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Combinatorial designs are collections of subsets of a finite set that satisfy specified
conditions, usually involving regularity or symmetry. As the scope of the 984-page
Handbook of Combinatorial Designs [7] suggests, this field of study is vast and far
reaching. Here is a picture of the very first design to appear in “Opening the Door,” the
first of the Handbook’s 109 chapters:

Figure 1 The design that opens the door

This design, which we call the (7, 3, 1) design, makes appearances in many areas of
mathematics. It seems to turn up again and again in unexpected places. An earlier paper
in this MAGAZINE [4] described (7, 3, 1)’s appearance in a number of different areas,
including finite projective planes, as the Fano plane (FIGURE 1); graph theory, as the
Heawood graph and the doubly regular round-robin tournament of order 7; topology,
as an arrangement of six mutually adjacent hexagons on the torus; (−1, 1) matrices,
as a skew-Hadamard matrix of order 8; and algebraic number theory, as the splitting
field of the polynomial (x2 − 2)(x2 − 3)(x2 − 5).

In this paper, we show how (7, 3, 1) makes appearances in three areas, namely (1)
Hamming’s error-correcting codes, (2) Singer designs and difference sets based on
n-dimensional finite projective geometries, and (3) normed algebras.

We begin with an overview of block designs, including two descriptions of (7, 3,
1). We then describe certain binary error-correcting codes called Hamming codes, in
which (7, 3, 1) makes three different appearances. Next, we expand the treatment of
Hamming codes from binary codes to codes over all finite fields Fq , where q is an odd
prime. Then, we describe generalizations of the block design structure of (7, 3, 1) to
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the so-called Singer designs in the finite projective geometries PG(n, q), as well as the
Singer difference sets associated with these designs.

We continue with a fascinating connection between (7, 3, 1) and two number
systems—the real algebras of dimensions 8 and 16, called the octonions and the
sedenions, respectively. These superficially resemble the complex numbers, and math-
ematicians were led to these systems by asking questions about sums of squares. It
turns out that (7, 3, 1) has two distinct connections with the octonions and makes 15
appearances within the sedenions.

But first, let’s talk about block designs in general and (7, 3, 1) in particular.

Block designs

Let v, b, r, k, and λ be positive integers, with v > k. A balanced incomplete block
design (or BIBD) with parameters v, b, r, k, and λ is an collection of b subsets (or
blocks) of a v-element set V of elements such that each block contains k points, each
element in V appears in exactly r blocks, and each pair of elements appears together
in exactly λ blocks.

The parameters are not independent, for they satisfy the two equalities bk = vr and
r(k − 1) = λ(v − 1); let’s see why this is so. First, there are two ways to count the
number of pairs {B, x} such that the block B contains the element x . Each of the b
blocks contains k elements, making bk pairs in all, and each of the v elements appears
in r blocks, making vr pairs in all. It follows that

bk = vr.

Next, fix an element x . There are two ways to count the number of pairs {B, y} such
that x and y appear together in a block B. The element x is contained in r blocks,
and each such block contains k − 1 other elements; also, the element x appears with
another element y in λ blocks, and there are v − 1 elements y �= x in all. It follows
that

r(k − 1) = λ(v − 1).

Thus, the parameters v, k and λ are enough to specify a block design and so we may
speak of a (v, k, λ) design.

The two equalities are necessary for the existence of a BIBD with the given param-
eters. Clearly, there cannot be a (v, k, λ) design if r and b are not integers. But even if
r and b are integers and the two equalities are satisfied, it happens that some combina-
tions of parameters (v, k, λ) do not describe any designs. There are deep reasons that,
for example, no designs with parameters (22, 7, 2) and (43, 7, 1) exist.

A BIBD is called symmetric if v = b, and so r = k; in this paper, all of the
designs we will consider are symmetric. A (7, 3, 1) design consists of seven three-
element subsets of V = {1, 2, 3, 4, 5, 6, 7} such that each element is in three blocks
and each pair of elements is together in a unique block. Since v = b = 7 and
r = k = 3, this design is symmetric, and we can describe its blocks in two ways:
(a) as D, the seven translates mod 7 of the triple D1 = {1, 2, 4}, and (b) as H,
the triples {1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, and {3, 5, 6}.
FIGURE 2 shows both D and H.

The block designs D and H are called isomorphic if there is a bijection of the set
of points of D onto the set of points of H that induces a bijection of the blocks of D
onto the blocks of H. It happens that any two designs with parameters (7, 3, 1) are
isomorphic, and so we speak of the (7, 3, 1) design.

And now, let’s talk about error-correcting codes and their connections with (7, 3, 1).
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Figure 2 (7, 3, 1) as (a) differences mod 7 and as (b) three-bit strings

Binary Hamming codes

Let’s begin with two parties, Alice and Bob, who want to communicate with each
other. Alice is sending a message to Bob. The message is expressed in some way as
a sequence of strings of characters or codewords, which are sent to a receiver, one at
a time. Errors can happen in the process, so the string Bob receives may fail to be
a codeword. They can stop there, or they may try to correct the error. In every case
we will consider, Alice will build some extra information into each codeword, and we
will describe how this is done. Bob will use the extra information to test a string for an
error and—if there is an error—to replace the bad string with the “closest” codeword
(in the sense we’ll describe). We are not concerned with the process by which the
original message is translated into codewords or vice versa. For this paper, at least, we
are only concerned with Alice sending one codeword at a time to Bob, possibly with
some characters changed by error, and then with Bob trying to reconstruct the original
codeword.

Mathematical schemes to deal with such errors first appeared in the 1940s in the
work of several researchers, including Claude Shannon, Richard Hamming, and Mar-
cel Golay. These researchers saw the need for something that would automatically
detect and correct errors in signal transmissions across channels that were noisy and
hence were likely to produce such errors. Their work led to a new branch of mathemat-
ics called coding theory—specifically, the study of error-detecting and error-correcting
codes. They modeled these signals as sets of m-long strings called blocks, to be taken
from a fixed alphabet of size q; a particular set C of such blocks, or codewords, is
called a q-ary code of length m.

If q is a prime number, then C is called linear provided the codewords of C form
a subspace of the m-dimensional vector space of (Z/qZ)m , the m-dimensional vec-
tor space over the field of integers mod q. A basis for such a linear code is called a
generating set for the code. In this paper, all of the codes we look at are linear codes.

To detect errors means to determine that a codeword was incorrectly received; to
correct errors means to determine the right codeword in case it was incorrectly re-
ceived. Just how this correction happens will vary from code to code.

The fact that d errors in transmission change d characters in a block gives rise to the
idea of distance between blocks. If v and w are n-blocks, then the (Hamming) distance
D(v, w) is the number of positions in which v and w differ. Thus, D(11001, 10101) =
2 and D(1102002, 2011012) = 5. If Alice sends the block v and Bob receives the
block w, then D(v, w) errors occurred while sending v. The Hamming sphere of radius
d about an n-block w, denoted S(w, d), is the set of all n-blocks whose Hamming
distance from w is at most d. Finally, the (Hamming) weight of a codeword is the
number of nonzero characters.

It follows that if the words in a code are all “far apart” in the Hamming distance
sense, then we can detect errors. Even better, if we assume that only a few errors are
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received, then we can sometimes change the received block to the correct codeword.
Let us now look at an example of an error-correction scheme.

A simple example of a binary code of length 3 consists of only two codewords,
000 and 111. If Bob receives 010, then it is most likely that Alice sent 000 and so the
intended message was 0; this is the triplication or majority-vote code. Effectively, a
three-bit codeword consists of one “message bit” sent three times. More generally, a
codeword of length n contains a certain number k of message bits, and the other n − k
check bits are used for error detection and correction. Such a code is called an (n, k)

code: the triplication code is a (3, 1) code.
We have presented k as the number of message bits, but it can be defined more

clearly as the dimension of the subspace consisting of the codewords. This makes
sense only for linear codes—but in this paper, as previously mentioned, we are only
concerned with linear codes.

The minimum distance of a code is the smallest distance between its codewords;
this minimum distance determines the code’s error detection and correction features.
For example, a code with minimum distance five will detect up to four errors and
correct up to two. You can show that a code with minimum distance d will detect
up to d − 1 errors and correct up to �(d − 1)/2� errors. We see that if the Hamming
spheres S(w, d) of radius d about all codewords w are pairwise disjoint, then the code
can correct up to d errors. Maximum efficiency in an (n, k) d-error correcting code C
occurs when every string of length n is either a codeword or at a distance of at most d
from a unique codeword—equivalently, when the Hamming spheres of radius d about
all codewords partition the set of all n-blocks. This is a rare event, and a code with this
property is called perfect. In this paper, all of the codes we look at are perfect codes.

Hamming’s first error-correcting scheme was a perfect one-error correcting code of
length seven with four message bits, three check bits, and minimum distance 3; hence,
it could correct all errors in which a single bit was received incorrectly. Golay extended
Hamming’s work and constructed a family of (2n − 1, 2n − 1 − n) linear binary perfect
one-error correcting codes of minimum distance 3 for all n ≥ 2. These are now known
as the binary Hamming codes, and they include both Hamming’s original (7, 4) code
and the (3, 1) triplication code. The notation H(m, k) refers to a linear binary perfect
one-error correcting code of length m and dimension k.

H(7, 4), Hamming’s first code—the perfect single-error correcting code of length
7—was described in 1948 in [17, p. 418], as follows:

Let a block of seven [binary] symbols be X1, X2, . . . , X7. Of these, X3, X5, X6,
and X7 are the message symbols and chosen arbitrarily by the source. The other
three are redundant and calculated as follows:

X4 is chosen to make α = X4 + X5 + X6 + X7 even

X2 is chosen to make β = X2 + X3 + X6 + X7 even

X1 is chosen to make γ = X1 + X3 + X5 + X7 even.

When a block of seven is received, α, β and γ are calculated and if even, called
zero, if odd, called one. The binary number αβγ then gives the subscript of the
Xi that is incorrect (if 0, there was no error).

Now, this procedure determines α, β and γ mod 2 in the following way. Suppose
exactly one of the seven bits, say X j , is incorrect. Since α = X4 + X5 + X6 + X7 adds



VOL. 88, NO. 2, APRIL 2015 107

up the Xi whose high bit equals 1, it follows that α = 1 if and only if j = 4, 5, 6 or 7,
that is, if the high bit of X j is 1. Similarly, β = X2 + X3 + X6 + X7 adds up the X j

whose middle bit equals 1, so it follows that β = 1 if and only if j = 2, 3, 6 or 7, i.e.,
if the middle bit of X j is 1. Finally, γ = X1 + X3 + X5 + X7 adds up the X j whose
low bit equals 1, and so γ = 1 if and only if j = 1, 3, 5 or 7, i.e., if the low bit of X j

is 1. Thus, X j affects those, and only those, of α, β, and γ whose sum contains X j .
Another way to describe the decoding procedure is that if X = (X1, . . . , X7) is a

seven-bit string, then compute v = P · Xt , where

P =
⎡
⎣0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎦ .

P is constructed in such a way that if the vector v is identical to the i th column of P ,
then Xi is the incorrect bit, and if v = 0, then there is no error.

The free choices for the four message symbols shows that there are 16 codewords,
and the condition that P · vt = 0 (when v is a codeword) means that the vector v is
in the (right) null space of the matrix P . Thus, the 16 codewords are closed under
both addition and scalar multiplication by 0 and 1. In short, the codewords form a
four-dimensional subspace of (Z/2Z)7 and we see that the above code is a linear code.
More generally, if C is a linear code that is the null space of a matrix Q, then we call
Q the parity check matrix for the code.

Hamming’s scheme, then, takes every seven-long binary string with a single er-
ror and corrects that error, producing the corrected seven-bit codeword—whence the
name “binary single error-correcting code of length 7.” Since this code has length 7
and dimension 4, we call it the binary Hamming code H(7, 4). The smallest binary
Hamming code is H(3, 1), the so-called triplication code: Each bit is sent three times,

and the parity-check matrix is

[
1 0 1
0 1 1

]
.

(7, 3, 1) and the original Hamming code. The parity-check matrix P has another
interesting feature. Write P = [P1, . . . , P7]—thus, Pi is the i th column of P—and
consider the set Ci of columns of P whose dot products with Pi equal zero:

Do the Ci on the left in FIGURE 3 look familiar? They should. In fact, they are a
rearrangement of the blocks H1, . . . , H7 in the right-hand column of FIGURE 2, and
we have another way to produce the (7, 3, 1) design. This is also our first example of a
Singer design, a topic we’ll talk about in a later section.

i Pi binary Ci decimal Ci

1 001 {010, 100, 110} {2, 4, 6}

2 010 {001, 100, 101} {1, 4, 5}

3 011 {011, 100, 111} {3, 4, 7}

4 100 {001, 010, 011} {1, 2, 3}

5 101 {010, 101, 111} {2, 5, 7}

6 110 {001, 110, 111} {1, 6, 7}

7 111 {011, 101, 110} {3, 5, 6}

i Bi { j : Bi, j = 1}

1 1110000 {1, 2, 3}

2 1001100 {1, 4, 5}

3 1000011 {1, 6, 7}

4 0101010 {2, 4, 6}

5 0100101 {2, 5, 7}

6 0011001 {3, 4, 7}

7 0010110 {3, 5, 6}

Figure 3 The Singer (7, 3, 1) design (left) and the seven codewords of weight 3 (right)
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(7, 3, 1), Hamming, and the three-circle Venn diagram. A second appearance of
(7, 3, 1) in this code is in the table on the right side of FIGURE 3. This table comes from
the seven codewords of weight 3. The blocks Bi = Bi,1 . . . Bi,7 are the codewords, the
points j are the integers 1, . . . , 7, and j ∈ Bi if and only if Bi, j = 1—another (7, 3, 1)
design.

Finally, Hamming’s system of three congruences (mod 2) has a nice pictorial inter-
pretation, as follows. Draw the usual three-circle Venn diagram for three sets. Next,
associate the region that is in all three sets with X7, associate the regions that are in
exactly two of the sets with X3, X5, and X6, and associate the regions that are in ex-
actly one of the sets with X1, X2, and X4. We see that each region of the diagram is
associated with exactly one of the Xi , and each Xi appears exactly once.

1

42

7

6

53

1

42

7

6

53

Figure 4 The three-circle Venn diagram (left) with another instance of (7, 3, 1) (right)

Hamming’s scheme can be realized by placing Xi in its corresponding region, then
the number of 1s in each of the circles must be even. Pictorially, if exactly one Xi is
switched from x to 1 − x , then it will be the value in the region contained in exactly
those circles with an odd number of 1s. As a bonus, this picture also shows us one more
appearance of (7, 3, 1) (on the right-hand side of FIGURE 4), and so the Hamming
(7, 4) code gives us three different views of (7, 3, 1)!

The earliest Hamming codes were designed to correct errors in messages encoded
as bit strings, and the underlying arithmetic was done in the two-element field. In the
next section, we extend the results of this section to correct errors in messages where
the arithmetic is performed in a finite field Fq , where q is an odd prime.

q-ary Hamming codes

Let q be a prime. A q-ary code of length m is a collection of strings of length m over an
alphabet of q elements. Since q is a prime, we may take these elements to be the finite
field Fq = {0, 1, . . . , q − 1}. As we have seen, if a code can correct up to d errors in
messages of length n, then every string of length n is at a Hamming distance at most
d from a codeword and so is contained within a sphere S(w, d) of Hamming radius d
about some codeword w.

We now show how to construct q-ary Hamming codes—that is, q-ary perfect one-
error correcting codes—so we consider the Hamming spheres of radius 1. If w is a
codeword of length n, then there are n positions where a single error can occur, and
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for each position, there are (q − 1) possible errors. Thus, for q-ary codes, the sphere
S(w, 1) contains the codeword w together with all n(q − 1) strings with exactly one
error. It follows that if a q-ary code C corrects all single errors, then the spheres of
radius 1 about every codeword in C are pairwise disjoint. Hence, the set of all qn q-ary
strings of length n contains the union of these spheres. If such a code C is perfect, then
every such string belongs to one of these spheres. Hence, if C is perfect and contains
W codewords, then we see that

W = qn

1 + n(q − 1)
.

The right-hand side is called the Hamming or sphere-packing bound, and a single-error
correcting code is perfect exactly when the Hamming bound is attained.

For a Hamming code of length n, we see that W (1 + n(q − 1)) = qn; since q is a
prime, this means that 1 + n(q − 1) must be a power of q. Thus, 1 + n(q − 1) = qk

for some positive integer k; we solve this for n and see that n = qk−1
q−1 , and so the code

contains qn−k codewords. It follows that we may encode all q-ary messages of length
n − k in a way that corrects each error pattern involving a single incorrect character. In
short, a codeword contains n − k message digits and k so-called parity-check digits.

Thus, if a perfect q-ary Hamming code exists, then its length is necessarily equal to
n = qk−1

q−1 for some k. Now, we know that “necessary” does not mean “sufficient.” But
in fact, q-ary Hamming codes of length n having n − k message digits do exist for all

n and k, and we now show how to construct such
(

qk−1
q−1 ,

qk−1
q−1 − k

)
codes. These are

linear codes, as they are realized as n − k-dimensional subspaces of an n-dimensional
vector space F

n
q over Fq .

Let Q be a k × m matrix over Fq such that for fixed k, (1) no two columns of Q
are linearly dependent, and (2) for the given k, m is as large as possible. Condition
(1) states that no two columns of Q are multiples of each other. Now, each nonzero
column vector v has q − 1 nonzero scalar multiples, so (1) implies that we may choose
at most one of these. We collect one vector from each set of q − 1 nonzero multiples of
a given vector until we cannot proceed further. Since there are qk − 1 nonzero vectors
of length k and since these are partitioned into sets of q − 1 nonzero multiples of a
single vector, this means that we will have at least (qk − 1)/(q − 1) columns. But
every nonzero vector is a multiple of exactly one of the vectors we have chosen, so
the desired maximum number m of columns is equal to (qk − 1)/(q − 1). Sounds
familiar, doesn’t it? Indeed it is. The value of m we seek is precisely the number n
from the preceding several paragraphs.

To encode a message string, we mimic what is done for the binary Hamming codes,
with slight variations. Let q, n and k be as above, and let Q be a k × n matrix con-
structed as follows. Let the first k columns of the parity-check matrix be the identity
matrix Ik of order k; these k positions will determine the parity digits. The other n − k
columns represent the message digits: Placed in increasing numerical order, they are
the base-q representations of the non-powers of q between 1 and qk − 1 whose most
significant digit is a 1. One can check that Q has the properties (1) and (2) mentioned
in the previous paragraph.

For the Hamming q-ary code of dimension n − k, the parity-check matrix will have
k rows and n columns. That is, a q-ary string of length n contains n − k message dig-
its and k parity digits. In all, the parity-check matrix has (qk − 1)/(q − 1) columns.
Thus, a ternary Hamming code of length (34 − 1)/(3 − 1) = 40 will have four par-
ity positions and 36 message positions. A base-5 Hamming code of length (53 − 1)/

(5 − 1) = 31 has five parity positions and 26 message positions.
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Let’s illustrate this with the ternary Hamming code of length 13 = (33 − 1)/

(3 − 1). The parity-check matrix T for this code is given by

T =
⎡
⎣ 1 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 1 1 0 0 1 1 1 2 2 2
0 0 1 1 2 1 2 0 1 2 0 1 2

⎤
⎦

To encode the message (m4, m5, m6, m7, m8, m9, m10, m11, m12, m13), determine
the values of c1, c2 and c3 so as to make the vector (c1, c2, c3, m4, m5, m6, m7, m8, m9,

m10, m11, m12, m13) an element of the right null space of T . That is, pick c1, c2 and c3

to satisfy the congruences

c1 + m6 + m7 + m8 + m9 + m10 + m11 + m12 + m13 ≡ 0 (mod 3),

c2 + m4 + m5 + m8 + m9 + m10 + 2m11 + 2m12 + 2m13 ≡ 0 (mod 3), and

c3 + m4 + 2m5 + m6 + 2m7 + m9 + 2m10 + m12 + 2m13 ≡ 0 (mod 3).

For example, applying this procedure to the message (1, 1, 2, 1, 0, 0, 1, 2, 1, 1) yields
c1 = 1, c2 = 2, and c3 = 0, and so the associated codeword is (1, 2, 0, 1, 1, 2, 1, 0, 0,

1, 2, 1, 1).

More generally, let vt denote the transpose of v. For a message (xk+1, . . . , xn)

of length n − k = qk−1
q−1 − k, we determine k check digits c1, . . . , ck such that T ·

(c1, . . . , ck, xk+1, . . . , xn)
t is the zero vector of length n.

To decode a message v, calculate w = T · vt . If w = 0, then v is a codeword. If
not, then for some nonzero integer a mod q and some positive integer j, w = aTj . To
correct the error, subtract a (mod q) from the j th component of Pj .

To see how this works, let’s look at an example with the ternary Hamming code
of length 13. Suppose we receive the string z = (2, 2, 0, 0, 0, 1, 0, 0, 2, 1, 1, 2, 0).
We compute w = T · zt = (0, 2, 1) mod 3; this is nonzero, so there was an error in
transmission. Assuming that there was an error in only one character, we see that
w = (0, 1, 2) ≡ 2T5 mod 3. In the above decoding scheme, this means that a = 2, so
we subtract 2 (mod 3) from the fifth component of z. The result is the vector

v = (2, 2, 0, 0, 0 − 2, 1, 0, 0, 2, 1, 1, 2, 0) ≡ (2, 2, 0, 0, 1, 1, 0, 0, 2, 1, 1, 2, 0) mod 3.

Sure enough, T · vt ≡ (0, 0, 0) mod 3—as claimed.
Finally, we need to show that the above code has minimum distance three. As in

the binary case, ours is a linear code, so the minimum distance between codewords is
equal to the minimum weight of a nonzero codeword. Let’s prove this now.

Note that the parity-check matrix T of our Hamming q-ary code of dimension n −
k has k rows and n columns. By construction, the columns of T are nonzero and
pairwise linearly independent. Thus, there are no codewords of weights 1 or 2, so the
minimum weight of a nonzero codeword is at least 3. But columns Tk−1, Tk and Tk+1

are linearly dependent because Tk−1 + Tk − Tk+1 = 0. Hence, the n − k-long vector v

with vk−1 = vk = 1 and vk+1 = −1 and zeros everywhere else is a codeword of weight
3—as claimed.

Now, you might wonder about the usefulness of q-ary codes for q ≥ 3. Wonder
no more: Ternary error-correcting codes have made their way into the world of card
magic. Chapter Q (for Queen) of Colm Mulcahy’s recent book [8]—a great read, by
the way—includes a variety of card tricks that use the ternary (4, 2) Hamming code
with parity-check matrix

[
1 0 1 1
0 1 1 −1

]
.
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Does this matrix T have a block-design connection, similar to that enjoyed by Ham-
ming’s parity-check matrix T ? Indeed it does. If Ti the i th column of T and Di is the
set of columns of T whose dot products with Di equal zero, here’s what we get:

i Ti ternary Di columns j for Tj Di

1 100 {010, 001, 011, 012} {2, 3, 4, 5}

2 010 {100, 001, 101, 102} {1, 3, 6, 7}

3 001 {100, 010, 110, 120} {1, 2, 8, 11}

4 011 {100, 012, 112, 121} {1, 5, 10, 12}

5 012 {100, 011, 111, 122} {1, 4, 9, 13}

6 101 {010, 102, 112, 122} {2, 7, 10, 13}

7 102 {010, 101, 111, 121} {2, 6, 9, 12}

8 110 {001, 120, 121, 122} {3, 11, 12, 13}

9 111 {012, 102, 111, 120} {5, 7, 9, 11}

10 112 {011, 101, 112, 120} {4, 6, 10, 11}

11 120 {001, 110, 111, 112} {3, 8, 9, 10}

12 121 {011, 102, 110, 121} {4, 7, 8, 12}

13 122 {012, 101, 110, 122} {5, 6, 8, 13}

Figure 5 The Singer (13, 4, 1) design

You can verify that in FIGURE 5, the Di are the blocks of a (13, 4, 1) design on the
columns of T , and this is no accident. In the next section, we explore this connection
between parity-check matrices for q-ary Hamming codes and certain block designs.
These block designs arise in the context of finite projective geometries over Fq , and
R. C. Bose describes them in his 1939 landmark paper on combinatorial designs [3].
Let’s look at these designs now.

Singer designs

Let n be a positive integer, and let Un = {(x0, x1, . . . , xn) : xi ∈ Fq} − {(0, . . . , 0)} be
the set of all nonzero (n + 1)-tuples with elements in the field Fq . Define an equiva-
lence relation ∼ on Un by (x0, . . . , xn) ∼ (y0, . . . , yn) provided there exists a nonzero
constant λ such that xi = λyi for all i . We define the n-dimensional projective space
PG(n, q) over Fq to be the set of all ∼-equivalence classes in Un .

A point of PG(n, q) is an equivalence class of (n + 1)-tuples. For an example,
consider the space PG(3, 5) of dimension 3 over the five-element field. The nonzero
scalar multiples of p = (1, 4, 3, 3) are p itself, 2p = (2, 3, 1, 1), 3p = (3, 2, 4, 4),

and 4p = (4, 1, 2, 2), and so in PG(3, 5), p represents the class of its nonzero multi-
ples. (The same letter refers to both the element and its equivalence class—the key is
to remember that scalar multiples represent the same class.) The lattice of subspaces
of PG(n, q) corresponds to the lattice of subspaces of Fn+1

q .
There are qn+1 − 1 nonzero vectors in F

n+1
q , and each nonzero vector is in a

∼-equivalence class containing q − 1 scalar multiples. Hence, PG(n, q) contains
(qn+1 − 1)/(q − 1) elements, which are the points.
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In [3], R. C. Bose proved the following theorem about an interesting class of block
designs, now known as Singer designs after their discoverer James Singer, who first
described them in [18].

Bose’s Theorem. The points and (n − 1)-dimensional subspaces of PG(n, q) are
the points and blocks, respectively, of a

(
qn+1 − 1

q − 1
,

qn − 1

q − 1
,

qn−1 − 1

q − 1

)

symmetric balanced incomplete block design.

To see why this is so, we first review some linear algebra. Let H be a d-dimensional
subspace of an n-dimensional vector space. The (right) null space H⊥ of H is the set of
vectors v for which Hv = 0—left null spaces are defined analogously—and the nullity
of H is the dimension of H⊥. The rank-nullity theorem tells us that the dimension of
H⊥ is equal to n − d. Thus, if B is an n-dimensional subspace of Fn+1

q , then by the
rank-nullity theorem, B⊥ has dimension 1.

Now, let K be a d-dimensional subspace of PG(n, q). Then K corresponds to a
d + 1-dimensional subspace of Fn+1

q , so its null space has dimension n + 1 − (d +
1) = n − d. Projectively, this null space corresponds to an n − d − 1-dimensional sub-
space of PG(n, q). In particular, if K is an (n − 1)-dimensional subspace of PG(n, q),
then its null space has dimension n − (n − 1) − 1 = 0. In short, the null space of
an (n − 1)-dimensional subspace of PG(n, q) is a point, and it follows that distinct
(n − 1)-dimensional subspaces have distinct null spaces. Hence, the points and the
(n − 1)-dimensional subspaces—let’s call the latter blocks—are in one-to-one corre-
spondence, and there are v = (qn+1 − 1)/(q − 1) of each.

Let B be the block whose null space is the point (a0, . . . , an). Then every ele-
ment w = (x0, . . . , xn) ∈ B satisfies

∑n
i=0 ai xi = 0; without loss of generality, sup-

pose a0 �= 0. Then each of the qn − 1 nonzero choices of x1, . . . , xn determines a
unique value of x0. However, since the q − 1 scalar multiples of a solution vector w

are considered the same, we divide out by that quantity and see that a block contains
k = (qn − 1)/(q − 1) points. A similar argument shows that every point is contained
in k blocks.

Finally, two blocks are either equal or intersect in an (n − 2)-dimensional subspace
of PG(n, q), and repeating the above argument shows that the intersection of distinct
blocks has λ = (qn−1 − 1)/(q − 1) points, and each pair of distinct points belongs to
λ blocks.

In short, the collection of subspaces of dimension n − 1 in PG(n, q) forms a sym-
metric (v, k, λ) block design whose elements are the points of PG(n, q), and this com-
pletes the proof of Bose’s theorem. These are called Singer designs, for reasons that
will be made clear in the next section.

We now make a connection between Hamming codes and Singer designs, and the
connection is this.

Theorem (The Hamming–Singer Connection). Let q be a prime and let n be a
positive integer, and let P be the parity-check matrix for the q-ary Hamming code
with n + 1 parity-check digits. Then

• The null spaces of the columns of P form a symmetric block design with the columns
as points and the null spaces as blocks.

• This design contains v = (qn+1 − 1)/(q − 1) points and the same number of blocks.
• Each block contains k = (qn − 1)/(q − 1) points, and each point is in the same

number of blocks.
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• Each pair of points belongs to λ = (qn−1 − 1)/(q − 1) blocks together. In other

words:
• The columns of a parity-check matrix of a Hamming(

qn+1 − 1

q − 1
,

qn+1 − 1

q − 1
− (n + 1)

)

code are the points of a (v, k, λ) Singer design with v, k, and λ as above.

The fact that the columns of P are pairwise linearly independent guarantees that
those columns can be viewed as the points of PG(n, q); the Hamming–Singer connec-
tion then follows from previous reasoning. In particular, we see that for n = q = 2,
we have v = 7, k = 3 and λ = 1, and so the Singer (7, 3, 1) design is another name
for (7, 3, 1). See FIGURE 3).

Singer difference sets in PG(n, q)

James Singer (1906–1976) graduated from Cornell in 1926 and received a Ph.D. from
Princeton in 1931 with a dissertation in topology directed by the eminent topologist J.
W. Alexander. He was on the mathematics faculty of Brooklyn College from 1936 to
1974 and by all accounts was an influential and beloved teacher. He became interested
in finite projective geometry, and in his 1938 paper [18], Singer proved the following
theorem.

Singer’s Theorem. Let D be an (n − 1)-dimensional subspace of PG(n, q). Then
there is a bijective transformation carrying the v = (qn+1 − 1)/(q − 1) points of
PG(n, q) onto the integers {0, 1, . . . , v − 1} in such a way that the resulting integers
corresponding to the k = (qn − 1)/(q − 1) points of D have the following property.
Namely, every nonzero integer mod v can be expresses as the difference between dis-
tinct elements of D in exactly λ = (qn−1 − 1)/(q − 1) ways.

In short, Singer proved that with v, k and λ as above, each block of a Singer
(v, k, λ) design is what he called a difference set. More generally, if v, k and λ are
positive integers, then a (v, k, λ) difference set is a k-element subset D = {d1, . . . , dk}
of {1, 2, . . . , v} such that every nonzero integer (mod v) can be expressed as a differ-
ence di − d j of the elements of D in exactly λ ways. Later, researchers expanded the
definition to arbitrary finite groups, in which a (v, k, λ) difference set in a v-element
group G is a k-element subset D of G such that every nonidentity element of G can
be expressed in exactly λ ways as a product ab−1 of elements of D.

We began the 2002 paper [4] by showing that the subset Q7 = {1, 2, 4} of Z mod 7
is a (7, 3, 1) difference set. For, in Z mod 7, 1 = 2 − 1, 2 = 4 − 2, 3 = 4 − 1, 4 =
1 − 4, 5 = 2 − 4, and 6 = 1 − 2. Thus, Q7 is a (7, 3, 1) difference set. We then
showed that (a) if p = 4n + 3 is a prime, then the set Q p of nonzero squares mod
p is a (4n + 3, 2n + 1, n + 1) difference set and (b) if D is a (v, k, λ) difference
set, then the v translates D + i = {x + i mod v | x ∈ D} form a symmetric (v, k, λ)

block design. In particular, the seven translates of Q7 mod 7 are the blocks D1, . . . , D7

in the left-hand column of FIGURE 2. Similarly, each of the nonzero integers mod
11 can be represented in exactly two ways as a difference of distinct elements of
Q11 = {1, 3, 4, 5, 9}, and the 11 translates Q11 + i mod 11 form a symmetric (11, 5, 2)

block design.
A symmetric design on V = {0, . . . , v − 1} is called cyclic if the v blocks are the v

translates D + i mod v of some fixed block D. Singer’s next theorem tells us in such
a design, every block is a difference set.
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Theorem. Let B = {B0, B1, . . . , Bv−1} be the blocks of a cyclic (v, k, λ) design on
the set of points V = {0, 1, . . . , v − 1}, Then each block Bi is a (v, k, λ) difference
set.

Let’s prove this.
To simplify the proof, we assume that 0 ∈ B0. Thus, B0 = {x1, . . . , xk−1, 0} for

some xi ∈ V, 1 ≤ k − 1, xi �= 0. We show that B0 is a (v, k, λ) difference set. Since
the design is symmetric, each point is in k blocks and there are v blocks in all. Since
the design is cyclic, we see that Bj = {x1 + j, . . . , xk−1 + j, j} for 0 ≤ j ≤ v − 1.

Now, let d be any nonzero element of V . Then d and 0 are in exactly λ blocks
together—that is, for λ values of j , d, 0 ∈ Bj . A block has no repeated elements, so if
d, 0 ∈ Bj , then d = xr + j and 0 = xs + j for distinct xr , xs ∈ B0. Thus, d = d − 0 =
xr − xs for exactly λ pairs (xr , xs) of distinct elements of B0. Since d was arbitrary, it
follows that every nonzero number mod v can be expressed as a difference of elements
of B0 in exactly λ ways. In short, B0 is a (v, k, λ) difference set.

Thus, if a, b ∈ Bj , then a = xr + j, b = xs + j for xr , xs ∈ B0, and so a − b =
xr + j − (xs − j) = xr − xs . Hence, the differences of elements in Bj are the same as
the differences of elements in B0, and so each block Bj is a (v, k, λ) difference set—as
claimed.

More generalization is possible. In fact, there is a way to make the Singer block
designs contained in PG(n, q) into cyclic designs. Proving this is tedious, so we will
not pursue it. For a proof, see [20, pp. 79–82].

We now explore a fascinating connection (7, 3, 1) has with a number system that
superficially resembles the complex numbers and to which mathematicians were led
by asking questions about sums of squares.

Sums of squares, the octonions, and the sedenions

Squares and their sums have fascinated the mathematical world for millennia, begin-
ning with the Pythagorean theorem. Euclid gives a proof of the Pythagorean theorem
in Book I, Proposition 47 of The Elements. Book X, Proposition 29, Lemma 1 gives a
general formula for triples (x, y, z) of integers such that x2 + y2 = z2. In modern no-
tation, if a and b are relatively prime integers of opposite parity, set x = a2 − b2, y =
2ab, and z = a2 + b2; then x2 + y2 = z2.

Several hundred years later, Diophantus (ca. 250 CE) made an observation in the
solution to Problem III.22 of his Arithmetica, an observation that implicitly contains
the identity

(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2,

which gives the product of two sums of two squares as a sum of two squares. Diophan-
tus does not supply a proof, but almost a millennium later, Leonardo of Pisa (1175–
1240) includes this two-squares identity—with proof—in his Liber quadratorum (The
Book of Squares).

In 1748, Euler proved the four square identity, namely that the product of two sums
of four squares is again a sum of four squares, showing that if a1, . . . , a4 and b1, . . . , b4

are numbers, then

(a2
1 + a2

2 + a2
3 + a2

4)(b
2
1 + b2

2 + b2
3 + b2

4)

= (a1b1 − a2b2 − a3b3 − a4b4)
2 + (a1b2 + a2b1 + a3b4 − a4b3)

2

+ (a1b3 − a2b4 + a3b1 + a4b2)
2 + (a1b4 + a2b3 − a3b2 + a4b1)

2.
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Lagrange used this identity in his 1770 proof that every positive integer can be written
as a sum of four squares of integers. The identities of Diophantus and Euler raised the
question, “Are there other identities like this?”

One such identity for sums of eight squares was first found by the Danish mathe-
matician Ferdinand Degen in 1818 . The eight-squares identity states that if a0, . . . , a7

and b0, . . . , b7 are numbers, then

(a2
0 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5 + a2
6 + a2

7)

×(b2
0 + b2

1 + b2
2 + b2

3 + b2
4 + b2

5 + b2
6 + b2

7)

= (a0b0 − a1b1 − a2b2 − a3b3 − a4b4 − a5b5 − a6b6 − a7b7)
2

+ (a0b1 + a1b0 + a2b3 − a3b2 + a4b5 − a5b4 − a6b7 + a7b6)
2

+ (a0b2 − a1b3 + a2b0 + a3b1 + a4b6 + a5b7 − a6b4 − a7b5)
2

+ (a0b3 + a1b2 − a2b1 + a3b0 + a4b7 − a5b6 + a6b5 − a7b4)
2

+ (a0b4 − a1b5 − a2b6 − a3b7 + a4b0 + a5b1 + a6b2 + a7b3)
2

+ (a0b5 + a1b4 − a2b7 + a3b6 − a4b1 + a5b0 − a6b3 + a7b2)
2

+ (a0b6 + a1b7 + a2b4 − a3b5 − a4b2 + a5b3 + a6b0 − a7b1)
2

+ (a0b7 − a1b6 − a2b5 + a3b4 − a4b3 − a5b2 + a6b1 + a7b0)
2.

At this point, mathematicians were quite hopeful that other, perhaps infinitely many,
sums-of-squares identities exist. Let’s rephrase the question “Are there other identities
like this?” as follows. For which positive integers n does there exist an identity of the
form

(x2
1 + · · · + x2

n)(y2
1 + · · · + y2

n) = z2
1 + · · · + z2

n, where zk =
n∑

i, j=1

Ai jk xi y j ,

and the Ai jk are constants independent of the values of the xi and the y j ?
The question was answered in 1898 by Adolph Hurwitz, who proved that such an

identity exists for n = 1, 2, 4, 8—and for no other positive integers. He showed that
each sums-of-squares identity led to an n-dimensional normed algebra. Now a normed
algebra A is an n-dimensional vector space over the real numbers R that has two spe-
cial features, namely (1) a vector multiplication that distributes over vector addition,
and (2) a mapping N : A → R such that N (uv) = N (u)N (v) for all u, v ∈ A. These
algebras are the real numbers R (n = 1), the complex numbers C (n = 2), Hamil-
ton’s quaternions H (n = 4), and the octonions O (n = 8). The latter is a beautiful
algebraic system with a multiplication table that reveals itself as another aspect of
(7, 3, 1). We will explore the octonions below, and then we will construct the anal-
ogous 16-dimensional algebra known as the sedenions and see just why it is not a
normed algebra.

One square is easy: Because multiplication of real numbers is commutative and
associative, we see that a2b2 = (ab)2 for all real numbers a and b. As for two squares,
Diophantus (ca. 250 CE) had an answer. Problem III.22 of his Arithmetica implicitly
contains the identity

(a2 + b2)(c2 + d2) = (ac − bd)2 + (ad + bc)2,

which gives the product of two sums of two squares as a sum of two squares. As men-
tioned above, the normed algebras associated with the one-square and two-square iden-
tities will turn out to be the real numbers R and the complex numbers C, respectively.
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In fact, multiplication of complex numbers reflects the two-squares identity as follows.
Let z = a + bi and define N (z) = a2 + b2; if w = c + di , then N (w) = c2 + d2, and
we see that zw = ac − bd + (ad + bc)i . Finally, we see that

N (zw) = (ac − bd)2 + (ad + bc)2 = (a2 + b2)(c2 + d2) = N (z)N (w),

by the two-squares identity.
As for the associated normed algebra associated with the four-squares identity, that

is one of the great stories in mathematics, and it came about in the following way.
During the early 1840s, William R. Hamilton was searching for a way to multi-

ply ordered triples of real numbers, analogous to multiplication of complex numbers
viewed as ordered pairs. He searched a long time and failed to find such a multipli-
cation, but working through these unsuccessful attempts led him to one of the famous
“aha!” moments in the history of mathematics. On the morning of October 16, 1843,
that moment came to Hamilton while he was taking a walk. He realized in a flash of
insight that the solution he sought was a multiplication of quadruples, not triples, and
then, as he described in an 1865 letter to his son Archibald [13], “Nor could I resist
the impulse—unphilosophical as it may have been—to cut with a knife on a stone of
Brougham Bridge, as we passed it, the fundamental formula with the symbols, i, j, k;
namely,

i2 = j2 = k2 = i jk = −1,

which contains the Solution of the Problem, but of course, as an inscription, has long
since mouldered away.”

Hamilton gave the name quaternions to the resulting algebra H generated by 1, i, j
and k; the multiplication table for the units 1, i, j and k is as follows:

∗ 1 i j k

1 1 i j k

i i −1 k − j

j j −k −1 i

k k j −i −1

A quaternion is an expression of the form x1 + x2i + x3 j + x4k, where the xn are
real numbers. It is easy to see how to add these expressions term-by-term, and Hamil-
ton’s new multiplication table shows us how to multiply them. One multiplies two
quaternions by using the distributive law, Hamilton’s table, and the fact that xi =
i x, x j = j x, and xk = kx for all real numbers x . Hamilton showed that this mul-
tiplication is associative; however, the table shows that i j = k = − j i and so mul-
tiplication is not commutative. We can define a norm on H by N (x1 + x2i + x3 j +
x4k) = x2

1 + x2
2 + x2

3 + x2
4 , and because of the four-square identity, it follows that

N (x)N (y) = N (xy) for all x, y ∈ H. Therefore, H is a four-dimensional normed
algebra—that is, R4 equipped with a multiplication—and because of that, we can show
that H is a division ring, which means that every nonzero element of H has a multi-
plicative inverse. Here’s how.

We first define the conjugate x of a quaternion x by x1 + x2i + x3 j + x4k = x1 −
x2i − x3 j − x4k. Another routine calculation shows that

xx = (x1 + x2i + x3 j + x4k)(x1 − x2i − x3 j − x4k) = x2
1 + x2

2 + x2
3 + x2

4 = N (x).
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Now, if x �= 0, then N (x) is a positive real number, and it follows that

x · x

N (x)
= N (x)

N (x)
= 1.

Hence, x has a multiplicative inverse, and so H is a division algebra. Since, at that
time, the only known division rings were fields, H was the first example of a noncom-
mutative division ring. This unique status of H would last only a couple of months.

What happened next was that, the very next day, Hamilton mailed the good news
about the quaternions to his friend and fellow mathematician John T. Graves. Two
months later, Graves sent him a letter in which he described a multiplication on R

8;
we now call this algebra the octonions O. Hamilton’s quaternion multiplication uses
three units {i, j, k}, each of whose squares is equal to −1. Graves’ multiplication on O

uses seven units {o1, . . . , o7} whose products come from the following multiplication
table:

∗ 1 o1 o2 o3 o4 o5 o6 o7

1 1 o1 o2 o3 o4 o5 o6 o7

o1 o1 −1 o4 o7 −o2 o6 −o5 −o3

o2 o2 −o4 −1 o5 o1 −o3 o7 −o6

o3 o3 −o7 −o5 −1 o6 o2 −o4 o1

o4 o4 o2 −o1 −o6 −1 o7 o3 −o5

o5 o5 −o6 o3 −o2 −o7 −1 o1 o4

o6 o6 o5 −o7 o4 −o3 −o1 −1 o2

o7 o7 o3 o6 −o1 o5 −o4 −o2 −1

Better yet, this multiplication came equipped with a norm, namely

N (a0 + a1o1 + · · · + a7o7) = a2
0 + a2

1 + · · · + a2
7 .

This norm satisfies N (ab) = N (a)N (b) because of Graves’ other bit of news, namely
his rediscovery of the eight-squares identity,

(a2
0 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5 + a2
6 + a2

7)

×(b2
0 + b2

1 + b2
2 + b2

3 + b2
4 + b2

5 + b2
6 + b2

7)

= (a0b0 − a1b1 − a2b2 − a3b3 − a4b4 − a5b5 − a6b6 − a7b7)
2

+ (a0b1 + a1b0 + a2b3 − a3b2 + a4b5 − a5b4 − a6b7 + a7b6)
2

+ (a0b2 − a1b3 + a2b0 + a3b1 + a4b6 + a5b7 − a6b4 − a7b5)
2

+ (a0b3 + a1b2 − a2b1 + a3b0 + a4b7 − a5b6 + a6b5 − a7b4)
2

+ (a0b4 − a1b5 − a2b6 − a3b7 + a4b0 + a5b1 + a6b2 + a7b3)
2

+ (a0b5 + a1b4 − a2b7 + a3b6 − a4b1 + a5b0 − a6b3 + a7b2)
2

+ (a0b6 + a1b7 + a2b4 − a3b5 − a4b2 + a5b3 + a6b0 − a7b1)
2

+ (a0b7 − a1b6 − a2b5 + a3b4 − a4b3 − a5b2 + a6b1 + a7b0)
2.

As we have seen, the eight-squares identity was first found by the Danish mathemati-
cian Ferdinand Degen in 1818, but there is no evidence that Degen constructed the
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associated multiplication on R
8. Arthur Cayley independently rediscovered that iden-

tity when he constructed the eight-dimensional normed algebra O in 1845, and both
he and Graves used the same method to produce their versions of O. Their method was
to mimic the constructions of C and H as two-dimensional vector spaces over R and
C, respectively, with multiplication described by a formula similar to multiplication of
complex numbers.

This method should bear the names of both Cayley and Graves. Unfortunately, Cay-
ley’s work was published first, and his method was later generalized by the American
mathematician L. E. Dickson in such papers as [10]. As a result, we call this method
the Cayley–Dickson construction.

Because O is a normed algebra, by previous reasoning we see that O is also a
division ring, and the table tells us that multiplication in O is noncommutative. It is
also nonassociative, for o1(o2o3) = o1o5 = o6, whereas (o1o2)o3 = o4o3 = −o6.

The construction of this multiplication table seems quite mysterious; however, if we
look more closely, we notice that

o1o2 = o4 = −o2o1,

o2o3 = o5 = −o3o2,

o3o4 = o6 = −o4o3,

o4o5 = o7 = −o5o4,

o5o6 = o1 = −o6o5,

o6o7 = o2 = −o7o6, and

o7o1 = o3 = −o1o7.

And now we see it. For distinct a, b ∈ {1, . . . , 7}, oaob = ±oc, where {a, b, c} is one
of the seven blocks Di in the mod 7 (7, 3, 1) block design. The sign is determined
by cyclically ordering the blocks as follows: (1, 2, 4), (2, 3, 5), (3, 4, 6), (4, 5, 7),
(5, 6, 1), (6, 7, 2), and (7, 1, 3). Then oaob = oc or oaob = −oc according as a does
or does not directly precede b in the unique ordered block containing a and b. Thus,
6 precedes 1 in the block (5, 6, 1), so o6o1 = o5; 6 does not directly precede 4 in
(3, 4, 6), so o6o4 = −o3. (We note that these designated orderings on the blocks of (7,
3, 1) arise as a direct result of Graves’ method of constructing O.) And that is why
“the multiplication rule for the octonion units” is another name of (7, 3, 1).

But there is more: the octonion algebra has the following structural feature:

1. The octonion algebra O contains seven complex subalgebras Cn = R〈on〉 and seven
quaternion subalgebras Hn = R〈ot , ou, ov〉, where {t, u, v} is a block in (7, 3, 1).

2. Each Hn contains three of the Ck and each Ck is contained in three of the Hn .
3. Each pair {Ck,Cm} is contained in a unique Hn together.

In short, O contains a (7, 3, 1) block design, with the seven quaternion subalgebras as
blocks and the seven complex subalgebras as points—another name of (7, 3, 1).

Well, can we do this again and get a 16-squares identity? We applied the Cayley–
Dickson construction to the complex numbers to get the quaternions, and the resulting
algebra was no longer commutative. We applied Cayley–Dickson to the quaternions to
get the octonions and there was a connection with (7, 3, 1), but the resulting algebra
was no longer associative. It is natural, therefore, to ask what happens when we apply
Cayley–Dickson to the octonions? The answer is that we can do this, and the result
is a 16-dimensional real algebra S called the sedenions. The multiplication on S uses
15 units {s1, . . . , s15} whose products come from the multiplication table described in
FIGURE 6.
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Figure 6 The sedenions

It happens that there are 15 eight-dimensional subalgebras of S, each isomorphic
to the octonions, and for each of these, the multiplication tables are generated by 15
isomorphic copies of (7, 3, 1). One obtains the overall multiplication by adjusting
the tables of the 15 octonions to achieve consistency of the products from one octo-
nion subalgebra to the next. There are also 35 four-dimensional subalgebras of S, each
isomorphic to the quaternions, and 15 two-dimensional subalgebras of S, each iso-
morphic to the complex numbers. And there is another design hidden within this set
of subalgebras. Namely, the 15 complex subalgebras (points) and the 35 quaternionic
subalgebras (blocks) form a (15, 35, 7, 3, 1) block design.

However, the string of normed algebras—that is, algebras with sums-of-squares
identities—stops with O. The reason is that S contains pairs of nonzero elements
whose product equals zero, and this prevents S from being a normed algebra. Indeed,
suppose there were a norm N on S. From the table we see that

(s5 + s9)(s7 − s11) = s5s7 + s9s7 − s5s11 − s9s11 = 0.

Thus, 0 = N (0) = N ((s5 + s9)(s7 − s11)) = N (s5 + s9)N (s7 − s11), so one of N (s5 +
s9), N (s7 − s11) must be 0. But this implies that either s5 = −s9 or s7 = s11, nei-
ther of which holds. Hence, the sedenions are not a normed algebra. Finally, the
Cayley–Dickson operation on S won’t produce a normed algebra, as the resulting 32-
dimensional algebra would contain 31 copies of S. Thus, there are no more real normed
algebras to be produced by the Cayley–Dickson construction, and so—according to L.
E. Dickson’s modification of Hurwitz’ original proof [10]—there are no real normed
algebras beyond the octonions.

And with that, our journey through more of the many names of (7, 3, 1) is done.
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Summary. The (7, 3, 1) block design is an object that shows up in many areas of mathematics. In fact, (7, 3, 1)

seems to appear again and again in unexpected places. A 2002 paper described (7, 3, 1)’s connection with such
areas as graph theory, number theory, topology, round-robin tournaments, and algebraic number fields.

In this paper, we show how (7, 3, 1) makes appearances in the areas of error-correcting codes, n-dimensional
finite projective geometries, difference sets, normed algebras, and the three-circle Venn diagram.

EZRA (BUD) BROWN (MR Author ID: 222489) grew up in New Orleans and has degrees from Rice University
and Louisiana State University. He has been at Virginia Tech since 1969, where he is currently Alumni Distin-
guished Professor of Mathematics. His research interests include number theory and combinatorics. In graduate
school, he first met the (7, 3, 1) block design, and the design continues to amaze him with its many and varied
mathematical connections. He is a frequent contributor to the MAA journals.

In his spare time, Bud enjoys singing (from opera to rock and roll), playing jazz piano, and solving word
puzzles. He and his wife, Jo, enjoy kayaking, bicycling, and birding. He occasionally bakes biscuits for his
students, and he once won a karaoke contest.

Coming soon in The College Mathematics Journal

Saint and Scoundrels and Two Theorems that are Really the Same by Ezra Brown
Circular Reasoning: Who First Proved that C/d is a Constant? by David

Richeson
Groupoid Cardinality and Egyptian Fractions by Julia Bergner and Christopher

Walker
Parametric Equations at the Circus: Trochoids and Poi Flowers by Eleanor

Farrington

http://math.ucr.edu/home/baez/octonions/oct.pdf
http://math.ucr.edu/home/baez/octonions/oct.pdf
http://www.ingentaconnect.com/content/external-references?article=0025-570x(2009)82L.3[aid=9321033]
http://www.ingentaconnect.com/content/external-references?article=0025-570x(2009)82L.3[aid=9321033]
http://www.ingentaconnect.com/content/external-references?article=0025-570x(2009)82L.3[aid=9321033]
http://www.ingentaconnect.com/content/external-references?article=0025-570x(2009)82L.3[aid=9321033]
http://math.ucr.edu/home/baez/octonions/oct.pdf
http://math.ucr.edu/home/baez/octonions/oct.pdf
http://math.ucr.edu/home/baez/octonions/oct.pdf

	Coming soon in The College Mathematics Journal

