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In the world of discrete mathematics, we encounter a bewildering variety of topics
with no apparent connection between them. But appearances are deceptive.

For example, combinatorics tells us about difference sets, block designs, and triple
systems. Geometry leads us to finite projective planes and Latin squares. Graph theory
introduces us to round–robin tournaments and map colorings, linear algebra gives us
(0, 1)–matrices, and quadratic residues are among the many pearls of number theory.
We meet the torus, that topological curiosity, while visiting the local doughnut shop or
tubing down a river. Finally, in these fields we encounter such names as Euler, Fano,
Fischer, Hadamard, Heawood, Kirkman, Singer and Steiner.

This is a story about a single object that connects all of these.
Commonly known as (7, 3, 1), it is all at once a difference set, a block design,

a Steiner triple system, a finite projective plane, a complete set of orthogonal Latin
squares, a doubly regular round-robin tournament, a skew-Hadamard matrix, and a
graph consisting of seven mutually adjacent hexagons drawn on the torus.

We are going to investigate these connections. Along the way, we’ll learn about all
of these topics and just how they are tied together in one object—namely, (7, 3, 1).
We’ll learn about what all of those people have to do with it. We’ll get to know this
object quite well!

So let’s find out about the many names of (7, 3, 1).

Combinatorial designs

The first place we meet (7, 3, 1) is in the set Q7 = {1, 2, 4}. These are the nonzero
perfect squares (mod 7), and their six nonzero differences, 1 − 2, 1 − 4, 2 − 4, 2 − 1,
4 − 1, and 4 − 2, yield each of the six distinct nonzero residues (mod 7) exactly once.
Notice that Q7 is a collection of 3 numbers mod 7, such that every nonzero integer
mod 7 can be represented in exactly one way as a difference (mod 7) of distinct ele-
ments of Q7. More generally, a (v, k, λ) difference set is a set S of k nonzero integers
mod v such that every nonzero integer n mod v can be represented as a difference of
elements of S in exactly λ different ways. Thus, Q7 is a (7, 3, 1) difference set; from
here on, we’ll usually call it (7, 3, 1).

Difference sets have been the objects of a great deal of attention over the years,
even before Singer constructed many families of them in his fundamental paper [18].
The first one students usually meet is (7, 3, 1) (or, rather, Q7). We notice that Q11 =
{1, 3, 4, 5, 9} is a (11, 5, 2) difference set, since each nonzero number mod 11 can be
written as a difference of elements of Q11 in exactly two ways (try it), and

Q47 = {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 17, 18, 21, 24, 25, 27, 28, 32, 34, 36, 37, 42}
is a (47, 23, 11) difference set (oh, go ahead and try it).

There’s a pattern here: Q11 and Q47 are the nonzero squares mod 11 and 47, re-
spectively, and this is no accident. It is not too tough to prove that the nonzero squares
mod p form a difference set, where p = 4n + 3 is a prime. All we need are a few
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facts about numbers, but first let us set some notation. Let p be a prime number; write
[1..n] to mean the set {1, . . . , n}. Write a ≡ b mod p to mean that a − b is an integral
multiple of p, and call a a square mod p when there exists an x with x2 ≡ a mod p.
Let Z×

p denote the nonzero integers mod p, let Q p denote the nonzero squares mod p,
and let GCD(n, k) denote the greatest common divisor of n and k.

Here are the facts, with some (hints) about how to verify them:

• Z×
p is a group under multiplication mod p. (The multiples of p form a subgroup of

the integers, and Z p is the resulting quotient group.)
• The squares in Z×

p are a subgroup of Z×
p . (The squares are closed under multiplica-

tion, and Z×
p is a finite group.)

• The product of a square and a nonsquare mod p is a nonsquare mod p, and the
product of two nonsquares mod p is a square mod p. (The squares and nonsquares
are the two cosets in Z×

p mod the subgroup of squares.)
• If p = 4n + 3, then −1 is not a square mod p. (The key here is Lagrange’s Theo-

rem.)
• If GCD(a, p) = 1, then multiplication by a permutes the elements of Z×

p . (If
GCD(a, p) = 1 and ax ≡ ay mod p, then x ≡ y mod p.)

THEOREM 1. Let p = 4n + 3 be a prime. Then the nonzero squares mod p form a
(4n + 3, 2n + 1, n) difference set.

Proof. For convenience, by a square (respectively, nonsquare) we will mean a
member of Q p (respectively, a member of Z×

p − Q p). Let x ∈ [1..p − 1]. Since
x �≡ 0 mod p, it follows that x has an inverse in Z×

p ; denote this inverse by x−1. (For
example, if p = 19, then 7−1 = 11 because 7 · 11 = 77 ≡ 1 mod 19.)

Now let R be the set of pairs of squares, that is, let R := {(a, b) ∈ [1..p − 1]: a and
b are squares, a �= b}. We say that the pair (a, b) represents x if a − b ≡ x(mod p);
write N(x) to mean the number of pairs in R that represent x . Define the map σx on
ordered pairs mod p by

σx(a, b) =
{

(x−1a, x−1b), if x is a square;
(−x−1b,−x−1a), if x is a nonsquare.

For example, both 5 and 6 are squares mod 19 and 7 is a nonsquare mod 19; if x = 7,
then we have

σ7(5, 6) = (−7−1 · 6,−7−1 · 5) = (−11 · 6,−11 · 5) = (10, 2),

all arithmetic being done mod 19.
The first thing to observe is that if (a, b) represents x , then σx(a, b) represents 1.

For, if a − b ≡ x(mod p), then x−1a − x−1b = x−1(a − b) ≡ x−1x ≡ 1(mod p).
Also, −x−1b − (−x−1a) ≡ x−1(a − b) ≡ 1(mod p). Now if x is a square, then x−1a
and x−1b are both squares, and so (x−1a, x−1b) represents 1. If x is a nonsquare,
then−x−1 is a square, so −x−1b and −x−1a are squares, and (−x−1b,−x−1a) repre-
sents 1. Thus, every representation of x leads to a representation of 1.

On the other hand, σx−1 is an inverse map of σx , so that if (c, d) represents 1, then
σx−1(c, d) represents x . Thus, for all x , every representation of 1 leads to a represen-
tation of x .

We conclude that N(x) = N(1) for all x ∈ [1..p − 1], and so every x ∈ [1..p − 1]
has the same number of representations. This lets us count R: it contains N(1) · (p −
1) = N(1) · (4n + 2) pairs.
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Finally, since multiplication by −1 permutes Z×
p and exchanges the squares and

nonsquares, there are 2n + 1 = (p − 1)/2 squares mod p; hence, R contains (2n +
1)2n = p−1

2 (
p−1

2 − 1) pairs (there are no pairs (a, a)). Equating these two values for
the size of R, we see that N(1) = (2n + 1)2n/(4n + 2) = n. Hence, every nonzero
integer mod p = 4n + 3 is represented n times by a difference of nonzero squares
mod p—that is, the nonzero squares form a (4n + 3, 2n + 1, n) difference set.

There are many other classes of difference sets. For example, B13 = {0, 1, 3, 9} is
a difference set with v = 13, and B37 = {1, 7, 9, 10, 12, 16, 26, 33, 34} is a difference
set with v = 37. (As an exercise, verify these statements and in so doing, determine k
and λ for each. Question: Except for 0, B13 looks like the powers of 3 mod 13; is there
a similar pattern for B37?)

As we have seen, {1, 2, 4} is a (7, 3, 1) difference set. But so is any additive shift
{1 + n, 2 + n, 4 + n} (mod 7) of {1, 2, 4}. Consider all seven of these sets together;
writing abc for the set {a, b, c}, we have

124, 235, 346, 450, 561, 602, and 013. (1)

This is well illustrated by rotating the triangle in FIGURE 1 counterclockwise within
its circumscribing circle:
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1
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3

4

5
6

Figure 1 The (7, 3, 1) difference set

Notice that for these 7 sets (or blocks), whose elements are taken from a 7-element
set, namely [0..6], each element appears in 3 blocks, each block has 3 elements, and
each pair of elements appears together in exactly one block. The difference sets in this
section give rise to some special classes of what are called block designs, and some
more names for (7, 3, 1). So let’s talk about block designs.

A balanced incomplete block design, or BIBD with parameters b, v, r , k, and λ is an
arrangement of b blocks, taken from a set of v objects (known for historical reasons as
varieties), such that every variety appears in exactly r blocks, every block contains ex-
actly k varieties, and every pair of varieties appears together in exactly λ blocks. Such
an arrangement is also called a (b, v, r, k, λ) design. Thus, (7, 3, 1) is a (7, 7, 3, 3, 1)

design. Block designs appeared in connection with the eminent British statistician
R. A. Fisher’s work on the statistical design of agricultural experiments ([7], [8]),
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and the first comprehensive mathematical study of the field was due to R. C. Bose [2].
Now, the five parameters are by no means independent, for it turns out that bk = vr
and r(k − 1) = λ(v − 1) (exercise: prove it). Hence, a (b, v, r, k, λ) design is really a
(λv(v − 1)/(k(k − 1)), v, λ(v − 1)/(k − 1), k, λ) design. If b = v (and hence r = k),
the design is said to be symmetric; thus, (7, 3, 1) is a (7, 3, 1) symmetric design.

The familiar 3 × 3 magic square (see FIGURE 2, on the right), in which the rows,
columns, and main diagonals all add up to 15, is the source of another block design.

1 2 3
4 5 6
7 8 9

4 9 2
3 5 7
8 1 6

Figure 2 Generating a design from a 3 × 3 magic square

Here’s how it works: first, arrange the integers from 1 to 9 in that order in a 3 × 3
grid—see FIGURE 2, on the left. Allowing diagonals to wrap when they reach the edge
of the grid (as if there were another copy of the grid next door) yields twelve 3-element
sets: three rows, three columns, and six diagonals. Thus, we have 9 objects arranged
in 12 blocks with each object in four blocks, each block containing three objects and
each pair of objects in one block–in short, a (12, 9, 4, 3, 1) design. Here are the blocks:

123, 456, 789, 147, 258, 369, 168, 249, 357, 159, 267, 348.

Now we have already seen that the seven additive shifts (mod 7) of our (7, 3, 1)

difference set form the blocks of a (7, 3, 1) symmetric design. In addition, the eleven
additive shifts (mod 11) of our (11, 5, 2) difference are the blocks of a symmetric
(11, 5, 2) design (see for yourself). It turns out that this is the case in general, and we
can prove it.

THEOREM 2. Let D = {x1, x2, . . . , xk} be a (v, k, λ) difference set. Let Bi :=
{x1 + i, . . . , xk + i} where addition is mod v. Then the v sets B0, . . . , Bv−1 are the
blocks of a (v, k, λ) symmetric design.

Proof. By definition, there are v blocks and v varieties. By construction, there are
k varieties in each block. In addition, since y = x j + (y − x j) for 1 ≤ j ≤ k, each
y ∈ [0..v − 1] appears in blocks By−x1, . . . , By−xk . Hence each variety appears in k
blocks. Finally, let y, z ∈ [0..v − 1]; then y and z are in Bt if and only if t = y − xi =
z − x j for distinct i, j ∈ [1..k]. This happens if and only if y − z = xi − x j ; since D
is a (v, k, λ) difference set, this happens for exactly λ pairs (xi , x j ). Thus, there are
exactly λ values of t for which t = y − xi = z − x j for distinct i, j ∈ [1..k], and for
these values, y and z appear together in a block.

You may wonder whether the converse of this theorem is also true—that is, does ev-
ery (v, k, λ) symmetric design give rise to a (v, k, λ) difference set? Interesting ques-
tion: we’ll come back to it later.

Finally, a class of block designs that has attracted considerable interest over the
years is the one for which k = 3 and λ = 1. Such a design is called a Steiner triple
system on v varieties, or STS(v) for short. Since (7, 3, 1) certainly has k = 3, it is also
an STS—in fact, the smallest nontrivial Steiner triple system. Now if an STS(v) exists,
then v ≡ 1 or 3 (mod 6), which follows from the fact that a (b, v, r, 3, 1) design is
really a (λv(v − 1)/(3 · 2), v, (v − 1)/2, 3, 1) design. (You can work this one out!)

Steiner posed the problem of showing that triple systems exist for all such v ≥ 3,
but he did not solve it. In fact, the problem had been solved more than a decade earlier
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by the Reverend Thomas A. Kirkman [11]—see Doyen’s survey article [5] for a great
deal more about these triple systems. (Perhaps they should be renamed in honor of
Kirkman, about whom more later.)

Steiner triple systems turn up in some unlikely places, such as subfield diagrams in
algebraic number theory—but that’s another story.

Since the 3 × 3 magic square is a (12, 9, 4, 3, 1) design, it is also an STS(9). But
it is more than that: the words magic square suggest some connection with geometry.
Curiously enough, it turns out that (7, 3, 1) has geometric connections as well. So, let’s
talk about finite geometries.

Finite geometries

The 3 × 3 magic square we met in the previous section (FIGURE 2 on the left) is an
example of a finite geometry. For, if by a line, we mean a set of points—not necessarily
connected, straight, or infinite—then the 3 × 3 magic square obeys some fairly simple
rules:

(1) Each pair of points lies on a unique line.

(2) Each pair of lines intersects in at most one point.

(3) There exist four points with no three on a line.

The first two rules are reminiscent of Euclidean plane geometry, and the third en-
sures that the object at hand is nontrivial. Arrangements that satisfy these three rules
are called finite affine planes, and the number of points on each line is called the order
of the plane. Thus, the 3 × 3 magic square gives rise to a finite affine plane (FAP) of
order 3.

We cannot draw a picture of this in the plane without two pairs of lines crossing
unnecessarily, but we can draw it on a torus—the surface of a doughnut—by wrapping
the diagonals. See FIGURE 3, where solid lines represent the lines of this finite plane,
and dotted lines indicate wrapping on the torus.

Figure 3 The finite affine plane of order 3
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Here’s a question: What is the smallest possible finite plane? We need at least four
points with no three on a line; if we call the points A, B, C , and D, then the six lines
AB, AC , AD, BC , B D, and C D form a perfectly good finite plane. Now in our affine
planes, some of the lines intersect and some of them do not.

But what if we insisted that the plane be projective, that is, that every pair of lines
have a unique point in common? What is the smallest possible finite projective plane
(FPP)?

Let’s add some points to the plane above. Clearly, AB and C D must meet in some
point X , AC and B D meet in some point Y , and AD and BC meet in some point Z .
If X = Y , then A, B, and X are on a line, and B, D, and X (= Y ) are on a line. But
B and X determine a unique line, so that A, B, and D are on a line—contrary to
assumption. Hence, X �= Y . For the same reason, X �= Z and Y �= Z .

We know that an FPP contains at least seven points, and so far, it contains the six
lines AB X , C DX , ACY , B DY , ADZ , and BC Z . There must be a line through X
and Y . To keep things small, we add the line XY Z (represented by the circle on the
left in FIGURE 4); then each pair of lines intersects in a unique point. The resulting
seven-point FPP is known as the Fano plane; here it is on the left in FIGURE 4:

A

BC

D

Z

XY

0

12

5

4

36

Figure 4 The Fano plane

Notice that the Fano plane has seven points and seven lines; each line contains three
points, each point is on three lines and each pair of points is on exactly one line. Sound
suspiciously familiar? It should, for if we replace A, B, C , D, X , Y , and Z with 0, 1,
2, 5, 3, 6, and 4, respectively, the lines look like this:

124, 235, 346, 450, 561, 602, and 013,

and (7, 3, 1) has reappeared—on the right in FIGURE 4—as the Fano plane. This con-
figuration was named for G. Fano, who described it in 1892 [6]. In another twist of
fate, however, he was anticipated by Woolhouse in 1844 [20] and, yes, by Kirkman in
1850 [12].

More generally, a finite projective plane of order n, abbreviated FPP(n), is an FPP
containing n2 + n + 1 points and n2 + n + 1 lines, such that every point is on n + 1
lines, every line contains n + 1 points, and every pair of points is on a unique line.
Thus, an FPP(n) is an (n2 + n + 1, n + 1, 1) symmetric design; conversely, every
(v, k, 1) design is a finite projective plane of order n = k − 1 with v = n2 + n + 1.

One of the major unsolved problems in combinatorics is determining the values of
n for which an FPP(n) exists. Their existence is equivalent to the existence of certain
families of designs called Latin squares, designs that got mixed up with one of the
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most famous false conjectures in the history of mathematics. So let’s talk briefly about
them now.

A Latin square of order n is an n × n array with entries from the set [1..n] such
that each element of [1..n] appears in each row and each column of the array exactly
once. Two Latin squares A = [ai j ] and B = [bi j ] of order n are said to be orthogonal
if the n2 ordered pairs (ai j , bi j ) are distinct. (A good reference for the general subject
of Latin squares is a text by Dénes and Keedwell [4].) Here are three Latin squares of
order 4; you can check that (a) they are Latin squares and (b) they are orthogonal in
pairs:




1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1







1 3 4 2
2 4 3 1
3 1 2 4
4 2 1 3







1 4 2 3
2 3 1 4
3 2 4 1
4 1 3 2




It turns out that the existence of this trio of pairwise orthogonal Latin squares of
size 4 is equivalent to the existence of a finite projective plane of order 4; in fact, this
is true in general:

THEOREM 3. Let n be an integer greater than 1. Then there exists a finite projective
plane of order n if and only if there exists a set of n − 1 Latin squares of size n that
are pairwise orthogonal.

An outline of the proof is given in a text by Roberts [16]—who also shows that if n is
a prime power, then there exists a set of n − 1 Latin squares of size n that are pairwise
orthogonal. Hence, FPP’s exist for orders 2, 3, 4, 5, 7, 8, and 9. In particular, (7, 3, 1)

is a FPP(2) and so there must be a corresponding set of n − 1 pairwise orthogonal
Latin squares of size n = 2. And what is that set? You can figure it out, or I’ll tell you
later.

So 2, 3, 4, 5, 7, 8, and 9 are all just fine. But what about order 6?
The great Leonhard Euler wondered about 6, too. That prodigious mathematical

mind from the eighteenth century made a study of Latin squares, showed how to con-
struct a pair of size n if n is not of the form 4k + 2, and saw immediately that it is
impossible to construct a pair of orthogonal Latin squares of size 2 (try it). He then
attempted to construct a pair of size 6; failing to do so, he made the following bold
conjecture:

EULER’S CONJECTURE (1782). For each nonnegative integer k, there does not
exist a pair of orthogonal Latin squares of size 4k + 2.

For over 100 years, nothing happened. Then, in 1900, G. Tarry wrote two pa-
pers [19] proving that Euler was right about 6. But as Bose, Shrikhande, and Parker [3]
showed in 1960, he was spectacularly wrong for all other values of 4k + 2 greater
than 6:

THEOREM 4. There exists a pair of orthogonal Latin squares of order n for all
n > 6.

It is now known (the details are in a nice survey by Lam [13]) that an FPP(10) does
not exist; the smallest unknown case is for n = 12. So we see that (7, 3, 1) is connected
with one of the rare instances in which Euler was almost totally wrong!

It happens that (7, 3, 1) has connections, not only with combinatorics, but also with
that other major branch of discrete mathematics: graph theory. So let’s talk about graph
theory.
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Graph theory connections

A graph G is a set of points (or vertices) V (G) together with a set of lines (or edges)
E(G) joining some (perhaps all, perhaps none) of the points. We say that the vertices
a and b are adjacent if the edge ab is in the graph. A graph is complete if there is
an edge between every pair of points. Graphs can be directed, that is, each edge is
assigned a direction: we write (a, b) if there is an edge directed from a to b. Graphs
model an amazing number of problems, from simple word puzzles (the Wolf-Goat-
Cabbage problem) and games (Tic–Tac–Toe and chess) to such complex systems as
the continental power grid and the internet. Directed graphs can model the play of
teams in a league, and that is where (7, 3, 1) comes in.

In many sports leagues, each team plays every other team exactly once, and there
are no ties. We can model this scenario with a graph as follows. The teams are the
vertices, and for each pair of teams u and v, include the edge (u, v) directed from
u to v if u beats v, and include the edge (v, u) if v beats u. We call such a graph
a (round–robin) tournament; thus, a tournament is a complete graph with a direc-
tion assigned to each edge. (A good reference on tournaments is Moon’s book [14].)
The score of a vertex u is the number of edges (u, v) in the tournament. A tour-
nament is called transitive if every team has a different score, and regular if every
team has the same score. Naturally, the higher the score, the higher the team’s rank.
Thus, in a transitive tournament, the scores determine the ranking unambiguously, and
in a regular tournament, the scores don’t give any information. (A transitive tourna-
ment is so named because it has the property that if u beats v and v beats w, then u
beats w.)

Now, the high schools of Auburn, Blacksburg, Christiansburg, EastMont, Giles,
Newman, and Radford make up the Riverside League. In most years, one or two
schools dominate, but last year the results of the league’s round-robin play were quite
different:

Team Victories Over

Auburn Blacksburg, Giles, Radford
Blacksburg Christiansburg, Giles, Newman
Christiansburg Auburn, Newman, Radford
EastMont Auburn, Blacksburg, Christiansburg
Giles Christiansburg, EastMont, Radford
Newman Auburn, Giles, EastMont
Radford Blacksburg, EastMont, Newman

Each team had the same score of 3, so this was a regular tournament. But the league
was even more balanced than that: each pair of teams was victorious over exactly one
common opponent. (Such a tournament is called doubly regular.) Let us look at this a
little more carefully, assigning numbers to the teams as follows: A = 3, B = 0, C = 1,
E = 6, G = 4, N = 2, and R = 5. If we now rewrite the results in numerical order,
the table of victories begins to look somewhat familiar:
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Team Victories Over

0 1, 2, 4
1 2, 3, 5
2 3, 4, 6
3 4, 5, 0
4 5, 6, 1
5 6, 0, 2
6 0, 1, 3

Our old friend (7, 3, 1) has reappeared: the sets of teams defeated by each member
of the league are the blocks of a (7, 3, 1) symmetric design, and the teams defeated by
Team 0 form a (7, 3, 1) difference set.

Of course, this is no accident—and we can prove it.

THEOREM 5. Let p = 4n + 3 be a prime. Define the tournament T by V (T ) =
[0..p − 1] and E(T ) = {(x, x + r): r is a square mod p}. Then T is a doubly regular
tournament with 4n + 3 vertices, in which every vertex has a score of 2n + 1 and every
pair of vertices defeats n common opponents.

Proof. Since there are (p − 1)/2 = 2n + 1 squares mod p, each vertex has a score
of 2n + 1. Now let x, y be distinct vertices. Then (x, z) and (y, z) are both edges of T
if and only if there exist distinct squares r and s such that z − x = r and z − y = s.
Hence, the number of such z is equal to the number of pairs of distinct squares r, s such
that r − s = x − y. But the squares form a (4n + 3, 2n + 1, n) difference set, and so
the nonzero number x − y can be written as a difference r − s in exactly n distinct
ways. Hence, there are n vertices z such that both (x, z) and (y, z) are edges of T , that
is, T is doubly regular.

In short, (7, 3, 1) is a doubly regular tournament.
Now, the adjacency matrix of a tournament T on v vertices x1, . . . , xv is a v × v

matrix A = [Ai j ] such that Ai j = 1 if there is an edge from xi to x j , and Ai j = 0
otherwise. Thus, the (7, 3, 1) doubly regular tournament has the following adjacency
matrix A:

A =




0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1
1 1 0 1 0 0 0




,

H =




1 1 1 1 1 1 1 1
1 −1 1 1 −1 1 −1 −1
1 −1 −1 1 1 −1 1 −1
1 −1 −1 −1 1 1 −1 1
1 1 −1 −1 −1 1 1 −1
1 −1 1 −1 −1 −1 1 1
1 1 −1 1 −1 −1 −1 1
1 1 1 −1 1 −1 −1 −1






92 MATHEMATICS MAGAZINE

If we replace all the 0s in A with −1s and border the resulting matrix top and left
with a row and column of 1s, we obtain the above matrix H . If we multiply H by its
transpose H T , it turns out that H H T = 8I , where I is the 8 × 8 identity matrix. An
n × n matrix H of 0s and 1s for which H H T = nI is called a Hadamard matrix of
order n—not a property enjoyed by very many (−1, 1)-matrices. It turns out that the
adjacency matrix of every doubly regular tournament can be transformed into a skew–
Hadamard matrix (one for which H + H T = 2I ), and every skew–Hadamard matrix
gives rise to a doubly regular tournament [15].

Hadamard matrices are very useful in constructing error–correcting codes and other
combinatorial designs. You can show that if H is a Hadamard matrix of order n > 1,
then either n = 2 or n ≡ 0 mod 4. Whether the converse is true is an unsolved problem.

More graph theory connections

The final two (7, 3, 1) connections turned up in my course in Galois theory, that beau-
tiful subject in which Évariste Galois (1811–1832) related the roots of polynomials to
number fields and finite groups. One basic idea is that if p(x) is a polynomial with
rational coefficients, then there is a smallest subfield L(p) of the complex numbers C

containing both the rationals Q and all the roots of p(x). This is the splitting field of
p over Q. If a, b, . . . ∈ C and if K is a subfield of C, write K (a, b, . . .) to mean the
smallest subfield of C containing K and a, b, . . . .

For the polynomial p(x) = (x2 − 2)(x2 − 3)(x2 − 5), it turns out that L(p) =
Q(

√
2,

√
3,

√
5). Now this field contains, besides itself and Q, fourteen other sub-

fields which—to my great delight—form a (7, 3, 1) design. For this particular incar-
nation of (7, 3, 1), the varieties are the seven quadratic subfields Q(

√
d), where d ∈

{2, 3, 5, 6, 10, 15, 30}, and the blocks are the seven biquadratic subfields Q(
√

d1,
√

d2)

(where d1d2 is not a perfect square). See for yourself:

Contains Q(
√

d)

Biquadratic Field for these d

Q(
√

2,
√

3) 2, 3, 6
Q(

√
3,

√
5) 3, 5, 15

Q(
√

5,
√

6) 5, 6, 30
Q(

√
6,

√
15) 6, 15, 10

Q(
√

15,
√

30) 15, 30, 2
Q(

√
30,

√
10) 30, 10, 3

Q(
√

10,
√

2) 10, 2, 5

In short, (7, 3, 1) appears in the subfields of the splitting field of a polynomial.

But there’s one more connection. If we join two subfields of L by a line if one
contains the other and there is no intermediate field, we get the lattice of subfields
of L . For our field L(p), if we do this and ignore L(p) and Q, the left side of FIGURE 5
shows what we get.

This is the (3, 6) cage: every vertex has degree 3, the shortest cycle has length 6,
and no graph with fewer vertices has these properties. The (3, 6) cage cannot be drawn
in the plane without edges crossing. It can, however, be drawn on the torus, and the
right side of FIGURE 5 shows what that looks like.
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Figure 5 The Heawood graph

This toroidal embedding is what gives the graph its common name: the Heawood
graph. For, in 1890, Percy J. Heawood proved that every graph that can be drawn on
the torus without edges crossing requires at most seven colors to color its regions with
neighboring regions having different colors. The Heawood graph was his example
of a toroidal graph requiring seven colors, for it consists of seven mutually adjacent
hexagons.

With that, we see how (7, 3, 1) has a connection with Heawood’s 7–Color Theorem
for toroidal graphs, and with the Heawood graph—just one more of the many names
of (7, 3, 1).

Questions

Does (7, 3, 1) have any other names? Yes, it does. There is a combinatorial design
called a (3, 4, 7, 2) configuration of size 14; it consists of fourteen 3-element subsets
of [1..7], no more than two of which lie in a common 4-element subset of [1..7].
The incidence graph of this design (two 3-sets are joined if and only if they lie in a
common 4-set) is the Heawood graph. To find more names, Richard Guy’s paper [9] is
an excellent place to start.

Where can I find out more about difference sets? One of the best places to begin
is with H. J. Ryser’s beautifully written book [17], which will take you a fair way into
the subject. Two others are the more recent book by Beth, Jungnickel, and Lenz [1] and
Marshall Hall’s classic [10], both of which will take you as far as you want to go into
the subject. All three of these also give good introductions to the other combinatorial
designs talked about here.

Do all (v, k, λ) symmetric designs give rise to (v, k, λ) difference sets? In fact,
they don’t—but the smallest example is (v, k, λ) = (25, 9, 3). Exercise: Find it.

How did Tarry prove that there does not exist a pair of orthogonal Latin squares
of size 6? Brute force. He used symmetry arguments to reduce the number of cases
to about six thousand—then eliminated them, one by one. (Don’t try this at home.)
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What is the complete set of orthogonal Latin squares that corresponds to (7, 3, 1)?
We know that (7, 3, 1) is also an FPP of order n = 2, so the corresponding set of
n − 1 = 1 orthogonal Latin square(s) of size 2 is just

A =
{[

1 2
2 1

]}
.

Did the Reverend Thomas Kirkman ever get credit for anything? Yes, he did. In
1850, he posed what is known as Kirkman’s Schoolgirls Problem. Fifteen schoolgirls
take daily walks, arranged in five rows of three each; arrange the girls so that for
seven consecutive days, no girl is in a row with the same companion more than once.
The solution to this problem is a particularly interesting Steiner triple system on 15
varieties, with parameters (35, 15, 7, 3, 1)—but that’s another story.

Speaking of Steiner triple systems: are there Steiner quadruple systems? In fact,
the idea generalizes to a Steiner system S(k, m, n), which is a collection C of m-
element subsets of an n−element set B, such that every k-element subset of B is
contained in exactly one of the sets in C . An S(2, 3, n) is a Steiner triple system, and
an S(2, n + 1, n2 + n + 1) is a finite projective plane. Not too many of these are known
with k > 3. One of these is known as S(5, 8, 24); it has many extraordinary properties,
as well as connections with—ahh, but that’s another story!
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