example, models of phenomena that 
involve recurrent periodicities in areas such as climatolo-
gy, biology, and economics rely strongly on the periodicity 
of the sine and cosine functions. Moreover, the resem-
blance between these functions’ wavelike graphs and the 
shape of a vibrating string results in the important role of 
trigonometry in music theory, particularly in the subject 
of acoustics. Perhaps less surprisingly, these wavelike char-
acteristics also allow copious applications to the study of 
wave motion in oceanography, seismology, radiation, and 
radio waves.

 Possibly the most common applications of the trigono-

metric functions occur via the use of Fourier series—infi-
nite sums of sine and cosine functions, such as 

 
 Fourier series are used, among many other things, to 

model heat flow and the diffusion of substances through 
fluid media, such as pollution in the atmosphere. They 
are also crucial to digital compression, by which electronic 
audio and video files are reduced in size to facilitate their 
transmission via, say, email. 

To come back to the central point, although the sine 
and its trigonometric relatives are first encountered as the 
ratios between the sides of a right triangle, it should be 
evident that the use of triangles is not only peripheral to 
the subject of trigonometry, but can arguably be viewed 
as superfluous to it. In all these applications, it is the 
trigonometric functions that are employed, and the over-
riding virtue of the triangle-free approach laid out here 
is how quickly and effortlessly we gain access to the key 
properties of these functions—their periodicity, their sym-
metries, their derivatives, and their Taylor series. 

Of course the sine will forever be linked to its triangular 
heritage, which makes it all the more interesting that it is 
possible to define, develop, and apply trigonometry in all 
its abundant glory—with nary a triangle in sight! n
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