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Ask any professional mathematician what a quaternion is and you will be sure to get
an answer: a quaternion q is a four-dimensional “number” consisting of one real and
three imaginary components such that

q = a+ bi+ cj + dk,where a, b, c, d ∈ R, and i2 = j2 = k2 = ijk = −1. (1)

The real component a is called the scalar part, while the imaginary section bi+ cj +
dk is known as the vector part. It is therefore perhaps not surprising that quaternions
have many applications in physics (where, for example, their non-commutativity has
deep consequences in quantum mechanics), engineering (for instance, in robotics), and
computing (where their most widespread use to date is in 3D graphic animation).
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Mathematically, of course, quaternions are most likely to be encountered by stu-
dents in the context of an undergraduate course in abstract algebra, in which they will
likely be exhibited as a good example of a non-abelian group. And indeed, much is
often made of their non-commutativity, which is a direct consequence of their funda-
mental equation

i2 = j2 = k2 = ijk = −1.

Multiply this on the left by−i and we obtain i = jk; multiplying this new equation on
the right by−k gives us−ik = j, which when multiplied on the left by i gives k = ij.
Similarly, if we now take k = ij and multiply on the right by−j, we will get−kj = i,
which when multiplied on the left by k gives j = ki. This final equation, multiplied
on the right by i, will result in −ji = k. We thus have the following identities:

ij = −ji = k
jk = −kj = i
ki = −ik = j.

The immediate consequence is that, given any two quaternions, p and q, their prod-
ucts pq and qp will not, in general, be equal. Since most students will have proba-
bly multiplied vectors or matrices—and thus experienced non-commutativity—before
their first encounter with quaternions, this violation of the commutative law of multi-
plication does not usually strike most of them today as particularly unusual or note-
worthy.

But the significance of quaternions lies in the fact that they were one of the very first
non-commutative algebras to be discovered, and their consistency and utility paved
the way for the subsequent development of new and even more unorthodox algebraic
systems.

Along with the mathematics itself, the story of the discovery of quaternions is also
very well known [8]. Following the gradual acceptance of complex numbers during
the 18th century, the early years of the 19th century saw mathematicians becoming
increasingly familiar with their algebraic and geometric properties. In particular, just
as you could add, subtract, multiply, and divide complex numbers, you could also rep-
resent such operations geometrically in two-dimensional space. The question math-
ematicians now began to ask was: is it possible to come up with a higher form of
complex number algebra that could represent numbers in three-dimensional space?

This question intrigued several mathematicians of the time, one of whom was the
Irish mathematician and physicist Sir William Rowan Hamilton (1805–1865). In com-
mon with many of his contemporaries, Hamilton started by constructing a new algebra
in analogy to that of the complex numbers. So, while a complex number looks like
a+ bi, where a, b ∈ R and i2 = −1, Hamilton’s triples would be of the form

z = a+ bi+ cj,where a, b, c ∈ R, i 6= j, and i2 = j2 = −1. (2)

Clearly for such a number to exist, its arithmetical operations must be well-defined,
and for addition and subtraction this was no problem. However, Hamilton and his con-
temporaries quickly found that they could not multiply two triples together to form
another triple—the multiplication just didn’t work. Then, after having worked on the
problem on and off for about a decade, on October 16, 1843, Hamilton suddenly re-
alized that its solution lay not with number triples, but with quadruples of the form in
(1). Thus was born his system of quaternions, a consistent algebra with addition and
subtraction, plus most importantly, well-defined multiplication and division.
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From this point, as they say, the rest is history: Hamilton devoted the rest of his life
to the development and application of his new algebra to problems in mathematical
physics, further non-commutative (and even non-associative) algebras were soon cre-
ated [5, pp. 415–426], such as matrices and octonions, while vector algebra arose from
the study of the three-dimensional imaginary part of quaternions [2]—hence the use
of the symbols i, j, and k in vector calculus to this day.

But one mathematical aspect of the story has received far less attention, namely, the
question of why Hamilton was unable to create a coherent system of algebraic triples in
the first place. Once he had discovered quaternions, and consequently found an answer
to his question, Hamilton never looked at triples again. And it took over half a century
before anyone was able to prove that no such triple system actually existed. So just
why was Hamilton unable to find a consistent three-dimensional linear algebra with
well-defined multiplication? Why doesn’t such a system of complex numbers exist?
The purpose of this article is to find out.

Normed algebras over the reals
In modern terminology, Hamilton and his contemporary mathematicians were trying
to find a normed algebra over the real numbers. In other words, they wanted to see if
they could construct an n-dimensional vector space, A, with the following basic prop-
erties. First and foremost, they wanted the elements of A to behave just like “proper”
numbers; so, for example, properties like distribution of multiplication over addition,
and closure under addition and multiplication, should still hold true. But in addition
to this, since their new algebra was intended to be representable geometrically, they
needed to define a function that would give a well-defined measure of distance. This
mapping N : A→ R, called the norm, was defined as N(x) = x · x, where x is the
complex conjugate of x, and for the algebra to be consistent, it needed to be such that,
for any x and y in A,

N(x)N(y) = N(xy). (3)

Given that, for every real number, x = x, it should be clear that such a rule trivially
holds for the reals—hence the real numbers are a normed algebra. When we extend
R into two dimensions to form the complex numbers, the norm function also exists.
For example, if x = a+ bi and y = c+ di are two complex numbers, their respective
conjugates are x = a − bi and y = c − di. Since we know that xy = (ac − bd) +
(ad+ bc)i, it is easy to show that

(x · x) (y · y) = (a2 + b2) (c2 + d2) = (ac− bd)2 + (ad+ bc)
2
= xy · xy

which, of course, is equation (3). Thus the complex numbers are also a normed alge-
bra, and since they are comprised of real number coefficients, we call them a normed
algebra over the reals.

The reason that Hamilton and friends had such a hard time coming up with a normed
extension of C into three dimensions was that they could not find a system in which
equation (3) worked. More than that, they couldn’t even find a system which was
closed under multiplication. For example, given two complex triples of the form in
(2), multiplication would give

(a0 + a1i+ a2j)(b0 + b1i+ b2j) = (a0b0 − a1b1 − a2b2) + (a0b1 + a1b0)i

+(a0b2 + a2b0)j + (a1b2 + a2b1)ij.

VOL. 45, NO. 1, JANUARY 2014 THE COLLEGE MATHEMATICS JOURNAL 3



Mathematical Assoc. of America College Mathematics Journal 45:1 October 21, 2020 1:08 p.m. CMJ-Hamilton-Triples-Revised.tex page 4

But what was this mystery term in ij? Up to this point, all that was known was that
i and j were independent square roots of −1, but whether their product ij should be
interpreted as real or imaginary, or even nonzero, was anybody’s guess.

Not surprisingly, finding a three-dimensional normed algebra was a thankless task,
since even the norm looked wrong: If z = a+ bi+ cj, then clearly z = a− bi− cj,
but when multiplied together, they give, not N(z) = a2 + b2 + c2 as we would hope,
but the rather ugly a2 + b2 + c2 − 2ijbc. This last rogue term was made up from
two non-cancelling components: −bcij and −bcji. It was in an attempt to force the
cancellation of these terms that Hamilton was prompted to violate the commutative
law by making ij = −ji. What followed was a realization that

(ij)2 = (ij)(ij) = i(ji)j = i(−ij)j = (−ii)(jj) = −(i2)(j2) = −1

and hence that ij was in fact a third independent square root of−1. Calling this square
root k resulted in the fundamental formula in (1) and the birth of the four-dimensional
algebra of quaternions.

But was this algebra well-defined? And most importantly, was it a normed algebra?
Well, first of all, given any two quaternions z = a0 + a1i+ a2j + a3k and w = b0 +
b1i+ b2j + b3k, their product

zw = (a0b0 − a1b1 − a2b2 − a3b3) + (a0b1 + a1b0 + a2b3 − a3b2)i
+ (a0b2 − a1b3 + a2b0 + a3b1)j + (a0b3 + a1b2 − a2b1 + a3b0)k

is another quaternion. Hence, the quaternions are closed under multiplication. That’s
a good start, but things got even better when Hamilton turned to the norm. Observing
that the conjugate of a quaternion z is z = a0 − a1i− a2j − a3k led to the satisfying
result that N(z) = a20 + a21 + a22 + a23. Even more pleasing was the fact that

N(z)N(w) = (a20 + a21 + a22 + a23)(b
2
0 + b21 + b22 + b23)

= (a0b0 − a1b1 − a2b2 − a3b3)2 + (a0b1 + a1b0 + a2b3 − a3b2)2

+ (a0b2 − a1b3 + a2b0 + a3b1)
2 + (a0b3 + a1b2 − a2b1 + a3b0)

2

= N(zw)

which, since this is equation (3), meant that he had found a third normed algebra over
the reals.

It was not long after Hamilton’s 1843 discovery of quaternions that a deep connec-
tion was drawn between the problem of finding real normed algebras and a completely
different problem in number theory, namely to find the values of n for which a product
of two sums of n squares could itself be expressed as a sum of n squares. As well as
being trivially true for n = 1 (since a2b2 = (ab)2), in the n = 2 case it had long been
known that the product of two sums of two squares could be written as a sum of two
squares, namely,

(a2 + b2)(c2 + d2) = (ac∓ bd)2 + (ad± bc)2

one case of which corresponds to the norm equation (3) for complex numbers. Mean-
while, in 1748, no less a mathematician than Euler had announced the n = 4 case [7,
p. 6], that any product of two sums of four squares could be written as a sum of four

4 THE MATHEMATICAL ASSOCIATION OF AMERICA



Mathematical Assoc. of America College Mathematics Journal 45:1 October 21, 2020 1:08 p.m. CMJ-Hamilton-Triples-Revised.tex page 5

squares, or

(a20 + a21 + a22 + a23)(b
2
0 + b21 + b22 + b23)

= (a0b0 − a1b1 − a2b2 − a3b3)2 + (a0b1 + a1b0 ± a2b3 ∓ a3b2)2

+ (a0b2 ∓ a1b3 + a2b0 ± a3b1)2 + (a0b3 ± a1b2 ∓ a2b1 + a3b0)
2

which this time yields equation (3) for quaternions. Thus we see that Euler had found
the above formula 95 years before Hamilton, but without the accompanying achieve-
ment of discovering quaternions.

This naturally raises the question of whether an equivalent equation exists for prod-
ucts of sums of n squares when n = 3. But any mathematician who knew their num-
ber theory at this time would have known that, in 1798, the French mathematician
Legendre had given a counterexample to answer the question in the negative. He
showed that although both 3 and 21 can be written as the sum of three squares (i.e.
3 = 12 + 12 + 12 and 21 = 42 + 22 + 12), their product 63 cannot be partitioned
into anything less than four square numbers, and thus cannot be expressed as a sum of
three squares [6, p. 200]. Hence, a general formula of the form (a20 + a21 + a22)(b

2
0 +

b21 + b22) = c20 + c21 + c22 cannot hold over the integers.
Hamilton, however, was not a number theorist and had never seen the work of Euler

or Legendre in this area. Had he done so, he would probably have realized that his
search for triple systems was hopeless and he might never have discovered quaternions.
But luckily for the development of algebra, history turned out differently. In any case,
a counterexample is all very well, but it doesn’t shed any light on the true underlying
reason Hamilton would never have been able to find a 3-dimensional normed algebra.
For this, we need a proof, and for that we need a brief reminder of a few important
concepts from linear algebra.

A quick linear algebra review
First and foremost, we need to remind ourselves what a vector space is. Basically, a
vector space V is a set of objects—let’s just call them “numbers”—that, when added
together or multiplied by a scalar quantity (for our purposes a real number), simply
give another member of V . Examples of vector spaces featured in this article are R,
C, and H, the set of quaternions. In addition to obeying many of the usual laws of
arithmetic, such as having an identity element and additive inverses, a key property is
that, regardless of whether the individual elements of V are commutative with respect
to multiplication, scalar multipliers do commute. So, if α is a scalar, then even if x
and y are members of the (non-commutative) algebra built on the vector space H of
quaternions, for example,

α(xy) = (αx)y = (xα)y.

Now let’s consider a function m : V →W that maps elements from one vector space
to another. If such a mapping preserves the operations of addition and scalar multipli-
cation, in other words, given x and y in V and any scalar α, if both

• m(x+ y) = m(x) +m(y), and
• m(αx) = αm(x),

then the function m is known as a linear transformation. One of the simplest ex-
amples of a linear transformation is the mapping m : V → V defined by m(x) =
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4x, for which it is easy to see that m(x + y) = 4(x + y) = 4x + 4y = m(x) +
m(y) and m(αx) = 4(αx) = α(4x) = αm(x). Note however that the norm func-
tion N : V → R, which when V = R is N(x) = x2, is nonlinear, since N(x+ y) =
(x+ y)2 6= x2 + y2 = N(x) +N(y).

It’s a standard result in linear algebra that if a function mapping an n-dimensional
vector space to itself is a linear transformation, then it can be represented by an n× n
matrixM over the real numbers, so that for any x ∈ V ,m(x) =Mx. So, if V = R3,
then in our example above m(x) would be equivalent to multiplication by the 3× 3
matrix

M =

4 0 0
0 4 0
0 0 4

 .

Given this (or any n× n) matrix, together with the identity matrix, I , and some un-
known real number λ, we can construct the determinant

f(λ) = det(λI −M),

which, in the case of the matrix M above, gives∣∣∣∣∣∣
λ− 4 0 0
0 λ− 4 0
0 0 λ− 4

∣∣∣∣∣∣ = λ3 − 12λ2 + 48λ+ 64.

In general, for an n × n matrix this will give a polynomial of degree n with real
coefficients, called the characteristic polynomial. Setting this equal to zero and solving
gives the value (or values) of λ, known as the matrix’s eigenvalues, λ = 4 in the above
case. This means that multiplying some nonzero x by the matrixM has the same effect
as scalar multiplication by λ, or

Mx = λx,

and, since multiplication by the matrix M is equivalent to the effect of the linear
transformation m,

m(x) = λx.

But how can we guarantee that we will always be able to find a value of λ? Is it true
that every characteristic equation f(λ) = 0 will have at least one root? Fortunately,
thanks to the Fundamental Theorem of Algebra, the answer to this question is yes.
Every polynomial equation

f(λ) = anλ
n + an−1λ

n−1 + · · ·+ a2λ
2 + a1λ+ a0 = 0

where an, an−1, . . . , a1, a0 ∈ R can be written as a product of linear and/or irre-
ducible quadratic factors over the real numbers. So, for example, the cubic equation

λ3 − 1 = 0

can be written as

(λ− 1)(λ2 + λ+ 1) = 0,

yielding the real solution λ = 1. This now gives us everything we need to prove that
there was no way that Hamilton could ever have found a consistent algebra of complex
number triples.
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The “You can’t multiply triples” Theorem
Theorem 1. A normed algebra of dimension 3 over the real numbers R does not
exist.

Proof. Let A be a three-dimensional real algebra with norm N . We identify R as a
one-dimensional subspace of A and let b ∈ A− R. Define the mapping mb : A→ A
by mb(x) = bx. Since multiplication distributes over addition, we see that

mb(x+ y) = b(x+ y) = bx+ by = mb(x) +mb(y).

Since multiplication of elements of A is associative and commutes with (scalar) mul-
tiplication, then if r is a real number,

mb(rx) = b(rx) = (br)x = r(bx) = rmb(x).

Hence mb is a linear transformation, and so it has a representation as a 3× 3 matrix
M over R.

The characteristic polynomial f(λ) = det(λI −M) has real coefficients and is of
degree 3. By the Fundamental Theorem of Algebra, it can therefore be written as a
product of linear and irreducible quadratic factors over the real numbers. Since f(λ)
is a cubic, this product can only comprise one linear and one quadratic factor or three
linear factors. Either way, f(λ) must have a linear factor λ− r for some nonzero real
number r.

Thus, r is an eigenvalue of M and so bv = rv for some nonzero v ∈ A. Hence,
(b− r)v = 0.

But b− r is nonzero (recall that b ∈ A− R), and so is v. Hence, by the definition
of the norm function, N(b − r) and N(v) must both be nonzero. Finally, by use of
equation (3),

0 = N(0) = N((b− r)v) = N(b− r)N(v) 6= 0,

contrary to the assumption that A is a normed algebra.

Final remarks
We finish with a few brief closing remarks and observations.

• Firstly, we leave it as an exercise for the reader to extend the above proof to show
that, for n ≥ 3, odd-dimensional real normed algebras do not exist.

• Secondly, it should probably be pointed out that, although the linear algebraic con-
cepts used in our proof all existed in various forms in Hamilton’s time, the subject
of linear algebra was still many years away from the fully rigorous and systematized
discipline it is today. Therefore, even if he had been motivated to do so, it is highly
unlikely that Hamilton would have been able to come up with a proof as succinct as
the one we have presented.

• As well as real numbers, complex numbers and quaternions, a further consistent
normed algebra over the reals can be found with n = 8 dimensions. As well as be-
ing non-commutative with respect to multiplication, this algebra, known as the oc-
tonions, was the first example of an algebra whose multiplication is non-associative
[1]. And since it is normed, it also provided a version of equation (3) expressing any
product of two sums of eight squares as a sum of eight squares [3].
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• The question of when a product of two sums of n squares could itself be expressed
as a sum of n squares was finally resolved in 1898 by the German mathematician
Adolf Hurwitz [4], who proved that such expressions exist if and only if n = 1, 2, 4,
or 8. Thus, consistent n-dimensional normed algebras over the reals can only occur
for those same values.

• If you would like to know why n cannot have any other values, please see our ac-
companying paper, “An Accessible Proof of Hurwitz’s Sums of Squares Theorem”
in Mathematics Magazine, in which we give a proof, intelligible to any student who
has taken a first course in linear algebra, that n must equal 1, 2, 4, or 8.

But our proof for the n = 3 case is perhaps the simplest proof of all and provides pos-
sibly the best explanation for just why it was that Hamilton couldn’t multiply triples.

Summary. The history of the discovery of the 4-dimensional algebra of quaternions by
William Rowan Hamilton is very well known, but one aspect of the story has received far
less attention. This is the question of why he was unable to create a coherent system of com-
plex numbers in 3-space. In fact, even after Hamilton discovered quaternions in 1843, it still
took over half a century before anyone was able to prove that no such triple system actually
existed. But what is the mathematical reason that Hamilton was unable to find a consistent
three-dimensional linear algebra? The purpose of this article is to find out.
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