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—–To Annette L. Brown: Pianist, Mother, Grandmother, and Great-Grandmother
extraordinaire.

After a workshop for new teaching assistants on innovations in teaching, a new soci-
ology graduate student wandered into my office and asked the question, “Tell me . . .
how do you make math exciting for students?” By chance, I just happened to have on
my computer screen a picture that exhibits some of the symmetries of one of the most
intriguing objects in mathematics: the (11, 5, 2) biplane.

Figure 1 A fascinating picture

I told him of my chagrin on seeing a picture similar to FIGURE 1 (but much pret-
tier, and in color) on the cover of a book [6] on combinatorial designs. The picture
was lovely, and the reason for my strong feelings was purely selfish: I was trying to
construct such a picture, and somebody else thought of it first.

But it wasn’t labeled.
It was fun finding a labeling compatible with the symmetries of the biplane. To

find generators for the symmetry group of the biplane—which turns out to have a
name, PSL(2, 11)—was more fun. The best part, however, was learning about the exact
connection between the biplane and six pairs of mathematical objects.

We find these six mathematical pairs just outside the boundaries of many tra-
ditional courses, where a bit of exploration can lead the curious to all manner of
interesting mathematics. A good course in coding theory will mention two pairs of
perfect error-correcting codes, namely the Golay codes {G11, G12} and {G23, G24},
but sometimes only in passing. Look past the usual topics in combinatorics into
the world of combinatorial designs and you will meet two pairs of Steiner systems,
namely {S(4, 5, 11), S(5, 6, 12)} and {S(4, 7, 23), S(5, 8, 24)}. Beyond the first course
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in group theory lie two pairs of finite simple groups, namely the Mathieu groups
{M11, M12} and {M23, M24}. It was quite a revelation to learn just how these codes,
designs, and groups connect with the biplane and with each other.

I told the student all about this, including the reason that the biplane is called a
biplane, and he loved it; maybe you will, too.

Difference sets, block designs, and biplanes

The (11, 5, 2) biplane is a collection of the following eleven 5-element subsets of
{1, 2, 3, 4, 5, 6, 7, 8, 9, X, 0} (we think of X as 10, and we have written abcde for the
set {a, b, c, d, e}:

B1 = 13459 B2 = 2456X B3 = 35670 B4 = 46781
B5 = 57892 B6 = 689X3 B7 = 79X04 B8 = 8X015
B9 = 90126 BX = X1237 B0 = 02348

The (11, 5, 2) biplane

This is an example of a block design, which is an arrangement of v objects called
varieties into b sets called blocks. Each variety appears in exactly r blocks, each block
contains exactly k varieties, and each pair of varieties appears together in exactly λ

blocks. From the above, we see that b = v = 11 and k = 5. It is a bit less obvious that
r = 5 and still less obvious that λ = 2: for example, 1 appears in blocks B1, B4, B8,
B9, and BX , and 7 and 0 appear together in blocks B3 and B7.

Block designs first appeared in the 1930s in connection with the design of certain
agricultural experiments, although they are implicit in the work of Woolhouse [13] and
Kirkman [7] as early as 1844 and 1847, respectively. (These papers are hard to find;
a more recent reference is Richard Guy’s excellent survey article [4].) The parameters
b, v, r , k, and λ are not independent: it happens that bk = vr and r(k − 1) = λ(v − 1).
Thus, if b = v, then r = k and we speak of a (v, k, λ) symmetric design. Hence, the
(11, 5, 2) biplane is an (11, 5, 2) symmetric design, which explains the numerical part
of its name.

Symmetric designs also have the feature that two distinct blocks intersect in exactly
λ varieties; for a proof, see Hall [5, Section 10.2].

A closer look reveals that we may construct the entire (11, 5, 2) biplane from B1 by
adding a particular integer mod 11 to each element; for example, if we add 5 to each
element of B1 and reduce the results mod 11, we find that

{1 + 5, 3 + 5, 4 + 5, 5 + 5, 9 + 5} ≡ {6, 8, 9, X, 3} ≡ B6 mod 11.

Now, B1 is an example of a difference set; that is, every nonzero integer mod 11 appears
exactly twice among the 20 differences i − j mod 11 for i and j distinct elements of
B1 (in the following, a ≡ b is short for a ≡ b mod 11):

1 ≡ 4 − 3 ≡ 5 − 4 2 ≡ 3 − 1 ≡ 5 − 3 3 ≡ 4 − 1 ≡ 1 − 9
4 ≡ 5 − 1 ≡ 9 − 5 5 ≡ 9 − 4 ≡ 3 − 9 6 ≡ 9 − 3 ≡ 4 − 9
7 ≡ 1 − 5 ≡ 5 − 9 8 ≡ 9 − 1 ≡ 1 − 4 9 ≡ 1 − 3 ≡ 3 − 5

10 ≡ 3 − 4 ≡ 4 − 5.

More generally, a (v, k, λ) difference set is a k-element subset S of V = {0, 1, . . . ,

v − 1} such that every nonzero integer mod v can be written in exactly λ ways as a
difference of elements of S. So, the set {1, 3, 4, 5, 9} of nonzero perfect squares mod 11
is an (11, 5, 2) difference set.



VOL. 77, NO. 2, APRIL 2004 89

In fact, for every prime p ≡ 3 mod 4, the set Q p of nonzero perfect squares mod p
is a (p, (p − 1)/2, (p − 3)/4) difference set (a proof appears in [2]). For example, you
can check that Q23 = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18} is a (23, 11, 5) difference set.
(Exercise: Find the five different ways to write 7 as a difference of elements of Q23.)

What is interesting here is that every difference set gives rise to a symmetric design
in the following way:

THEOREM 1. Let D = {x1, x2, . . . , xk} be a (v, k, λ) difference set. Let Di :=
{x1 + i, . . . , xk + i} where addition is mod v. Then the v sets D0, . . . , Dv−1 are the
blocks of a (v, k, λ) symmetric design.

(For a proof, see Hall [5, Theorem 11.1.1].) Thus, the (11, 5, 2) difference set gives
rise to the (11, 5, 2) symmetric design.

Symmetric designs with λ = 1 have the property that every pair of varieties deter-
mines a unique block and every pair of blocks intersects in a unique variety. Read-
ing line for block and point for variety gives us the first two axioms of projective
geometry; for this reason, (v, k, 1) designs are called finite projective planes, or planes
for short. Now for a (v, k, 2) design, every pair of varieties determines exactly two
blocks and every pair of blocks intersects in exactly two varieties. For this reason,
the blocks and varieties of a (v, k, 2) design are called lines and points, respectively,
and the designs themselves are called biplanes—and that explains the second part of
the (11, 5, 2) biplane’s name.

As stated earlier, part of my fascination with the (11, 5, 2) biplane lies both in its
symmetries and in the challenge of drawing a picture that will reveal some of its sym-
metries. By a symmetry of a design, we mean a permutation of the varieties that si-
multaneously permutes the blocks. For any design, the set of all such permutations is
a group called the automorphism group of the design. So, first we’ll talk about permu-
tations and automorphism groups, and then we’ll draw another picture.

The automorphism group of the biplane

A permutation on a set Y is a mapping of the set to itself that is one-to-one and onto.
An n-cycle is an expression of the form (a1 a2 . . . an), where the ai are distinct. The
cycle notation is a standard way to describe permutations on finite sets; here is an
example to show how it works. If we write f = (1 3 6)(4 5), it means that f (1) = 3,
f (3) = 6, f (6) = 1, f (4) = 5, f (5) = 4, and f (x) = x for all x �∈ {1, 3, 4, 5, 6};
in this notation, 1-cycles are frequently omitted. In this example, we say that f is a
product of two disjoint cycles. Similarly, g = (1 2) means that g switches 1 and 2
and leaves everything else fixed. Since permutations are functions, they compose from
right to left. If we denote composition by ◦, then f ◦ g = (1 3 6)(4 5)(1 2). This
maps 1 to 2, 2 to 3 (since g(2) = 1 and f (1) = 3), 3 to 6, 4 to 5, 5 to 4, and 6 to 1. We
see that f ◦ g = (1 2 3 6)(4 5) as a product of disjoint cycles.

Let D be a block design. An automorphism of D is a permutation f of the
set V of varieties that is simultaneously a permutation of the set B of blocks.
(We say that f induces a permutation on B.) For example, the permutation τ =
(1 2 3 4 5 6 7 8 9 X 0) of the set V = {1, 2, 3, 4, 5, 6, 7, 8, 9, X, 0} of varieties
induces the permutation τ ′ = (B1 B2 B3 B4 B5 B6 B7 B8 B9 BX B0) of the cor-
responding set of blocks. The set of all such automorphisms is a group under compo-
sition, called the automorphism group Aut (D) of the design D.

It turns out that there are 660 automorphisms of the (11, 5, 2) biplane. How do we
find them all?
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In some sense, the automorphism τ is an obvious choice, for the blocks of
the biplane were created by repeatedly adding 1 (mod 11) to each member of
the difference set B1 = {1, 3, 4, 5, 9}. It is not so obvious that the permutation
µ = (1 3 9 5 4)(2 6 7 X 8)(0) also induces a permutation of the blocks—but
it does, namely µ′ = (B2 B4 BX B6 B5)(B0 B9 B3 B7 B8)(B1).

Clearly, we need a systematic way to find the rest of the automorphisms. We make
a four-fold application of that useful and elegant result, the Orbit-Stabilizer Theorem.
But first, we need a couple of definitions. Suppose that G is a group of permutations
on the set S, let g ∈ G, and let T ⊆ S. Then g(T ) is the set of images g(t) for all
t ∈ T ; an element g ∈ G leaves T setwise fixed if g(T ) = T . The stabilizer of T in G,
StabG(T ), is the set of all permutations g in G that leave T setwise fixed. The orbit of
T , OrbG(T ), is the set of all Y ⊆ S for which Y = g(T ) for some permutation g ∈ G.
(If T = {t}, we customarily write StabG(t) and OrbG(t), ignoring the braces.) Let |A|
be the number of elements in the set A. Here is the theorem, which follows from the
definition of a permutation and from Lagrange’s Theorem:

THEOREM 2. (THE ORBIT-STABILIZER THEOREM) Let G be a finite group of
permutations of a set S and let T ⊆ S. Then (a) StabG(T ) is a subgroup of G, and
(b) |G| = |StabG(T )| · |OrbG(T )|.

We now define the groups G, H , K , and L as follows:

G = Aut ((11, 5, 2));
H = StabG(B1) = {automorphisms in G that leave B1 setwise fixed};

(1)
K = StabH (1) = {automorphisms in H that leave 1 fixed};
L = StabK (3) = {automorphisms in K that leave 3 fixed}.

By the Orbit-Stabilizer Theorem, L , K , and H are subgroups of K , H , and G, respec-
tively, and since 4 ∈ B1, we see that

|G| = |H | · |OrbG(B1)| = |K | · |OrbH (1)| · |OrbG(B1)|
= |L| · |OrbK (3)| · |OrbH (1)| · |OrbG(B1)| (2)

= |StabL(4)| · |OrbL(4)| · |OrbK (3)| · |OrbH (1)| · |OrbG(B1)|.

If we can show that |StabL(4)| = 1, |OrbL(4)| = 3, |OrbK (3)| = 4, |OrbH (1)| = 5,
and |OrbG(B1)| = 11, it will follow that |G| = 1 · 3 · 4 · 5 · 11 = 660. Let’s call it a
theorem:

THEOREM 3. Let G, H, K , and L be as defined above. (a) If σ ∈ H and σ fixes
1, 3, and 4, then σ = I , the identity map, and |StabL(4)| = 1. (b) |OrbL(4)| = 3,
|OrbK (3)| = 4, |OrbH (1)| = 5, and |OrbG(B1)| = 11. (c) |G| = 660.

Proof.

(a) Since σ ∈ H , σ fixes B1 setwise. Now, σ might permute some of the other blocks.
We can show that this is false by seeing how it permutes the blocks containing
the pairs {1, 4}, {1, 3}, and {3, 4}. Since B4 = 46781, BX = X1237, and B0 =
02348 are the only other blocks containing those pairs, it follows that σ fixes the
sets B4, BX , and B0. Thus, σ fixes the subsets {6, 7, 8}, {X, 2, 7}, and {0, 2, 8}
of B4, BX , and B0, respectively. The only way this can happen is if σ fixes the
elements 2, 7, and 8. As a consequence, σ also fixes 6, X , and 0, and hence σ fixes
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B3 = 35670. It follows that σ fixes 5. Finally, since σ fixes B1, it must also fix 9,
and we conclude that σ = I , and so |StabL(4)| = 1.

(b) Let L = StabK (3) and let α ∈ L . Then α fixes 1 and 3. The method in (a)
shows that any permutation that fixes three distinct points must be the iden-
tity map. Hence, either α = I or α cyclically permutes 4, 5, and 9. A little
work shows that either α or α−1 is equal to (4 5 9)(2 7 X)(0 6 8). It fol-
lows that OrbL(4) = {4, 5, 9}, and so |OrbL(4)| = 3. A similar argument shows
that K = StabH (1) contains the permutations I, β = (3 4)(5 9)(2 8)(6 X),
γ = (3 5)(4 9)(2 8)(7 0), and β ◦ γ ; it follows that OrbK (3) = {3, 4, 5, 9}, and
so |OrbK (3)| = 4. Next, H = StabH (1) contains the powers of µ = (1 3 9 5 4)

(2 6 7 X 8). It follows that OrbH (1) = {1, 3, 4, 5, 9}, and so |OrbH (1)| = 5.
Finally, G contains the powers of τ = (1 2 3 4 5 6 7 8 9 X 0); the kth pow-
ers of the induced permutation τ ′ send B1 to Bk for each k. Hence, OrbG(B1)

contains all eleven blocks, and we conclude that |OrbG(B1)| = 11.
(c) We now put the pieces together. By the Orbit-Stabilizer Theorem and Equation (2),

we see that

|G| = |StabL(4)| · |OrbL(4)| · |OrbK (1)| · |OrbH (1)| · |OrbG(B1)|
= 1 · 3 · 4 · 5 · 11 = 660,

and we are done.

With so much symmetry, there ought to be a picture that tells us something about
the (11, 5, 2) biplane, and FIGURE 1 is where this all began. So let’s look at FIGURE 1
with more experienced eyes.

Symmetries of the biplane as revealed in pictures

“Draw a figure.” So said that master problem-solver and teacher, George Pólya, in his
classic “How To Solve It” [10]. We learn so much from figures, so we follow Pólya’s
lead and return to the picture in FIGURE 1. As we mentioned earlier, the context sug-
gested that it was a picture of the (11, 5, 2) biplane. It is clear that FIGURE 1 is a
dressed-up regular pentagon. As such, it is setwise fixed by both a 1/5-turn about the
center and reflections about lines through the center. The challenge was to label the
figure so that these geometric motions corresponded to symmetries of the (11, 5, 2)

biplane, and my efforts were eventually rewarded. In FIGURE 2, the clockwise 1/5-
turn about the point 0 and the reflection about the line through 0 and 7 correspond to
the automorphisms µ and ρ, respectively, where µ = (1 3 9 5 4)(2 6 7 X 8) and
ρ = (2 8)(3 4)(5 9)(6 X).

Let us now see just how the figure depicts these automorphisms.
First, consider µ = (1 3 9 5 4) (2 6 7 X 8). As mentioned above, µ induces

the permutation µ′ = (B2 B4 BX B6 B5) (B0 B9 B3 B7 B8) on the blocks of the
biplane.

Now, look at FIGURE 2. The exterior pentagon joins the five points labeled 1, 3, 9,
4, and 5. This is the block B1, which is mapped into itself by a 1/5-turn about 0. Next,
the dotted lines connect the five points labeled 4, 8, 0, 2, and 3. This is just the block
B0 = 02348, and if we rotate the figure about 0 by a 1/5-turn, we see that B0 is mapped
into B9 = {1, 2, 0, 6, 9}, B9 into B3 = {3, 6, 0, 7, 5}, B3 into B7 = {9, 7, 0, X, 4},
B7 into B8 = {5, X, 0, 8, 1}, and B8 into B0. Finally, the bold lines connect the five
points labeled 2, 9, 7, 5 and 8. This is the block B5 = {5, 7, 8, 9, 2}, and if we rotate
the figure about 0 by a 1/5-turn, we see that B5 is mapped into B2 = {6, 5, X, 4, 2},
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Figure 2 The fabulous (11, 5, 2) biplane

B2 into B4 = {7, 4, 8, 1, 6}, B4 into BX = {X, 1, 2, 3, 7}, BX into B6 = {8, 3, 6, 9, X},
and B6 into B5.

Thus, the 1/5-turn about 0 induces the permutation

(B2 B4 BX B6 B5)(B0 B9 B3 B7 B8)(B1)

on the blocks of the biplane. But µ′ is exactly this permutation! As for ρ, you can show
that the reflection about the line through 0 and 7 induces

(B2 B6)(B4 BX )(B3 B7)(B8 B9)(B0)(B1)(B7) = ρ ′.

Are there ways to draw the (11, 5, 2) biplane that exhibit symmetries other than
µ, ρ and others of orders 5 and 2? It is an interesting exercise to find one that exhibits
the symmetry of α = (4 5 9)(2 7 X)(0 6 8) and has order 3.

We are almost ready to talk about the mathematical pairs connected to the (11, 5, 2)

biplane. The most direct path to these pairs leads through a certain matrix associated
with the (11, 5, 2) biplane, called the incidence matrix.

One way to describe a block design is by its incidence matrix, a b × v matrix whose
(i, j)th entry is 1 or 0 according as the i th block does or does not contain the j th
variety. Here is the incidence matrix M for the (11, 5, 2) symmetric design. The rows
correspond to the blocks in the above order, and the columns correspond to the varieties
in the order 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X :

M =




0 1 0 1 1 1 0 0 0 1 0
0 0 1 0 1 1 1 0 0 0 1
1 0 0 1 0 1 1 1 0 0 0
0 1 0 0 1 0 1 1 1 0 0
0 0 1 0 0 1 0 1 1 1 0
0 0 0 1 0 0 1 0 1 1 1
1 0 0 0 1 0 0 1 0 1 1
1 1 0 0 0 1 0 0 1 0 1
1 1 1 0 0 0 1 0 0 1 0
0 1 1 1 0 0 0 1 0 0 1
1 0 1 1 1 0 0 0 1 0 0
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As we shall soon see, the matrix M is instrumental in constructing the two pairs of
Golay codes {G11, G12} and {G23, G24}. So, let’s talk about error-correcting codes.

Error-correcting codes

Mathematical schemes to deal with signal errors first appeared in the 1940s in the work
of several researchers, including Claude Shannon, Richard Hamming, and Marcel Go-
lay. People at various research labs saw the need for devices that would automatically
detect and correct errors in signal transmissions across noisy channels. What they came
up with was a new branch of mathematics called coding theory—specifically, the study
of error-detecting and error-correcting codes. They modeled these signals as sets of
n-long strings called blocks, to be taken from a fixed alphabet of size q; a particular set
of such blocks, or codewords, is called a q-ary code of length n. If q is a prime number,
then a q-ary code of length n is called linear if the codewords form a subspace of Z

n
q ,

the n-dimensional vector space over Zq , the integers mod q. To correct errors means
to determine the intended codeword when one has been received incorrectly. Just how
this correction happens will vary from code to code.

The fact that d errors in transmission change d characters in a block gives rise
to the idea of distance between blocks. If v and w are n-blocks, then the (Ham-
ming) distance D(v, w) is the number of positions in which v and w differ. Thus,
D(11001, 10101) = 2 and D(1101000, 0011010) = 4. If I send the block v and you
receive the block w, then D(v, w) errors occurred while sending v.

It follows that if the words in a code are all sufficiently far apart in the Hamming
distance sense, then we can detect errors. Even better, if we assume that only a few
errors are received, then we can sometimes change the received block to the correct
codeword. Let us now look at an example of an error-correction scheme.

One way to transmit bits is to send each bit three times, so that our only codewords
are 000 and 111. If you receive 010, then it is most likely that I sent 000 and so
the intended message was 0; this is the triplication or majority-vote code. Thus, a
codeword of length n contains a certain number k of message bits, and the other n − k
check bits are used for error detection and correction. Such a code is called an (n, k)

code: the triplication code is a (3, 1) code.
The minimum distance of a code is the smallest distance between its codewords;

this minimum distance determines the code’s error detection and correction features.
(Exercise: Show that a code with minimum distance 5 will detect up to 4 errors and
correct up to 2. You can then show that a code with minimum distance d will detect
up to d − 1 errors and correct up to �(d − 1)/2� errors.) For an (n, k) code to be
efficient, the ratio k/n should be as large as possible, consistent with its error detection
and correction capabilities. Maximum efficiency in an (n, k) m-error correcting code
occurs when it can correct up to m errors, and no others. Such a code is called perfect.
Here is a very nice necessary condition—which we can verify—for the existence of a
perfect code:

THEOREM 4. If there exists a q-ary (n, k) perfect m-error-correcting code, then

1 + (q − 1)n + (q − 1)2

(
n

2

)
+ · · · + (q − 1)m

(
n

m

)
= qr

for some positive integer r , and k = n − r .

Proof. A codeword of length n can have a single error occur in n positions, two
errors in

(n
2

)
positions, and in general m errors in

(n
m

)
ways. For a q-ary code, there are
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q − 1 ways for a single error to occur at a given position, (q − 1)2 ways for two errors
to occur at two given positions, and in general (q − 1)m ways for m errors to happen
at m given positions. Thus, the total number of ways in which no more than m errors
can occur relative to a given codeword is equal to

1 + (q − 1)n + (q − 1)2

(
n

2

)
+ · · · + (q − 1)m

(
n

m

)
. (3)

To complete the proof, we need to recognize this as a power of q.
The set of all n-long q-ary strings differing from a given codeword W in at most

m positions is called the sphere of radius m about W . If a code is perfect, then every
n-string lies in a sphere of radius m about some codeword, and the spheres do not
overlap. That is, the union of the spheres is equal to the entire space of n-tuples. Since
the latter has size qn , it follows that

(number of m-spheres) · (size of each m-sphere) = qn .

Thus, since q is a prime, the size of an m-sphere must be a power of q, say, qr , and (3)
is satisfied. Finally, every m-sphere is centered about one of the qk codewords. Since
qn = qr · qk , it follows that k = n − r , and we are done.

Now, 11 happens to be the smallest prime number p for which 2p − 1 is not a
prime. For p = 2, 3, 5, and 7, we obtain the primes 2p − 1 = 3, 7, 31, and 127, and
211 − 1 = 2047 = 23 · 89 is composite. But there is ample recompense for the failure
of 211 − 1 to be prime; let’s take a closer look:

211 = 1 + 23 · 89

= 1 + 23(1 + 11 + 11 · 7)

= 1 + 23 + 23 · 11 + 23 · 11 · 7

= 1 + 23 +
(

23

2

)
+

(
23

3

)
.

In 1949, Golay noted that this is precisely the case q = 2, n = 23, r = 11 of The-
orem 4. That is, the necessary condition for the existence of a binary (23, 23 − 11)

perfect 3-error-correcting code is satisfied.
In the same year, he also noticed that

1 + 2 · 11 + 22

(
11

2

)
= 1 + 22 + 220 = 243 = 35,

so that the necessary condition for the existence of a ternary (11, 11 − 5) perfect
2-error-correcting code is satisfied.

Of course, necessary conditions are not always sufficient, but in 1949, Golay con-
structed two linear codes with the above parameters and two slightly larger linear
codes. The binary codes are G23 and G24, the (23, 12) Golay code and the (24, 12)

extended Golay code; the ternary codes are G11 and G12, the (11, 6) Golay code and
the (12, 6) extended Golay code.

We can describe an (n, n − r) q-ary linear code as the row space of a matrix of n
columns and rank r over Zq , the so-called generating matrix of the code. Let A be the
following 12 × 24 binary matrix:
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A =




1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1




(4)

A is a generating matrix for G24; deleting its last (boldface) column gives a gener-
ating matrix for G23.

G12 is the row space of the following 12 × 12 ternary matrix B, and G11 is the row
space of B ′, obtained from B by deleting the last column.

B =




−1 1 1 −1 1 1 1 −1 −1 −1 1 −1
−1 −1 1 1 −1 1 1 1 −1 −1 −1 1
−1 1 −1 1 1 −1 1 1 1 −1 −1 −1
−1 −1 1 −1 1 1 −1 1 1 1 −1 −1
−1 −1 −1 1 −1 1 1 −1 1 1 1 −1
−1 −1 −1 −1 1 −1 1 1 −1 1 1 1
−1 1 −1 −1 −1 1 −1 1 1 −1 1 1
−1 1 1 −1 −1 −1 1 −1 1 1 −1 1
−1 1 1 1 −1 −1 −1 1 −1 1 1 −1
−1 −1 1 1 1 −1 −1 −1 1 −1 1 1
−1 1 −1 1 1 1 −1 −1 −1 1 −1 1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1




Note that these codes are 6-dimensional subspaces of Z
12
3 and Z

11
3 , respectively, since

B and B′ have rank six. (Arithmetic in Z3 is just arithmetic mod 3 with the symbols
−1, 0 and 1.)

We are now ready to connect the (11, 5, 2) biplane with the Golay code pairs. Let
U and V be the upper rightmost 11 × 11 submatrices of A and B, respectively.

Take U and change all the 1s on the main diagonal to 0s, and what do you get? You
get M, the incidence matrix for the (11, 5, 2) biplane.

Take V and change all the −1s to 0s. Then, change all the 1s on the main diagonal
to 0s, and what do you get? Again, you get M.

Thus, from the (11, 5, 2) biplane we are able to construct the pair of binary Golay
codes G23 and G24 and the pair of ternary Golay codes G11 and G12.

Nice connections, to be sure, and there are even more connections with Steiner
systems, so let’s find out about them.

Steiner systems

If n is a positive integer, we use the expressions n-set and n-subset to mean an
n-element set and an n-element subset. A Steiner system S(p, q, r) is a collection S
of q-subsets of an r -set R, such that every p-set in R is contained in exactly one of
the q-sets in S. An S(1, q, r) is just a partition of an r -set into q-sets, so that these
exist if and only if r is a multiple of q. It is known that S(2, 3, r)s exist if and only if
r ≡ 1 or 3 mod 6 and S(3, 4, r)s exist if and only if r ≡ 2 or 4 mod 6. Steiner systems
S(2, 3, r) are also block designs known as Steiner triple systems; here is S(2, 3, 7),
namely the (7, 3, 1) symmetric design with blocks A, B, C , D, E , F , and G:
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A = 124, B = 235, C = 346, D = 450, E = 561, F = 602, G = 013. (5)

(You can construct an S(3, 4, 8) from the S(2, 3, 7): adjoin ∞ to each of the blocks of
the S(2, 3, 7), and include the complement in {0, 1, 2, 3, 4, 5, 6} of each block in the
S(2, 3, 7).)

For p ≥ 4, the story is different: very few of these are known, and one reason is that
there are restrictions on the parameters p, q, and r , namely:

THEOREM 5. If S is an S(p, q, r) defined on the r-set R, then S contains
(r

p

)
/
(q

p

)
q-sets, and for 0 ≤ j < p:

(a)
(r− j

p− j

)
/
(q− j

p− j

)
is an integer;

(b) every j-subset of R belongs to exactly
(r− j

p− j

)
/
(q− j

p− j

)
q-sets of S;

(c) there exists an S(p − j, q − j, r − j) on an (r − j)-subset of R.

Proof. Each of the
(r

p

)
p-sets in R belongs to a unique q-set in S and each

such q-set contains
(q

p

)
p-sets; hence, S contains

(r
p

)
/
(q

p

)
q-sets. It follows that(r

p

)
/
(q

p

)
is an integer, which establishes (a) for j = 0. Now fix x ∈ R. Let Sx =

{Y |Y is a q-set in R containing x}. Since each p-set containing x belongs to a unique
q-set Y ∈ Sx , it follows that S′

x = {Y − {x}|Y ∈ Sx} is a collection of (q − 1)-subsets
of R − {x}, such that each (p − 1)-subset of R − {x} belongs to a unique (q − 1)-set
in S′

x . In short, S′
x is an S(p − 1, q − 1, r − 1) on the set R − {x}; by the above, it

follows that Sx contains exactly
(r−1

p−1

)
/
(q−1

p−1

)
q-sets of S. This establishes (b) and (c)

for j = 1. Continuing inductively, we see that if an S(p, q, r) exists, then so does an
S(p − j, q − j, r − j) for 0 ≤ j ≤ p − 1; from this, we may deduce (b) and (c) for
0 ≤ j < p.

The S(p − j, q − j, r − j) systems obtained in this way from an S(p, q, r) are said
to be derived from the S(p, q, r). Every known Steiner system S(4, q, r) is derived
from an S(5, q + 1, r + 1), and very few Steiner systems with p ≥ 4 are known at
all. It turns out that we can use the (11, 5, 2) biplane and the binary Golay codes to
construct two pairs of these rare Steiner systems, namely {S(4, 5, 11), S(5, 6, 12)} and
{S(4, 7, 23), S(5, 8, 24)}.

We now construct S(5, 6, 12) and the systems derived from it—in particular,
S(4, 5, 11)—by means of a unified approach, beginning with the (11, 5, 2) biplane. Let
B1 = {1, 3, 4, 5, 9}, the first block in the (11, 5, 2) biplane, and let B := B1 ∪ {∞}.
Denote the set {0, 1, . . . , 10} by [0 . . 10]. In what follows, addition and subtrac-
tion are all mod 11, except that ∞ ± x = ∞ for all x . If Y is a set of num-
bers and m is a number, then we define Y + m := {y + m|y ∈ Y }. For example,
B + 6 = {1 + 6, 3 + 6, 4 + 6, 5 + 6, 9 + 6, ∞ + 6} = {7, 9, 10, 0, 4, ∞}.

Define the mappings s and σ to be permutations on [0 . . 10] and [0 . . 10] ∪ {∞},
respectively, by

σ = (1 10)(2 5)(3 7)(4 8)(6 9) and s = (0 ∞) ◦ σ.

Now, if f is a permutation and Y is a set, then define f (Y ) to be { f (y) : y ∈ Y }. For
example, since B + 6 = {7, 9, 10, 0, 4, ∞}, we see that

s(B + 6) = s({7, 9, 10, 0, 4, ∞}) = {s(7), s(9), s(10), s(0), s(4), s(∞)}
= {3, 6, 1, ∞, 8, 0}, and so

s(B + 6) + 3 = {6, 9, 4, ∞, 0, 3}.
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We now construct the Steiner systems as follows:

S(5, 6, 12) = {B + k|k ∈ [0 . . 10]} ∪ {s(B + k) + j | j, k ∈ [0 . . 10]};
S(4, 5, 11) = {B1 + k|k ∈ [0 . . 10]} ∪ {σ(B1 − n) + k : n ∈ B1, k ∈ [0 . . 10]};
S(3, 4, 10) = blocks of S(4, 5, 11) containing 10, with 10 deleted; and

S(2, 3, 9) = blocks of S(3, 4, 10) containing 0, with 0 deleted.

A table on page 100 lists the blocks for S(4, 5, 11) and the list for S(5, 6, 12)

is available at the MAGAZINE web site; don’t peek until you’ve tried your hand at
constructing them yourself. Notice that the blocks of the (11, 5, 2) biplane appear in
S(4, 5, 11) as its first column.

There are many ways to construct S(5, 8, 24) (as, indeed, there are to construct
S(5, 6, 12)), and one way is to use the Golay code G24. By Theorem 5, if S(5, 8, 24)

exists, then it contains
(24

5

)
/
(8

5

) = 759 8-sets. This just happens to be the exact num-
ber of codewords of Hamming weight 8 in G24. For example, all rows but the last
in the generating matrix A (see Equation (4)) are codewords of weight 8. Let us
number the columns of A with the customary numbering scheme 1, 2, . . . , 22, 0, ∞.
If c = c1c2 · · · c∞ is a weight-8 codeword, then Oc = {i |ci = 1} is an 8-subset of
{1, 2, . . . , 22, 0, ∞}. The system S(5, 8, 24) consists of these 759 so-called octads,
and we construct the derived systems as follows:

S(5, 8, 24) = codewords of weight 8 in G24;
S(4, 7, 23) = octads of S(5, 8, 24) containing ∞, with ∞ deleted;
S(3, 6, 22) = blocks of S(4, 7, 23) containing 0, with 0 deleted; and

S(2, 5, 21) = blocks of S(3, 6, 22) containing 22, with 22 deleted.

S(5, 8, 24) has many remarkable properties and connections, and we have obviously
left out many details. To do justice to this truly amazing object requires quite a journey.
Thompson’s book [12] is an excellent starting point; it certainly was for me.

One of the notable aspects of S(5, 8, 24) is something it shares with the other
Steiner systems, namely, a high degree of symmetry. Studying this symmetry leads
us to the connection between the (11, 5, 2) biplane and the Mathieu groups.

Automorphisms, transitivity, simplicity, and the Mathieu groups

An automorphism of a Steiner system S is a permutation of the underlying r -set
that also permutes the q-sets of S among themselves. For example, the permutation
a = (2 4)(5 6) on the set {0, 1, 2, 3, 4, 5, 6} is an automorphism of S(2, 3, 7) (see
Equation (5)). Using the labeling convention from that equation, you can check that a
switches B and C , switches D and F , and leaves A, E , and G fixed. That is, viewed
as a permutation on S(2, 3, 7), a = (B C)(D F).

You may recall that the automorphisms of the (11, 5, 2) biplane form a group under
composition, and the same is true for the automorphisms of a Steiner system. As be-
fore, we write Aut (S) for the automorphism group of the Steiner system S. In general,
Steiner systems have a large number of automorphisms. For example, S(2, 3, 7) con-
sists of seven triples, and yet Aut (S(2, 3, 7)) is isomorphic to P SL(2, 7), the group of
order 168 generated by the permutations a = (2 4)(5 6) and b = (0 1 2 3 4 5 6)

on the set {0, 1, 2, 3, 4, 5, 6}. For example, you can show that, as a permutation on
S(2, 3, 7), ab2 = (A B F)(C E G).
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The automorphism groups of S(4, 5, 11), S(5, 6, 12), S(4, 7, 23), and S(5, 8, 24)

are known as the Mathieu groups M11, M12, M23, and M24, respectively. First, we’ll
learn about their origin and why they are important, and then we’ll describe them.

Émile Mathieu (1835–1890) first constructed the groups bearing his name in two
papers summarizing work from his doctoral thesis. The Mathieu groups are special in
two ways: first, they are multiply transitive, and second, they are simple—the first of
the so-called sporadic finite simple groups ever described. Let us see what these terms
mean.

A group of permutations G on a set A is called k-transitive if for every pair of or-
dered k-tuples (a1, . . . , ak) and (b1, . . . , bk) of elements of A, there exists g ∈ G such
that g(ai ) = bi for 1 ≤ i ≤ k. We call G transitive (respectively, multiply transitive) if
it is 1-transitive (respectively, k-transitive for some k > 1). A k-transitive group is also
(k − 1)-transitive. For example, the alternating group A3 = {(1), (1 2 3), (1 3 2)}
is transitive, but not multiply transitive. The group P SL(2, 7) is 2-transitive, but not
3-transitive. The symmetric group Sn , consisting of all permutations on {1, 2, . . . , n},
is n-transitive. Now, one special feature of the Mathieu groups is that they are highly
transitive. Theorem 6 tells the story; you can find a proof in many texts about finite
group theory [3, 11].

THEOREM 6.

(a) If G is 4-transitive, then G is isomorphic to (i) a symmetric group Sn for some
n ≥ 4, (ii) an alternating group An for some n ≥ 6, or (iii) Mn for n = 11, 12, 23,
or 24.

(b) If G is 5-transitive, then G is isomorphic to (i) a symmetric group Sn for some
n ≥ 5, (ii) an alternating group An for some n ≥ 7, (iii) M23, or (iv) M24.

The Mathieu groups are also simple, and to understand what that means, we need to
recall an idea from matrix algebra: Two matrices A and B are similar if there exists an
invertible matrix Q such that B = Q−1 AQ. We can carry this idea over into groups:
two group elements a and b are conjugate if there exists a group element g such that
b = g−1ag. (Remember, all elements of a group are invertible.) For example, if a =
(1 2), b = (1 3), and g = (1 2 3), then you can show that b = g−1ag.

A special property of some subgroups is that of normality: A subgroup H of a
group G is normal if for all h ∈ H and for all g ∈ G, H contains g−1hg. For example,
let S = {(1), (1 2 3), (1 3 2), (1 2), (1 3), (2 3)}, the group of all permutations of
{1, 2, 3}; let A = {(1), (1 2 3), (1 3 2)} and C = {(1), (1 2)}. You can check that
A and C are both subgroups of S, that A is normal, and that C is not normal. If G
is an abelian (commutative) group, then all subgroups are normal—for, if h ∈ H and
g ∈ G, then g−1hg = g−1gh = h ∈ H by commutativity.

A group containing no normal subgroups except itself and the identity subgroup is
called simple. Just as prime numbers are the (multiplicative) building blocks by which
we construct all the integers, so simple groups are the building blocks for construct-
ing all finite groups. A major achievement of twentieth-century mathematics, featuring
such luminaries as Chevalley, Feit, Thompson, Conway, Fischer, Gorenstein, and many
others, was the complete classification of finite simple groups. The upshot of this ef-
fort, spanning some 15,000 journal pages (!), is that all finite simple groups belong to
a few well-studied infinite families—except for twenty-six so-called sporadic groups.
And the Mathieu groups were the very first sporadic groups ever described. Speaking
of which:

There are many ways to describe the Mathieu groups; here is one: Let s, t , and u be
the permutations defined by



VOL. 77, NO. 2, APRIL 2004 99

s = (0 ∞)(1 10)(2 5)(3 7)(4 8)(6 9),

t = (0 1 2 3 4 5 6 7 8 9 10), and

u = (3 9 4 5)(2 6 10 7).

Then M11 is the group generated by t and u, and M12 is the group generated by s, t ,
and u. And yes, s is the same permutation that we used to construct S(5, 6, 12).

Let α, β, and γ be the permutations defined on {0, 1, . . . , 22, ∞} by

α = (2 16 9 6 8)(4 3 12 13 18)(10 11 22 7 17)(20 15 14 19 21),

β = (0 1 . . . 21 22), and

γ = (0 ∞)(1 22)(2 11)(3 15)(4 17)(5 9)(6 19)(7 13)(8 20)(10 16)(12 21)(14 18).

Then M23 is the group generated by α and β, and M24 is the group generated by α, β,
and γ . See Thompson [12] for more details.

We can now see how M11 and M12 go together in a pair, and the same is true of M23

and M24; to cement their connection with the (11, 5, 2) biplane further, it turns out that
the number of elements in each of these groups is divisible by 11.

With that, our whirlwind tour of the (11, 5, 2) biplane, its symmetries, and its con-
nections with six pairs of combinatorial gems is done. Quite a tale!

Questions

• Where can I go to learn more about these things? Look in the bibliography. Beth,
Jungnickel, and Lenz [1] will take you a long way into the world of combinatorial
designs, including all the ones mentioned in this paper and many more. Hughes and
Piper [6] will do the same; they pay special attention to biplanes, and the previ-
ously mentioned unlabeled version of FIGURE 2 appears on the cover of their book.
Marshall Hall [5] has a great deal of information on difference sets. A recent ar-
ticle in this MAGAZINE [2] will tell you more about difference sets and squares
mod p. MacWilliams and Sloane [8] and Pless [9] are two standard works on error-
correcting codes. Carmichael [3] has a whole lot of information about the Mathieu
groups, although his presentation is a bit old-fashioned; for a more modern treat-
ment, Rotman [11] is one of the best. Finally, Thompson [12] has all of these in a
wonderfully written book. Happy Reading!

• You said that Aut ((11, 5, 2)) is isomorphic to P SL(2, 11). How do you prove
that? It turns out that both P SL(2, 11) and Aut ((11, 5, 2)) are generated by
two elements c and d, for which c2 = d3 = (cd)11 = ((cd)3(cd2)3)2 = 1, the
identity permutation. Two automorphisms of (11, 5, 2) that fill the bill are c =
(1 3)(2 5)(4 X)(7 9) and d = (3 4 5)(2 6 0)(7 8 X). Try it and see.

• Any other tidbits about G = Aut ((11, 5, 2))? Here are a few. (1) It so happens
that the group H = StabG(B1) has order 60 and is isomorphic to A5, the alternat-
ing group on 5 elements. A picture of the (11, 5, 2) biplane that would show this
would indeed be spectacular. (2) Constructing one to depict the automorphism d
(of order 3) from the previous bullet is a good warm-up for (1). (3) G contains an
automorphism of order 6: find one and draw the associated picture. (4) Recall that
|G| = 660, which is divisible by 4; does G contain an automorphism of order 4?

• You told us about four Mathieu groups, but I read somewhere that there are five of
them. What is the fifth Mathieu group, and why did you leave it out? Right you are;
it’s called M22. This group is a permutation group on a 22-element set that is simple
and triply transitive. One way to describe M22 is that it is the set of all permutations
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in M23 that leave 0 fixed. It is a subgroup of index two of the group of automorphisms
of S(3, 6, 22). (The additive group of even integers is a subgroup of index two of the
integers.) I left it out because it is not part of a pair.

• Are there any interesting problems associated with the (11, 5, 2) biplane, or with
biplanes in general? Several come to mind. Recall that a biplane is a symmetric
(v, k, λ) design with λ = 2. (1) There are biplanes with v < 11; find them, find
their automorphism groups, and draw some pictures. (2) Two block designs are iso-
morphic if there exists a one-to-one correspondence between the underlying sets of
varieties that induces such a correspondence between the sets of blocks. Show that
every (11, 5, 2) biplane is isomorphic to the one presented in this paper. (3) Con-
struct a (16, 6, 2) biplane. Then, construct another one not isomorphic to the first
one. How do you show that two designs are not isomorphic? Interesting question!
(4) One problem is particularly intriguing. Recall that a finite projective plane is a
symmetric design with λ = 1. It turns out that if q is a prime power, then there exists
a finite projective plane with parameters (q2 + q + 1, q + 1, 1); as a consequence,
there are infinitely many finite projective planes. So we may ask the question, “Are
there infinitely many biplanes?” Nobody knows! Other than the ones alluded to in
(1), the only known biplanes are for k = 5, 6, 9, 11, and 13. Are there others? Find
the answer and become famous.
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13459 07293 03618 0412X 06X59 05784
2456X 183X4 14729 15230 1706X 16895
35670 29405 2583X 26341 28170 279X6
46781 3X516 36940 37452 39281 38X07
57892 40627 47X51 48563 4X392 49018
689X3 51738 58062 59674 504X3 5X129
79X04 62849 69173 6X785 61503 6023X
8X015 7395X 7X284 70896 72615 71340
90126 84X60 80395 819X7 83726 82451
X1237 95071 914X6 92X08 94837 93562
02348 X6182 X2507 X3019 X5948 X4673

The Steiner system S(4, 5, 11) and the (11, 5, 2) design from Brown’s article on page 87


