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This paper investigates the discovery of an intriguing and fundamental connection between the
famous but apparently unrelated mathematical work of two late third-century
mathematicians. This link went unnoticed for well over 1500 years until the publication of two
groundbreaking but again ostensibly unrelated works by two German mathematicians at the
close of the nineteenth century. In this, the second and final part of the paper, we continue our
examination of the chain of mathematical events and the related development of mathematical
disciplines, without which the connection might never have been noticed in the first place.

Introduction

T
his paper concerns a previously overlooked connection between two mathe-
matical achievements of late antiquity: Pappus’ Theorem on the collinearity

of line intersections in plane geometry and an identity used by Diophantus

involving products of sums of two squares. In Part I of our paper (Rice and Brown

2015), we discussed how Diophantus’ two-squares identity

a2 þ b2
� �

c2 þ d2
� � ¼ ac� bdð Þ2 þ bc§ adð Þ2 (1)

was extended, first to four squares by Euler in the mid-eighteenth century, and then to

eight squares by Degen in the early nineteenth. This eight-squares identity was subse-

quently re-discovered by John Graves and Arthur Cayley in the context of their crea-

tion of the eight-dimensional normed algebra of octonions in the mid-1840s. Given

that two- and four-dimensional normed algebras over R were also known (namely the

complex numbers and Hamilton’s quaternions) and since their rules of multiplication
were intimately connected to the identities of Diophantus and Euler, respectively, it was

realized by the mid-nineteenth century that questions concerning the existence of

higher-dimensional normed algebras over the reals and higher-order identities for prod-

ucts of sums of n squares were actually co-dependent. What was not immediately recog-

nized was that a newmathematical area, then just in its formative stages, would provide

a link between these algebraic/number-theoretic concerns and the foundations of pro-

jective geometry, and that this link would ultimately reveal a fundamental connection

between Diophantus’ two-squares identity and Pappus’ Theorem.

Combinatorics: the (7, 3, 1) block design

In 1844, at exactly the same time that Hamilton, Graves, and Cayley were investigat-

ing the ramifications of their new normed algebras, a certain Wesley Woolhouse

(1809�93), former Deputy Secretary of the British Nautical Almanac, was appointed
the new editor of the Lady’s and Gentleman’s Diary. This popular publication had a
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long tradition of posing and solving enigmas, puzzles, and mathematical questions

since, according to its title page, it was ‘designed principally for the amusement and

instruction of students in mathematics: comprising many useful and entertaining par-

ticulars, interesting to all persons engaged in that delightful pursuit’. In his first edi-

tion as editor, Woolhouse posed the following ‘Prize Question’ for 1844:

Determine the number of combinations that can be made out of n symbols, p

symbols in each; with this limitation, that no combination of q symbols, which

may appear in any one of them shall be repeated in any other.

Being dissatisfied with the only two solutions he received, Woolhouse re-posed the

question in the Diary for 1846, this time limiting the parameters to the specific case

when p D 3 and q D 2:

How many triads can be made out of n symbols, so that no pair of symbols shall

be comprised more than once amongst them?

The eventual solution to this question was not ultimately featured in the Lady’s

and Gentleman’s Diary. Instead, it appeared in the Cambridge and Dublin Mathemati-

cal Journal as the very first mathematical publication by a forty-year-old vicar from

the north of England. The Reverend Thomas Pennington Kirkman (1806�95) was a
gifted mathematician who, like Hamilton and Graves, had received his undergradu-

ate mathematical training at Trinity College, Dublin; but unlike them he spent the

rest of his career in the church. From 1839 until his retirement in 1892, he was Rector

of the tiny parish of Croft-with-Southworth in Lancashire. Since his parish was so

small and his duties relatively undemanding, this left plenty of time for family life (he

had seven children) and mathematics. Like John Graves, then, he was an amateur,

but only in the sense that mathematics was not his paid profession; as Norman Biggs

(1981, 97) put it: ‘One fact beyond dispute is that he was no amateur’. His numerous
research publications on algebraic and combinatorial topics, such as group theory,

partitions, projective geometry, polyhedra and knot theory, plus his election as a Fel-

low of the Royal Society, attest to considerable mathematical creativity, despite his

geographic and professional isolation.

Kirkman’s (1847) ground-breaking paper, ‘On a problem in combinations’, effec-

tively laid the foundation for what we know today as combinatorial design theory,

but which in the nineteenth century went by the name of ‘Tactic’ (Biggs 1981, 102).

In it, he focused, not just on Woolhouse’s question about triples, but also on the con-
verse: for which values of n do triple systems exist? Using a simple counting argu-

ment, he showed that triple systems can occur only when n, the total number of

symbols, is one of the numbers in the sequence 7, 9, 13, 15, 19, 21, 25,…

An example of such a representation when n D 9, featuring triples of numbers

where each pair of symbols only appears once, is:

{1, 2, 3}, {1, 4, 7}, {1, 5, 9}, {1, 6, 8}, {2, 4, 9}, {2, 5, 8},

{2, 6, 7}, {3, 4, 8}, {3, 5, 7}, {3, 6, 9}, {4, 5, 6}, {7, 8, 9}.

In such a system, several things are important to point out. Firstly, each number

appears a total of m D (n ¡ 1)/2 times, since the other n ¡ 1 numbers appear with

it in pairs. Secondly, if t is the number of triples, then 3t D mn, giving a total of

t D n(n ¡ 1)/6 triples. Since by definition t is an integer, it follows that n � 1 or
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3ðmod 6Þ. Kirkman also demonstrated the much harder result that for each such

n there always exists a triple system, and he gave an explicit construction for forming

them. He would go on to develop these ideas in subsequent papers (Kirkman 1850a,

1850b, 1852, 1853a, 1853b, 1862).

Today, triple systems such as those discussed by Kirkman are known to be special
cases of balanced incomplete block designs with parameters (v, k, λ). These are

arrangements of v objects into a sequence of ‘blocks’, such that every block contains

exactly k objects, and every pair of objects appears together in exactly λ blocks. As

Kirkman showed, if k D 3 and λ D 1, the smallest non-trival arrangement occurs

when v D 7, giving the (7, 3, 1) block design:

{1, 2, 3}, {1, 4, 5}, {1, 7, 6}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 6, 5}.

Thus far, the reader might be forgiven for questioning the relevance of Kirkman’s
combinatorics to sums of squares and normed algebras. But there is a connection. In

1848, in paper entitled ‘On pluquaternions and homoid products of sums of squares’,

drawing on ‘Professor Sir W. R. Hamilton’s elegant theory of quaternions, and on a

pregnant hint kindly communicated to me, without proof, by Arthur Cayley, Esq.’

(Kirkman 1848, 447), Kirkman revealed that his (7, 3, 1) triple is closely related to

the algebra of the octonions (Kirkman 1848, 448�449). Recall Graves’ and Cayley’s

rules for multiplying base units in O:

i1
2 ¼ i2

2 ¼ i3
2 ¼ i4

2 ¼ i5
2 ¼ i6

2 ¼ i7
2 ¼ �1

i1 ¼ i2i3 ¼ i4i5 ¼ i7i6 ¼ �i3i2 ¼ �i5i4 ¼ �i6i7

i2 ¼ i3i1 ¼ i4i6 ¼ i5i7 ¼ �i1i3 ¼ �i6i4 ¼ �i7i5

i3 ¼ i1i2 ¼ i4i7 ¼ i6i5 ¼ �i2i1 ¼ �i7i4 ¼ �i5i6

i4 ¼ i5i1 ¼ i6i2 ¼ i7i3 ¼ �i1i5 ¼ �i2i6 ¼ �i3i7

i5 ¼ i1i4 ¼ i7i2 ¼ i3i6 ¼ �i4i1 ¼ �i2i7 ¼ �i6i3

i6 ¼ i2i4 ¼ i1i7 ¼ i5i3 ¼ �i4i2 ¼ �i7i1 ¼ �i3i5

i7 ¼ i6i1 ¼ i2i5 ¼ i3i4 ¼ �i1i6 ¼ �i5i2 ¼ �i4i3

Notice that, for distinct a, b 2 {1,…7}, iaib D §ig, where {a, b, g} is one of the seven

triples in the (7, 3, 1) block design. The sign of ig is determined by cyclically ordering
the triples as follows: {1, 2, 3}, {2, 4, 6}, {3, 4, 7}, {4, 5, 1}, {5, 7, 2}, {6, 5, 3},

{7, 6, 1}. Then iaib D ig or iaib D ¡ig according to whether a does or does not directly

precede b in the unique ordered triple containing a and b. Thus, 6 precedes 1 in the

triple {7, 6, 1}, so i6i1 D i7; but 6 does not directly precede 4 in {2, 4, 6}, so i6i4 D ¡i2.

It follows that Kirkman’s (7, 3, 1) triple system is simply equivalent to the multiplica-

tion table for the octonion units.1

In 1853, six years after Kirkman’s initial work, the Swiss geometer Jakob Steiner

(1796�1863) published a short paper on triple systems in Crelle’s Journal (Steiner
1853) in which he noted correctly that triple systems with n points only exist when n �
1 or 3ðmod 6Þ. He also asked for which values of n such systems can be constructed,

clearly unaware of Kirkman’s solution to this problem in 1847.2 Moreover, when the

1Formore information on the various algebraic, combinatorial and topological relationships of the (7, 3, 1)

triple system see Brown 2002.
2Toquote Robin Wilson (2003, 271): ‘this lack of awareness probably arises from the fact that the Cam-

bridge and Dublin Mathematical Journal, though well known in Britain, was little known on the Continent.’
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German mathematician M Reiss published an answer to Steiner’s question in 1859, his

methods were quite similar to those used by Kirkman twelve years earlier.3

Yet today, the triple block designs that Kirkman pioneered do not bear his name.

Instead they are called Steiner triple systems, a term coined by the twentieth-century

algebraist Ernst Witt (1911�91) (Witt 1938). Thus, like John Graves and Ferdinand
Degen before him, Kirkman failed to receive due recognition for a mathematical

innovation, with the credit going to the subsequent work of a more famous mathe-

matician. To add insult to injury for Kirkman, this was not the only instance of his

priority being overlooked in this way. In modern-day graph theory, ‘Hamiltonian

circuits’ are a well-known feature and are, of course, named after William Rowan

Hamilton, since Hamilton used them in his Icosian Calculus of 1856 and made them

famous with his Icosian Game; but in so naming them, mathematicians again

ignored the fact that they first appeared (and in a more general form) in a paper by
Kirkman written in 1855.4

So, if Kirkman received inspiration for his work on triples from Woolhouse’s

Prize Problem in the Lady’s and Gentleman’s Diary, from where did Steiner receive

the impetus—and how, for that matter, did Woolhouse come to consider triple sys-

tems? While no definitive answer exists, Robin Wilson conjectures that the source

was the same in both cases: the work of the German projective geometer Julius

Pl€ucker (1801�68). Indeed, in the first case in particular, given Steiner’s mathemati-

cal background, it is more than likely that the source of his interest was geometrical;
in the second case Wilson speculates ‘it is possible that James Joseph Sylvester, who

had a life-long interest in combinatorial systems and wrote on “combinatorial

aggregation” in 1844, knew of Pl€ucker’s work and mentioned it to Woolhouse’

(Wilson 2003, 269).

This brings us neatly to the subject of projective geometry, and the work of Julius

Pl€ucker.

Projective geometry: Pl€ucker, von Staudt, and Fano

After the initial seventeenth-century forays of Desargues and Pascal, the subject of

projective geometry had languished for well over a century, before enjoying a sudden

resurgence of interest in the early nineteenth century. The major impetus came from

the publication of Trait�e des propri�et�es projectives des figures by Jean-Victor Poncelet
(1788�1867) in 1822. Poncelet had studied mathematics at the prestigious �Ecole Pol-
ytechnique under Gaspard Monge (1746�1818), who advocated a greater role for

geometry in mainstream mathematics, feeling that it had become increasingly side-

lined with the growth of analytic methods throughout the eighteenth century.
Through the work of Poncelet, and other French mathematicians such as Joseph Ser-

vois and Michel Chasles, projective geometry emerged as a major mathematical dis-

cipline in its own right, stimulating a huge quantity of geometrical research

throughout the nineteenth century.5

3This famously prompted Kirkman’s sarcastic retort: ‘… how did the Cambridge and Dublin Mathematical

Journal, Vol. II, p. 191, contrive to steal so much from a later paper in Crelle’s Journal, Vol. LVI, p. 326,

on exactly the same problem in combinations?’—Kirkman 1887.
4The discovery for which Kirkman is best remembered today, known as ‘Kirkman’s schoolgirls problem’,

arose from his work on the (15, 3, 1) block design—see Biggs 1981, Wilson 2003, Brown and Mellinger

2009.
5Formore detail on the history of geometry during the nineteenth century, see Gray 2010.
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Interest in this new field travelled quickly to Germany and, whereas French pro-

jective geometry had been largely synthetic in style, German geometers, such as

Augustus Ferdinand M€obius (1790�1868) and particularly Julius Pl€ucker, began to

apply algebraic methods to the subject with great success. This inaugurated a fruitful

period in the theory of algebraic curves (and later surfaces) when curves of degree n,
denoted Cn, would be defined algebraically and studied projectively. Of particular

interest at this time were plane curves of degree n > 2, particularly cubics and

quartics. One of the earliest major discoveries in this area was made by Pl€ucker in his

Theorie der algebraischen Curven, where he famously showed that all plane quartic

curves C4 contain 28 real and imaginary bitangents (Pl€ucker 1839, 245�248).

Four years earlier in his System der analytischen Geometrie, Pl€ucker had shown

that, for n � 2, all projective plane curves Cn have 3n(n ¡ 2) points of inflection

(Pl€ucker 1835, 264). Observing, as a consequence of this, that a general plane cubic
curve has nine points of inflection, he showed that these points lie on four sets of

three lines, with three points on each line, such that exactly one of the 12 lines must

pass through any two inflection points (Pl€ucker 1835, 283�284). He continued:

...if we denote the nine inflection points as P, Q, R, P1, P2, Q1, Q2, R1 and R2, we

get the following twelvefold collection [of lines], corresponding to the following

scheme:6

{P, Q, R}, {P, P1, P2}, {Q, Q1, Q2}, {R, R1, R2},
{P, Q1, R2}, {P, Q2, R1}, {Q, P1, R2}, {Q, P2, R1},

{R, P1, Q2}, {R, P2, Q1}, {P1, Q1, R1}, {P2, Q2, R2}.

This system of lines, now known as the nine-point affine plane, is of course none other

than the Kirkman�Steiner triple system (9, 3, 1), a fact further reinforced by a foot-

note immediately below Pl€ucker’s (1835, 284n) example:

Not all numbers of elements can be grouped in threes so that the different groups

contain all combinations and each pair of elements occurs only once. If m is the
number of such elements and n any non-zero integer, from the evidence above it

is easy to see that m needs to be of the form 6n C 3. The number of different

groups amounts then to a third of the number of combinations of m elements in

two, consequently 1
3
¢ mðm�1Þ

1 ¢2 , and each element is found in m�1
2

different groups.7

Thus, just as Kirkman was to do the following decade, Pl€ucker found that the

number of possible triples is t D n(n ¡ 1)/6 and that each element occurs with fre-

quency (n ¡ 1)/2. The one mistake he made, of course, was to deduce only that
n � 3ðmod 6Þ. However, he rectified that mistake four years later by adding that n

could also be of the form 6m C 1 (Pl€ucker 1839, 246n), pre-dating the publication of

6‘Wir erhalten hiernach eine zw€olffache Zusammenstellung, der, wenn wir die neun Wendungspuncte durch P,

Q, R, P1, P2, Q1, Q2, R1 und R2 bezeichnen, das folgende Schema entspricht’.
7‘Nicht jede Anzahl von Elementen ist von der Art, dass sie sich so zu drei gruppieren lassen, dass in den ver-

schiedenen Gruppen alle Combinationen zweier Elemente vorkommen und jede derselben nur ein einziges Mal.

Wenn m die Anzahl solcher Elemente und n irgend eine ganze Zahl, Null nicht ausgeschlossen, bedeutet, so

€uberzeugt man sich leicht, dass m von der Form 6n C 3 sein muss. Die Anzahl der verschiedenen Gruppen

betr€agt alsdann ein Drittel der Anzahl der Combinationen von m Elementen zu zwei, mithin 1
3
¢ mðm�1Þ

1 ¢2 , und

jedes Element kommt in m�1
2

verschiedenen Gruppen vor.’
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Kirkman’s first work on triples by eight years and Steiner’s by fourteen. Perhaps

then, those who object to such systems bearing only the name of Steiner might well

argue that they should be renamed Pl€ucker�Kirkman�Steiner triples.

Mathematics in the nineteenth-century was characterized, among other things, by

an increased interest in refining and codifying the first principles of various branches
of the discipline. This manifested itself, for example, in the intense rigorization of

analysis, a process which had begun in the eighteenth century, but which was

brought to fruition in the nineteenth by Cauchy, Riemann, Weierstrass, and others.

In algebra, certain basic laws of operation were isolated and named as being worthy

of particular attention (such as the commutative and distributive laws—terms coined

by Servois (1814, 98)—and the associative law—first stated by Hamilton in 1843

(Hamilton 1967, 114)); the gradual loosening of these laws, via the development of

new algebras and algebraic structures, led to the eventual axiomatization of various
concepts, the first of which was Heinrich Weber’s axiomatic definition of a group in

1882. And in geometry, the example of projective geometry and the subsequent dis-

covery and development of various non-Euclidean geometries by Bolyai, Lobachev-

ski, Gauss and Riemann gave further credence to the growing belief that the

axiomatic system of Euclid’s Elements might not be the ideal logical foundation on

which to build the subject.

The first steps towards the axiomatization of projective geometry were taken by

Karl Georg Christian von Staudt (1798�1867), a professor at the University of
Erlangen. In his Geometrie der Lage of 1847, he set out to rid the subject of its reli-

ance on the Euclidean concepts of distance and length, showing not only a connec-

tion between projective and Euclidean geometry, but also revealing the former to be

more logically fundamental than the latter. He developed these ideas in his three-

volume Beitr€age zur Geometrie der Lage (1856�60), which featured his now well-

known ‘Wurftheorie’ or ‘algebra of throws’, whereby he assigned numerical coordi-

nates to points on a line without reference to any concept of length. Von Staudt then

defined arithmetical operations (C, £, etc.) by specific geometrical constructions car-
ried out on his geometrically-defined ‘numbers’ (see Figure 1), whose equality was

interpreted as congruence of line segments. He was thus able to construct a coherent

algebraic system obeying the usual laws of arithmetic.

Although von Staudt’s work was by no means the last word on the subject, and

lacked rigour in places, it was to prove highly influential. In particular, his ideas

played a major role in the work of Felix Klein in the 1870s, in which Klein crystal-

lized the fundamental connections between Euclidean, non-Euclidean and projective

geometries to each other as well as to the emerging theory of groups. Von Staudt and

0

P

N

Q

M

a a+a

Figure 1. Von Staudt’s geometrical definition of addition
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Klein also had a profound influence on a growing community of geometers outside

Germany.

The second half of the nineteenth century witnessed the development of a formi-

dable school of algebraic geometry in Italy. In Pisa, Eugenio Bertini extended the

work of his erstwhile professor Luigi Cremona, studying geometrical properties
invariant under Cremona transformations and using the results to resolve the singu-

larities of curves. In Padua, Giuseppe Veronese worked on higher-dimensional pro-

jective geometries and introduced the notion of non-Archimedean geometry.

Veronese’s student Guido Castelnuovo, on his arrival as a newly-appointed professor

in Rome, embarked on an extensive collaboration with his Bologna colleague Feder-

igo Enriques which lasted more than two decades and eventually produced a classifi-

cation of algebraic surfaces.

In Turin, Enrico D’Ovidio used techniques from projective geometry to derive
metric functions for non-Euclidean n-space, and with his student Corrado Segre built

up an impressive mathematics department, where at the same time another former

student Giuseppe Peano focused on the axiomatization of arithmetic and the devel-

opment of formal logic. Two of Segre’s students, Mario Pieri (1860�1913) and Gino

Fano (1871�1952), were to produce important work on the foundations of geome-

try. In 1890, Pieri published an Italian translation of von Staudt’s Geometrie der

Lage. The influence of von Staudt, along with that of the foundational work of

Peano and the German geometer Moritz Pasch, resulted in Pieri’s seminal text I prin-
cipii della geometria di posizione composti in un sistema logico-deduttivo (1898).8

Meanwhile, at Segre’s suggestion, Fano had translated Klein’s Erlanger Pro-

gramm into Italian in 1889 and, in common with several Italian mathematicians at

this time, spent a year studying with Klein in G€ottingen. In 1892, he published an

important memoir on the foundations of projective geometry (Fano 1892), in which

he pioneered the idea of a finite geometry, of which Pl€ucker’s system of 9 points and

12 lines is an example, being a finite affine plane of order 3 (see Figure 2).

Although in his paper, Fano does not deal with affine planes, he does discuss
finite projective planes. In general, a finite projective plane of order n is an arrange-

ment of n2 C n C 1 points and n2 C n C 1 lines such that exactly n C 1 points lie on

each line and n C 1 lines pass through each point. The simplest non-trivial example

of such a geometry is the finite projective plane of order 2, as seen in Figure 3.

This 7-point plane, known today as the Fano plane, features seven points and

seven lines with exactly three points on each line and three lines through each point.

Because no two pairs of points can lie on more than one line, this arrangement of

groups of three out of seven points is, in fact, the (7, 3, 1) triple system in disguise, as
Figure 4 illustrates.

Not surprisingly, then, the Fano plane also gives a diagrammatic representation

of the multiplication of the octonion units, as Hans Freudenthal pointed out in Freu-

denthal (1951) (see Figure 5).

Thus the geometry of Julius Pl€ucker was intrinsically connected to the combina-

torics of Thomas Kirkman, while the work of Gino Fano in 1892 provided a link

from projective geometry, not only to the realm of Steiner triples, but via (7, 3, 1) to

the normed algebra of octonions, and consequently to the Diophantine problem of
products of sums of squares.

But this still leaves two outstanding questions:

8Formore on Pieri, see Marchisotto 2006 and especially Marchisotto and Smith 2007.
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Figure 2. The nine-point affine plane of order 3

Figure 3. The Fano plane

1

52

7

3

64

Figure 4. The Fano plane as a (7, 3, 1) block design
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� When was the n-squares/normed algebra question finally resolved?

� What is its ultimate connection with Pappus’s Theorem?

Denouement

As events transpired, both questions were answered at approximately the same time.
The answer to the first question was provided in an eight-page paper published in

1898 by Adolf Hurwitz (1859�1919), a German mathematician then working at the

University of Zurich. It concerned a particular problem in the algebraic theory of

quadratic forms in any number of variables, namely the possibility of representing

the product of two quadratic forms, ’(x1, x2,… , xn) and c(y1, y2,… , yn), as a third

such form, x(z1, z2,… , zn), where z1, z2,… , zn were suitably chosen bilinear functions

of x1, x2,… , xn and y1, y2,… , yn. Hurwitz chose to focus his attention on the case

where ’ D x1
2 C x2

2 C…C xn
2, c D y1

2 C y2
2 C…C yn

2, and x D z1
2 C z2

2 C…C
zn

2, that is

x1
2 C x2

2 þ � � � þ xn
2

� �
y1

2 þ y 2
2 þ � � � þ yn

2
� � ¼ z1

2 þ z2
2 þ � � � þ zn

2; (2)

thus drawing a deliberate and explicit connection to the sums of n squares problem.

‘In the following lines’, he wrote, ‘I will show that this is possible only in the cases
n D 2, 4, 8’,9 going on to observe that ‘by this proof, in particular, the old question of

whether the known product formulas for sums of 2, 4 and 8 squares can be extended

to sums of more than 8 squares will finally be answered in the negative’10 (Hurwitz

1898, 309).

Hurwitz’s paper appears to have been motivated, at least in part, by some rather

unsatisfactory attempts by British mathematicians to solve the n-squares problem in

the intervening years. For example, in the 1870s and 1880s Cayley and his younger

contemporary Samuel Roberts had endeavoured to answer the question when n D 16,
but had only succeeded in providing corroborative data through a series of increas-

ingly complicated special cases. As Hurwitz wrote, although Roberts (1879) and

i6

i5i7

i4

i2

i3i1

Figure 5. The Fano plane as the multiplication rule for the octonion units

9‘In den folgenden Zeilen will ich zeigen, dass dieses nur in den F€allen n D 2, 4, 8 m€oglich ist ...’
10‘Durch diesen Nachweis wird dann insbesondere auch die alte Streitfrage, ob sich die bekannten Produktfor-

meln f€ur Summen von 2, 4 und 8 Quadraten auf Summen von mehr als 8 Quadraten ausdehnen lassen, endg€ul-

tig, und zwar in verneinendem Sinne entschieden.’
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Cayley (1881) ‘used evidence to show that the product of two sums of 16 squares can-

not be represented as a sum of 16 squares[, t]heir extremely laborious attempts have

no probative value, however, since they are justified only by specific assumptions

with respect to the bilinear forms z1, z2…’11 (Hurwitz 1898, 309n). In contrast, via an

elegant general argument relying essentially only on notions of linear independence
and symmetric matrices, Hurwitz was able to prove, firstly that identity (2) could

never hold for odd n > 1, secondly, if it did hold then 2n ¡ 2 � n2, or in other words,

n � 8, and finally that (2) was impossible when n D 6.12 At a stroke, the n-squares

problem was finally resolved, and with it came corroboration that no further normed

algebras beyond the octonions could possibly exist: the only finite-dimensional

normed division algebras over the reals (up to isomorphism) were R, C,H, and O.13

In a sense, Hurwitz’s theorem marks the end of a story that began with Book III,

Problem 22 of Diophantus’s Arithmetica—the search for formulae for products of
sums of squares and their corresponding normed algebras was finally over. Yet at

the same time, another story was only just beginning. For within the space of a year,

a landmark publication was to shed new light on the foundational underpinnings of

both algebra and geometry, revealing in the process hitherto unrealized connections

between them. It is fitting, then, that this work was produced by a lifelong friend of

Hurwitz, on whom he had exercised a huge mathematical influence (Reid 1996,

13�14) and whose work he held in the highest regard. That mathematician was

David Hilbert (1862�1943), and the work in question was Hilbert’s monumental
Grundlagen der Geometrie (1899).

Although better known at this time for his work in algebra and number theory,

Hilbert had been studying the foundations of geometry since at least 1891 (Toepell

1986), and his knowledge of projective geometry went back even further to his days

as a gymnasium student in 1879. Notes for the lecture courses on geometry he deliv-

ered in the 1890s reveal a familiarity with the foundational work of von Staudt,

Pasch, Peano, and Veronese, outlined in the previous section (Hilbert 2004). After a

three-year mid-decade hiatus, his geometric interests were reignited by the communi-
cation of a letter from Friedrich Schur to Felix Klein in 1898 which, as Hilbert wrote

to Hurwitz ‘has given me the inspiration to take up again my old ideas about the

foundations of Euclidean geometry’ (Toepell 1985, 641).

The result was a masterpiece, and a constantly evolving one. From its first edi-

tion, published in June of 1899, to its seventh in 1930, the Grundlagen was a work in

progress, being continuously revised and updated by its author. Although interest in

the logical refinement of geometry was clearly �a la mode at the time of its initial com-

position, and while Hilbert was far from the first to attempt to re-cast the subject as
a purely theoretical deductive system, his re-axiomatization of Euclidean geometry

set a new standard for logical precision in mathematics and established the founda-

tions of geometry as a research area in its own right. Its significance for the subject of

this paper lies in its revelation of a fundamental connection between the apparently

distinct worlds of geometry and algebra.

11‘Roberts und Cayley haben sich im 16. und 17. Bande des Quarterly Journal mit dem Nachweis besch€aftigt,
dass ein Produkt von zwei Summen von je 16 Quadraten nicht als Summe von 16 Quadraten darstellbar sei.

Ihre €ausserst m€uhsamen, auf Probieren beruhenden Betrachtungen besitzen indessen keine Beweiskraft, weil

ihnen bez€uglich der bilinearen Formen z1, z2… spezielle Annahmen zugrunde liegen, die durch nichts gerecht-

fertigt sind.’
12For an expanded and more detailed exposition of Hurwitz’s proof, see Dickson 1919.
13For a proof of this, see Curtis 1963.
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Recall von Staudt’s ‘algebra of throws’, whereby ‘numbers’ and operations of

addition and multiplication were constructed geometrically. For example, given a

base unit 1 and numbers a and b, the products a ¢ 1, ab, b ¢ 1 and ba were all con-

structed as in Figure 6.

What Hilbert made explicit for the first time was that, depending on which num-

ber system one chose to base one’s geometry (R, C, H, or O), each projective plane
could be ‘coordinatized’ by either real or complex numbers, quaternions, or octon-

ions, with the behaviour of each geometry corresponding to the fundamental axioms

of its underlying algebra. In particular, he proved that Pappus’ Theorem would hold

in a geometric system if and only if the algebra on which that system was based was

commutative. Indeed, as he said, if we combine the two constructions in Figure 6, it

becomes immediately clear that ‘the commutative law of multiplication is none other

than Pascal’s Theorem’ (Hilbert 1899, 76).14 And indeed, a look at Figure 7 confirms

that the geometrical construction which forces the equivalence of the points ab and
ba likewise necessitates the validity of Pappus’ Theorem. And vice versa.15

This momentous discovery is mathematics at its most beautiful, and its signifi-

cance was recognized immediately. But no one appears to have drawn a further con-

nection that Hilbert’s result and Hurwitz’s theorem now suggested. Since the only

normed algebras that are commutative with respect to multiplication are R and C, it

follows that these are the only two algebras upon which so-called Pappian geometries

may be based. Moreover, as we saw in the third section of Part I of this paper, the

rule for the multiplication of two complex numbers is explicitly contained within
Diophantus’ two-squares identity (1). It therefore follows that Pappus’ Theorem can

only hold in a geometric system whose axioms are equivalent to those of the real or

complex numbers, or in other words, where Diophantus’ two-squares identity holds.

Thus we finally see that the geometry of Pappus and the number theory of Diophan-

tus are inextricably linked. It had taken over one-and-a-half millennia and the evolu-

tion of mathematical disciplines never imagined in antiquity, but mathematics had

b

a
1

0

a.1

ab

b

a
1

0

a

b.1

ba

Figure 6. Hilbert’s constructions of a ¢ 1 and ab (left) and b ¢ 1 and ba (right)

14‘...das commutative Gesetz der Multiplikation zweier Strecken auch hier nichts anderes als den Pascalschen

Satz’. Note that throughout the Grundlagen Hilbert referred to Pappus’s theorem by its more general

name of Pascal’s theorem.
15Although the connection of Pappus’s theorem with commutativity of multiplication had also been con-

sidered by Friedrich Schur in the first edition of his 1898 Lehrbuch der Analytischen Geometrie (Schur

1898, 11), the link was not stated explicitly until the second edition of 1912 (Schur 1912, 11), thirteen years

after the publication of Hilbert’s Grundlagen.
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finally undergone sufficient development for a hitherto unrealized connection

between Pappus and Diophantus to be revealed at last.16
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