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Why is PSL(2, 7) ∼= GL(3, 2)?

Ezra Brown and Nicholas Loehr

1. INTRODUCTION. The groups of invertible matrices over finite fields are among
the first groups we meet in a beginning course in modern algebra. Eventually, we
find out about simple groups and that the unique simple group of order 168 has two
representations as a group of matrices. And this is where we learn that the group of
2 × 2 unimodular matrices over a seven-element field, with I and −I identified, is
isomorphic to the group of invertible 3 × 3 matrices over a 2-element field. In short, it
is a fact that PSL(2, 7) ∼= GL(3, 2).

Many of us are surprised by this fact: why should a group of 2 × 2 matrices with
mod-7 integer entries be isomorphic to a group of 3 × 3 binary matrices?

There are a number of proofs of this remarkable theorem. Dickson [1, p. 303] gives
a proof based on his general theorem giving uniform sets of generators and relations
for the family of groups SL(2, q), where q is any prime power. One checks that the
relations appearing in Dickson’s presentation of PSL(2, 7) are satisfied by certain gen-
erators of GL(3, 2), implying that these groups have the same presentations and are
therefore isomorphic. Dummit and Foote [2, p. 207–212] show that every simple group
of order 168 is necessarily isomorphic to the automorphism group Aut(F) of the Fano
plane F . They then show that Aut(F) ∼= GL(3, 2) and that PSL(2, 7) is a simple group
of order 168; the isomorphism theorem follows. Rotman gives the result as an exer-
cise [5, Exercise 9.26, p. 281]. A hint is to begin with a simple group G of order 168
and use the seven conjugates of a Sylow 2-subgroup P of G to construct a seven-
point projective plane; the proof is similar to Dummit and Foote’s proof. Jeurissen [4]
proves the result by showing that both PSL(2, 7) and GL(3, 2) are subgroups of index
2 of the automorphism group of a Coxeter graph. Elkies [3] gives a clever proof that
uses the automorphism group G of the 3-(8, 4, 1) Steiner system—also known as the
Steiner S(3, 4, 8) design. He shows that PSL(2, 7) is contained in G, which in turn
maps homomorphically onto GL(3, 2). The result follows from the simplicity of the
two groups and the fact that they are both of order 168. We remark that there do exist
non-isomorphic simple groups of the same order. For example, Schottenfels showed
that PSL(3, 4) and A8 are non-isomorphic simple groups of order 20,160 [5, Theorem
8.24, p. 233].

The aim of this paper is to give a proof that PSL(2, 7) ∼= GL(3, 2) that is elementary
in the sense that it uses neither simplicity, nor projective geometry, nor block designs.
We will not prove the fact that any two simple groups of order 168 are isomorphic,
nor will we use this fact in our proof. What makes our proof work is that: (a) we can
identify GL(3, 2) with the set of invertible F2-linear transformations on the finite field
with eight elements; (b) 7 = 23 − 1; (c) the nonzero squares mod 7 are precisely the
powers of 2 mod 7; (d) squaring mod 2 is additive (the Freshman’s Dream); and (e)
the mapping k �→ −1/k mod 7 translates to a bit-switch mod 2 — which is linear.
We begin by giving functional descriptions for both groups, determining their sizes,
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and exhibiting sets of generators for them. After this we define a mapping between the
groups and prove that the mapping is a bijective group homomorphism.

Let’s begin with GL(3, 2).

2. THE GROUP GL(3, 2). Let F2 = {0, 1} be the field with two elements. The group
GL(3, 2) consists of all invertible 3 × 3 matrices with entries in F2. To construct our
isomorphism, we need three basic facts about this group.

1. Functional Description of the Group. Let F8 = F2[X ]/〈X 3 + X + 1〉, and
let x = X + 〈X 3 + X + 1〉 ∈ F8. On one hand, F8 is an eight-element field
whose multiplicative group is generated by x . On the other hand, F8 is a
three-dimensional vector space over F2 with ordered basis B = (x0, x1, x2).
Let GL(F8) be the set of all invertible F2-linear transformations of this vector
space. This means that GL(F8) consists of all bijections L : F8 → F8 such that
L(u + v) = L(u) + L(v) for all u, v ∈ F8. We note that L(cu) = cL(u) holds
automatically, since the only available scalars c are 0 and 1. Let [L]B denote the
matrix of L relative to the ordered basis B. Then the map L �→ [L]B defines an
isomorphism between GL(F8) and GL(3, 2). From now on, we identify these
two groups by means of this isomorphism.

2. The Size of GL(3, 2). The following counting argument proves that | GL(3, 2)| =
168. Let us build an invertible 3 × 3 matrix of 0s and 1s one row at a time. The
first row can be any nonzero bit string of length 3; there are seven such bit strings.
The second row can be any nonzero bit string different from the first row; there
are six such bit strings. When choosing the third row, we must pick a bit string
that is not a linear combination of the first two rows. There are four such linear
combinations (zero, the first row, the second row, or the sum of the first two
rows), so there are 8 − 4 = 4 choices for the third row. By the product rule,

|GL(3, 2)| = 7 · 6 · 4 = 168.

3. Generators for GL(3, 2). It will be useful to have a small set of generators for
GL(3, 2). Starting with any matrix A ∈ GL(3, 2), we can use elementary row
operations (Gaussian elimination) to reduce A to the identity matrix. Each ele-
mentary operation can be accomplished by multiplying on the left by one of the
following nine elementary matrices:

E12 =
⎛
⎝ 1 1 0

0 1 0
0 0 1

⎞
⎠ , E13 =

⎛
⎝ 1 0 1

0 1 0
0 0 1

⎞
⎠ , E23 =

⎛
⎝ 1 0 0

0 1 1
0 0 1

⎞
⎠ ,

E21 =
⎛
⎝ 1 0 0

1 1 0
0 0 1

⎞
⎠ , E31 =

⎛
⎝ 1 0 0

0 1 0
1 0 1

⎞
⎠ , E32 =

⎛
⎝ 1 0 0

0 1 0
0 1 1

⎞
⎠ ,

S12 =
⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ , S23 =

⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠ , S13 =

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ .

For example, multiplying A on the left by E12 adds the the second row of A to
the first row, whereas multiplying A on the left by S13 interchanges the first and
third rows of A. Thus, the row-reduction of A to the identity matrix via elemen-
tary row operations translates to a matrix equation of the form E1 · · · Ek A = I ,
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where each Ei is an elementary matrix. Solving for A and noting that each ele-
mentary matrix equals its own inverse, we see that GL(3, 2) is generated by the
nine elementary matrices listed above. In fact, many of these matrices are redun-
dant, and the set {E23, S12, S23} already generates the whole group. This remark
follows from the formulas

S13 = S12S23S12, E13 = S12 E23S12, E32 = S23 E23S23,

E21 = S13 E23S13, E12 = S13 E32S13, E31 = S12 E32S12.

Now consider the three matrices

A1 =
⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠ , A2 =

⎛
⎝ 0 0 1

1 0 1
0 1 0

⎞
⎠ , A3 =

⎛
⎝ 1 0 0

0 0 1
0 1 1

⎞
⎠ .

We have E23 = A1 A3, S12 = A2
2 A1 A3

2 A3, S23 = A1, and so GL(3, 2) =
〈A1, A2, A3〉.

And now, on to a description of PSL(2, 7).

3. THE GROUP PSL(2, 7). Let F7 = {0, 1, 2, 3, 4, 5, 6} be the field with seven ele-
ments. The group SL(2, 7) consists of all 2 × 2 matrices with entries in F7 and deter-
minant 1. The group PSL(2, 7) is the quotient group SL(2, 7)/{I, −I }. To construct
our isomorphism, we need three basic facts about this group.

1. Functional Description of the Group. Let

F7 = F7 ∪ {∞} = {0, 1, 2, 3, 4, 5, 6, ∞}.
As in complex analysis, we define a linear fractional transformation on F7 to be
a function f : F7 → F7 of the form

f (k) = ak + b

ck + d
(k ∈ F7), (1)

where a, b, c, d ∈ F7 are constants such that ad − bc �= 0. (The same defini-
tion works for any field F.) In the formula for f (k), division by ck + d means
multiplication by the inverse of ck + d in the field F7; any nonzero element
divided by 0 is ∞; and anything (other than ∞) divided by ∞ is 0. We have
f (∞) = a/c when c �= 0, and f (∞) = ∞ when c = 0. The transformation f
is called special if a, b, c, d can be chosen so that ad − bc = 1. There is a natural
map φ from SL(2, 7) to the set SLF(7) of special linear fractional transforma-

tions on F7, which sends the matrix

(
a b
c d

)
to the function f given in (1). A

routine calculation shows that φ(A) ◦ φ(B) = φ(AB) (which says composing
linear fractional transformations is done by matrix multiplication), so that φ is
a group homomorphism. Furthermore, one sees that φ(A) = φ(B) iff B = A or
B = −A. It follows that ker(φ) = {I, −I }, so that φ induces a group isomor-
phism from PSL(2, 7) onto SLF(7). Henceforth, we identify these two groups
by means of this isomorphism.

2. The Size of PSL(2, 7). The following counting argument proves that |SL(2, 7)| =
336. Let us build a matrix

(
a b
c d

)
with entries in F7 such that ad − bc = 1.
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There are two cases: c = 0 or c �= 0. In the case where c = 0, choose a to be any
nonzero element (6 possibilities); then choose d = a−1 to force the determinant
to be 1 (one possibility); then choose b to be anything (7 possibilities). This
gives 42 upper-triangular matrices in SL(2, 7). In the case where c �= 0, choose
c (6 possibilities); then choose a and d arbitrarily (7 possibilities each); then we
must choose b = c−1(ad − 1) to get the right determinant. This gives 6 · 7 · 7 =
294 more matrices, for a total of 336. Taking the quotient by the two-element
subgroup {I, −I } cuts the number of group elements in half, so | PSL(2, 7)| =
336/2 = 168.

3. Generators for PSL(2, 7). We can use the functional description of PSL(2, 7) to
find a convenient set of generators for this group. We define three special linear
fractional transformations r, t, δ by setting

• r(k) = −1/k (the “reflection map”);
• t (k) = k + 1 (the “translation map”); and
• δ(k) = 2k (the “doubling map”).

We will prove that SLF(7) = 〈r, t, δ〉. Consider a special linear fractional trans-
formation f (k) = (ak + b)/(ck + d). If c = 0, we must have ad = 1 and d =
a−1, so f (k) = a2k + ab. The nonzero squares mod 7 are 1, 2, 4, so f = tab ◦ δ j

for a suitable j ∈ {0, 1, 2}. For example, given f (k) = (3k + 6)/5, we have
f (k) = 2k + 4 = t (t (t (t (δ(k))))). Next, consider f (k) = (ak + b)/(ck + d)

where c �= 0. Division gives

f (k) = (ac−1) + bc − ad

c(ck + d)
= (ac−1) + −1

c2k + cd
.

Writing c2 = 2 j , it is now evident that f = tac−1 ◦ r ◦ t cd ◦ δ j . Hence, SLF(7) is
generated by r , t , and δ.

4. THE ISOMORPHISM PSL(2, 7) ∼= GL(3, 2). We now have all the ingredients
needed to define the promised group isomorphism between PSL(2, 7) and GL(3, 2).
Using the functional descriptions of these groups, it will suffice to define an isomor-
phism T : SLF(7) → GL(F8). We proceed in four stages.

1. Definition of T . For each function f ∈ SLF(7), we need to define an associated
function T ( f ) = T f ∈ GL(F8). How can we use the function f , whose domain
is F7, to build a function T f , whose domain is F8? To relate these two domains,
we define x∞ = 0 and then observe that F8 = {xk : k ∈ F7}. This observation
suggests the map xk �→ x f (k) as a possibility for T f . However, this map is not
always linear, since zero maps to zero only if f (∞) = ∞. To account for this
difficulty, we instead define

T f (xk) = x f (k) + x f (∞) (k ∈ F7). (2)

With this definition, T f (0) = 0 always holds, though it is not yet evident that T f

must belong to GL(F8).
Let us illustrate the formula by computing T (r), T (t), and T (δ). This com-

putation will reveal that each of these three functions does indeed lie in GL(F8).
The function r(k) = −1/k is given in two-line form as follows:

r =
(

0 1 2 3 4 5 6 ∞
∞ 6 3 2 5 4 1 0

)
.
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Since x3 + x + 1 = 0 in F8, we have

x3 = x + 1, x4 = x2 + x, x5 = x2 + x + 1, x6 = x2 + 1.

Let us represent an element b2x2 + b1x1 + b0x0 in F8 by the bit string b2b1b0. In
this notation,

x0 = 001, x1 = 010, x2 = 100, x3 = 011,

x4 = 110, x5 = 111, x6 = 101, x∞ = 000.

Putting all this information into (2), we conclude that

T (r) =
(

001 010 100 011 110 111 101 000
001 100 010 101 110 111 011 000

)
.

Note that Tr just interchanges the first two bits. Thus, Tr is the invertible linear
map on F8 that interchanges the basis vectors x1 and x2, and so the matrix of Tr

relative to the ordered basis B = (x0, x1, x2) is

[T (r)]B =
⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠ = A1.

It is even easier to compute T (t) and T (δ). We have Tt(0) = 0 and, for k �= ∞,

Tt(xk) = xt (k) + xt (∞) = xk+1 = x(xk).

Thus, Tt is simply left-multiplication by x in the field F8. This map is linear
by the distributive law in F8, and it is invertible since the inverse map is left-
multiplication by x−1 = x6. The matrix of Tt is

[T (t)]B =
⎛
⎝ 0 0 1

1 0 1
0 1 0

⎞
⎠ = A2.

Finally, Tδ(0) = 0 and, for k �= ∞, Tδ(xk) = x2k = (xk)2. So Tδ is the squaring
map in F8. This map is linear (and even a ring homomorphism) since (u + v)2 =
u2 + 2uv + v2 = u2 + v2 for u, v ∈ F8. The map is one-to-one (hence onto)
since the kernel is zero. The matrix of Tδ is

[T (δ)]B =
⎛
⎝ 1 0 0

0 0 1
0 1 1

⎞
⎠ = A3.

2. The key lemma. Suppose f, g ∈ SLF(7) are two functions such that T ( f ) and
T (g) lie in GL(F8). Then T ( f ◦ g) = T ( f ) ◦ T (g), and hence T ( f ◦ g) also
lies in GL(F8).

Proof: For any k ∈ F7, we compute

T f ◦ Tg(xk) = T f (Tg(xk)) = T f (xg(k) + xg(∞))
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= T f (xg(k)) + T f (xg(∞)) (since T f is linear)

= (x f (g(k)) + x f (∞)) + (x f (g(∞)) + x f (∞))

= x f (g(k)) + x f (g(∞)) (since u + u = 0 for all u ∈ F8)

= T f ◦g(xk).

3. Proof that T is a homomorphism mapping into GL(F8). We have seen that each
element of SLF(7) can be written as a product of the generators r , t , and δ

(using only positive powers, in fact). Since T (r), T (t), and T (δ) are known to
lie in GL(F8), repeated application of the lemma shows that T (h) lies in GL(F8)

for all h ∈ SLF(7). Having drawn this conclusion, the lemma now shows that T
is a group homomorphism.

4. Proof that T is a bijection. So far, we know that T is a group homomorphism
mapping SLF(7) into GL(F8). T is actually onto, since the image of T contains
〈T (r), T (t), T (δ)〉, which is the whole group GL(F8). Since SLF(7) and GL(F8)

both have 168 elements, T must also be one-to-one.

Our proof that PSL(2, 7) ∼= GL(3, 2) is now complete. We leave it as a challenge
for the reader to find an explicit description of the inverse bijection T −1 : GL(F8) →
SLF(7).
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Angles as Probabilities

David V. Feldman and Daniel A. Klain

Almost everyone knows that the inner angles of a triangle sum to 180◦. But if you
ask the typical mathematician how to sum the solid inner angles over the vertices of a
tetrahedron, you are likely to receive a blank stare or a mystified shrug. In some cases
you may be directed to the Gram-Euler relations for higher-dimensional polytopes [4,
5, 7, 8], a 19th-century result unjustly consigned to relative obscurity. But the answer
is really much simpler than that, and here it is:

The sum of the solid inner vertex angles of a tetrahedron T , divided by 2π ,
gives the probability that the orthogonal projection of T onto a random 2-plane
is a triangle.
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