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Motivation

Let x ∈ RN , F : RN → RN and consider the dynamical system given as

x(tk+1) = F (x(tk)). (1)

Can we model the dynamics (1) if we are given only some samples of the
state {x(tk)} without knowing F?

Koopman Operator Theory together with Extended Dynamic Mode
Decomposition provide a powerful tool to achieve this goal.

Trade-off between finite-dimensional nonlinearity vs
infinite-dimensional linearity
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Koopman Operator

Given x(tk+1) = F (x(tk)) and for ψ : RN → C consider:

ψ(F (x(tk)) = ψ ◦ F (x(tk)) = ψ(x(tk+1)).

We project our dynamics from the state space x to observable space ψ.

Dynamical System on Observables

Let ψ : RN → C and define a new dynamical system:

ψ(x(tk+1)) = ψ ◦ F (x(tk)) = K[ψ](x(tk)).

We call K[ψ] := ψ ◦ F as the Koopman operator.

Note: Koopman operator K is linear. Hence we lift a finite dimensional
nonlinear problem to an infinite dimensional linear problem.
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Recovering Dynamics via Koopman Operator

Let (µi , ϕi ) be the eigenpairs of the Koopman operator K:

K[ϕi ] = µiϕi

Define g(x) = x and assume g ∈ span{ϕi}. Let νi ∈ RN be such that

g(x) =
L∑

i=1

νiϕi (x)

Then we can reconstruct the original dynamics F as

F (x) = K[g](x) = K

[
L∑

i=1

νiϕi

]
(x) =

L∑
i=1

νiK[ϕi ](x) =
L∑

i=1

νiµiϕi (x).

For F we need: coefficients νi (Koopman modes) and eigenpairs (µi , ϕi ).
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Approximating (νi , µi , ϕi)

We are given the action of K on the observables ψ1, . . . , ψK

For another observable φ, write φ ≈
∑K

k=1 ψkak . Then

K[φ] = φ ◦ F ≈ ψTKa, K ∈ RK×K and a =
[
a1 a2 · · · aK

]T
.

Let (λi , ξi ) be the eigenpairs of K.Then we approximate (µi , ϕi ) as

µi ≈ λi ϕi ≈
∑K

k=1(ξi )kψk

Similarly we can approximate coefficients νi by using the left
eigenvectors of K and vectors bi ∈ RK defined by the expansion

xi =
K∑

k=1

(bi )kψk(x)
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Finding K: EDMD Algorithm [WKR14]

Given observation data {ψk(x(ti ))} for i = 0, 1, . . . ,T and k = 1, . . . ,K :

1 Construct K by solving the optimization problem

K = argmin
K̂∈RK×K

∥∥∥K[ψT ](x(ti ))− ψ(x(ti ))
T K̂

∥∥∥
F

ψ =


ψ1

ψ2
...
ψK


= argmin

K̂∈RK×K

∥ψ(x(ti+1))
T︸ ︷︷ ︸

T×K

−ψ(x(ti ))
T︸ ︷︷ ︸

T×K

K̂∥F

2 Recover Koopman modes and eigenpairs (νk , µk , ϕk)
K
k=1.

3 Recover the original system F (x(ti )) ≈
∑K

k=1 νkµkϕk(x(ti ))

Original Dynamics: x(ti+1) = F (x(ti )) ≈
K∑

k=1

νkµkϕk(x(ti ))

Cankat Tilki (Virginia Tech) WDMD in the context of EDMD
Nonlinear Model Reduction for Control 22-26 May 2023, Blacksburg, VA
8 / 29



Dynamic Mode Decomposition as a special case of EDMD

Dynamic Mode Decomposition Algorithm: [Sch10, RMBSH09]

Choose ψk = eTk and k = 1, · · · ,N. So we are now given {xk(ti )}Ti=0.

Then EDMD minimization problem becomes:

K = argmin
K̂∈RK×K

∥ψ(x(ti+1))
T︸ ︷︷ ︸

T×K

−ψ(x(ti ))
T︸ ︷︷ ︸

T×K

K̂∥F

= argmin
K̂∈RK×K

∥ x(ti+1)
T︸ ︷︷ ︸

T×K

− x(ti )
T︸ ︷︷ ︸

T×K

K̂∥F

This minimization problem is equivalent to

K = argmin
K̃∈RK×K

∥∥∥x(ti+1)− K̃Tx(ti )
∥∥∥
F

With these specific observables ψk = eTk EDMD algorithm recovers
the Dynamic Mode Decomposition algorithm.
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ioDMD [BHM18]

Given time series data x(ti ), y(ti ),u(ti ) from the unknown input/output
dynamical system

ẋ(t) = f (x(t),u(t))

y(t) = Cx(t),

ioDMD aims to to get the best linear least squares approximation

x(ti+1) ≈ Ax(ti ) + Bu(ti )

y(ti ) ≈ Cx(ti ) +Du(ti )

To do this, similar to DMD, we solve the minimization problem

Γ = argmin
Γ̂∈R(N+D)×(N+M)

∥∥∥∥[X1

Y0

]
− Γ̂

[
X0

U0

]∥∥∥∥
F

and get the closed form solution

Γ =

[
A B
C D

]
=

[
X1

Y0

] [
X0

U0

]†
.
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Why WDMD?

Assume access to only the output data y(ti ) ∈ RD of an unknown
dynamical system with forcing u(t) ∈ RM with state x(t) ∈ RN :

ẋ(t) = f (x(t),u(t))

y(t) = Cx(t).

Standard methods (e.g., ioDMD) usually require having the full state
data x(ti ). But in most cases we only have y(ti ) = Cx(ti ).

Solution: Construct auxiliary states z from the output samples y(ti ) and
apply known methods to the auxiliary dynamical system

z(ti+1) = fz(z(ti ),u(ti ))

y(ti ) = Czz(ti ).

How do we construct a “good auxiliary state”?
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Wavelet Transform

We will use wavelet transform of y(t) to create the auxiliary state.

Assume we are given a mother wavelet Ψ : R → R and an L2 function
f : R → R.

Define Ψk
j (t) = Ψ

( t

2j
− k∆t

)
and ωk

j (f ) :

ωk
j (f ) =

〈
f ,Ψk

j

〉
2
=

〈
f ,Ψ

( t

2j
− k∆t

)〉
2
=

1

2j/2

∫ ∞

−∞
f (t)Ψ∗

( t

2j
− k∆t

)
dt

We can reconstruct f as

f (t) =
∑
j ,k

ωk
j (f )Ψ

k
j (t)

Requires f but only have {f (ti )} since the dynamics is unknown.

Need to approximate ωk
j (f ) from time series data {f (ti )}.
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Maximal Overlap Discrete Wavelet Transform [PW13]

For f : R → R assume we are given:

- time series data f = [ f (t0) f (t1) · · · f (tT−1) ]T ∈ RT

- high/low pass filters hj , gj ∈ RT

1 Construct projections Wj ,Vj ∈ RT×T from hj , gj respectively.

2 j th (discrete) wavelet and scaling coefficients of f :

ωj(f) = Wj f and θj(f) = Vj f.

MODWT Recovery

Define d
(i)
j (f) = eTi+1WT

j ωj(f) and s
(i)
j (f) = eTi+1VT

j θj(f).

f(ti ) =
J∑

j=1

eTi+1WT
j ωj(f) + eTi+1VT

J θJ(f) =
J∑

j=1

d
(i)
j (f) + s

(i)
J (f)
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WDMD Algorithm [KGT21]

Without loss of generality take D = 1 (number of outputs).

Given Y =
[
y(t0) y(t1) · · · y(tT−1)

]
∈ RT and u(t) ∈ RM .

1 Construct dj(Y) and sJ(Y) by MODWT.

2 Construct the samples of the lifted (auxiliary) state:

z(ti ) = w(ti ) =
[
d
(i)
1 (Y) · · · d

(i)
J (Y) s

(i)
J (Y)

]T
∈ RJ+1

3 Approximate the lifted dynamical system by a linear dynamical system

z(ti+1) = fz(z(ti ),u(ti ))

y(ti ) = 1J+1z(ti )
≈

z(ti+1) = Azz(ti ) + Bzu(ti ))

y(ti ) = Czz(ti ) +Dzu(ti )
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How to Obtain Az,Bz,Cz,Dz

Given y(ti ),u(ti ), form z(ti ), auxiliary state samples. Define

Y0 =
[
y(t0) y(t1) · · · y(tK−1)

]
.

U0 =
[
u(t0) u(t1) · · · u(tK−1)

]
.

Z0 =
[
z(t0) z(t1) · · · z(tK−1)

]
.

Z1 =
[
z(t1) z(t2) · · · z(tK )

]
= fz(Z0,U0).

Algorithm

Find the best Az,Bz,Cz,Dz such that

z(ti+1) = fz(z(ti ),u(ti ))

y(ti ) = 1J+1z(ti )
≈

z(ti+1) = Azz(ti ) + Bzu(ti ))

y(ti ) = Czz(ti ) +Dzu(ti )

Φ =

[
Az Bz

Cz Dz

]
= argmin

Â,B̂,Ĉ,D̂

∥∥∥∥[Z1

Y0

]
−
[
Â B̂

Ĉ D̂

] [
Z0

U0

]∥∥∥∥
F

=⇒ Φ =

[
Z1

Y0

] [
Z0

U0

]†
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Can we interpret WDMD as EDMD analytically?

Without loss of generality, let ti+1 = ti +∆t.
Assume there is no input: u(t) = 0.

In WDMD we use the auxiliary state data z(ti ) =




d
(i)
1 (Y)
...

d
(i)
J (Y)

s
(i)
J (Y)




EDMD requires observable evaluations:

{ψj(x(ti ))} ≈ {d (i)
j (Y)} (2)

How to choose the right observables ψj to satisfy (2)?
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Observables for WDMD

Wavelet Transform:

ωk
j (y(t)) =

1

2j/2

∫ ∞

−∞
Ψk

j (t)y(t)dt → y(t) =
∑
k

∑
j

ωk
j Ψ

k
j (t)

Define the WDMD observables: ψj(x(t)) = ω0
j (y(t))Ψ

0
j (t)

K[ψj ](x(t)) = ω0
j (y(t +∆t))Ψ0

j (t +∆t) = ω1
j (y(t))Ψ

1
j (t)

Approximate by MODWT:

ψj(x(t)) = ω0
j (y(t))Ψ

0
j (t) ≈ d

(0)
j (Y) and s

(0)
J (Y)
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Lemma: WDMD as EDMD

Assume we are given only the time series data Y =
[
y(t0) · · · y(tT )

]
from an unknown input-output dynamical system with forcing u(t) ∈ RM

with state x(t) ∈ RN .

ẋ(t) = f (x(t),u(t))

y(t) = Cx(t).

Then WDMD can be interpreted as a specific case of EDMD algorithm
where the observables are chosen as

ψj(x) = ω0
j (y(t))Ψ

0
j (t) =

(
1

2j/2

∫ ∞

−∞
Ψk

j (t)y(t)dt

)
Ψ0

j (t)

Moreover if we let dj(Y) and sj(Y) be the MODWT coefficients for the
time series Y we can approximate these observables ψj(x) as

ψj(x) ≈ d
(0)
j (Y) and ψJ+1(x(t)) ≈ s

(0)
j (Y).
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SIR Model

The SIR model is given as

dS

dt
= −βSI

N
dI

dt
=
βSI

N
− γI

dR

dt
= γI

S(0) = 90, I (0) = 10 and R(0) = 0.

N = S(0) + I (0) + R(0) = 100.

We compare WDMD to delay DMD [YZWL21].
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Numerical Results on the SIR Model

Figure: Fully Observed System with Noise, J = 2
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Results

Figure: Partially Observed System with Noise, J = 5
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Conclusions and Future Work

We analytically connected WDMD to EDMD

Observables are obtained via the Wavelet transform

Future work:

A more through analysis of the impact of WDMD on noisy data

A more detailed comparison with other methods such as Delay DMD.

Incorporating the input u(t) and working with a bilinear model
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Recovering Eigenpairs of K (if K is given)

Assume we have ϕj ≈
∑K

k=1 ψkξkj = ψT ξj and recall K[φ]≈ψTKa so

K[ϕj ]≈K

[
K∑

k=1

ψkξkj

]
=

K∑
k=1

K[ψk ]ξkj ≈ψTKξj

Since K[ϕj ] = µjϕj ≈ψTµjξj , we have

ψTKξj ≈ K[ϕj ] ≈ ψTµjξj , ψ =
[
ψ1 ψ2 · · · ψK

]T
.

(µj , ξj): eigenpairs of K → (µj , ψ
T ξj): approximate eigenpairs of K.

In matrix form: Ξij = ξij , wj := left eigenvectors of K and w∗
i ξj = δij .

ψTΞ ≈ ϕT ⇐⇒ ψT ≈ ϕTW∗, W =
[
w1 w2 · · · wK

]
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Recovering Koopman Modes

Approximate the full state observable, g(x) = x, as

gn = eTn ≈
K∑

k=1

bknψk , g =
[
g1 g2 · · · gN

]T
In the matrix format we have

g≈BTψ, Bij = bij .

Use ϕTW∗ ≈ ψT to recover the Koopman modes νi as rows of W
∗B:

g≈BTψ ≈ BTWϕ

Recall that νi is defined as g =
∑L

i=1 νiϕi = Vϕ.

But how do we obtain K?
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Proof for WDMD as EDMD

We need to prove: {ψj(x(ti ))} ≈ {d (i)
j (Y)} and the minimization

problems being equivalent.

Observables conforming to data ψj(x(ti )) = Ki [ψj ](x(t0)):
For i = 0 we have the approximation by MODWT. Then for
i = 1, · · · ,T we have

ω0
j (Cx(t + i∆t)) =

∫ ∞

−∞
Ψ∗

( t

2j

)
y(t + i∆t)dt =

=

∫ ∞

−∞
Ψ∗

(
t̂ − i∆t

2j

)
y(t̂)dt̂ =

∫ ∞

−∞
Ψi

j(t̂)y(t̂)dt̂ = ωi
j (Cx(t))

Minimization problems are equivalent: The EDMD minimization
problem for this choice of observables becomes

argmin
K̂

∥ZT
1 − ZT

0 K̂∥F ≡ argmin
K̃

∥Z1 − K̃TZ0∥F
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