Wavelet-based DMD in the context of Extended DMD

Cankat Tilki and Serkan Gugercin
Department of Mathematics, Virginia Tech

Nonlinear Model Reduction for Control

22-26 May 2023, Blacksburg, VA

Table of Contents

(1) Extended Dynamic Mode Decomposition and Koopman Operator
(2) Understanding Wavelet-based Dynamic Mode Decomposition as EDMD
(3) Numerical Results

Table of Contents

(1) Extended Dynamic Mode Decomposition and Koopman Operator
(2) Understanding Wavelet-based Dynamic Mode Decomposition as EDMD
(3) Numerical Results

Motivation

Let $\mathbf{x} \in \mathbb{R}^{N}, F: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ and consider the dynamical system given as

$$
\begin{equation*}
\mathbf{x}\left(t_{k+1}\right)=F\left(\mathbf{x}\left(t_{k}\right)\right) \tag{1}
\end{equation*}
$$

Can we model the dynamics (1) if we are given only some samples of the state $\left\{\mathbf{x}\left(t_{k}\right)\right\}$ without knowing F ?

- Koopman Operator Theory together with Extended Dynamic Mode Decomposition provide a powerful tool to achieve this goal.
- Trade-off between finite-dimensional nonlinearity vs infinite-dimensional linearity

Koopman Operator

Given $\mathbf{x}\left(t_{k+1}\right)=F\left(\mathbf{x}\left(t_{k}\right)\right)$ and for $\psi: \mathbb{R}^{N} \rightarrow \mathbb{C}$ consider:

$$
\psi\left(F\left(\mathbf{x}\left(t_{k}\right)\right)=\psi \circ F\left(\mathbf{x}\left(t_{k}\right)\right)=\psi\left(\mathbf{x}\left(t_{k+1}\right)\right)\right.
$$

We project our dynamics from the state space \mathbf{x} to observable space ψ.

Dynamical System on Observables

Let $\psi: \mathbb{R}^{N} \rightarrow \mathbb{C}$ and define a new dynamical system:

$$
\psi\left(\mathbf{x}\left(t_{k+1}\right)\right)=\psi \circ F\left(\mathbf{x}\left(t_{k}\right)\right)=\mathcal{K}[\psi]\left(\mathbf{x}\left(t_{k}\right)\right)
$$

We call $\mathcal{K}[\psi]:=\psi \circ F$ as the Koopman operator.

Note: Koopman operator \mathcal{K} is linear. Hence we lift a finite dimensional nonlinear problem to an infinite dimensional linear problem.

Recovering Dynamics via Koopman Operator

- Let $\left(\mu_{i}, \phi_{i}\right)$ be the eigenpairs of the Koopman operator \mathcal{K} :

$$
\mathcal{K}\left[\phi_{i}\right]=\mu_{i} \phi_{i}
$$

- Define $\mathbf{g}(\mathbf{x})=\mathbf{x}$ and assume $\mathbf{g} \in \operatorname{span}\left\{\phi_{i}\right\}$. Let $\nu_{i} \in \mathbb{R}^{N}$ be such that

$$
\mathbf{g}(\mathbf{x})=\sum_{i=1}^{L} \nu_{i} \phi_{i}(\mathbf{x})
$$

- Then we can reconstruct the original dynamics F as

$$
F(\mathbf{x})=\mathcal{K}[\mathbf{g}](\mathbf{x})=\mathcal{K}\left[\sum_{i=1}^{L} \nu_{i} \phi_{i}\right](\mathbf{x})=\sum_{i=1}^{L} \nu_{i} \mathcal{K}\left[\phi_{i}\right](\mathbf{x})=\sum_{i=1}^{L} \nu_{i} \mu_{i} \phi_{i}(\mathbf{x})
$$

For F we need: coefficients ν_{i} (Koopman modes) and eigenpairs $\left(\mu_{i}, \phi_{i}\right)$.

Approximating $\left(\nu_{i}, \mu_{i}, \phi_{i}\right)$

- We are given the action of \mathcal{K} on the observables $\psi_{1}, \ldots, \psi_{K}$
- For another observable φ, write $\varphi \approx \sum_{k=1}^{K} \psi_{k} a_{k}$. Then

$$
\mathcal{K}[\varphi]=\varphi \circ F \approx \psi^{T} \mathbf{K} \mathbf{a}, \quad \mathbf{K} \in \mathbb{R}^{K \times K} \text { and } \mathbf{a}=\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{K}
\end{array}\right]^{T}
$$

- Let $\left(\lambda_{i}, \xi_{i}\right)$ be the eigenpairs of \mathbf{K}. Then we approximate $\left(\mu_{i}, \phi_{i}\right)$ as

$$
\mu_{i} \approx \lambda_{i} \quad \phi_{i} \approx \sum_{k=1}^{K}\left(\xi_{i}\right)_{k} \psi_{k}
$$

- Similarly we can approximate coefficients ν_{i} by using the left eigenvectors of \mathbf{K} and vectors $\mathbf{b}_{i} \in \mathbb{R}^{K}$ defined by the expansion

$$
\mathbf{x}_{i}=\sum_{k=1}^{K}\left(\mathbf{b}_{i}\right)_{k} \psi_{k}(\mathbf{x})
$$

Finding K: EDMD Algorithm [WKR14]

Given observation data $\left\{\psi_{k}\left(\mathbf{x}\left(t_{i}\right)\right)\right\}$ for $i=0,1, \ldots, T$ and $k=1, \ldots, K$:

$$
\begin{aligned}
& \text { (1) Construct } \mathbf{K} \text { by solving the optimization problem } \\
& \qquad \begin{aligned}
\mathbf{K} & =\underset{\hat{\mathbf{K}} \in \mathbb{R}^{K \times K}}{\operatorname{argmin}}\left\|\mathcal{K}\left[\psi^{T}\right]\left(\mathbf{x}\left(t_{i}\right)\right)-\psi\left(\mathbf{x}\left(t_{i}\right)\right)^{T} \hat{\mathbf{K}}\right\|_{F} \quad \psi=\left[\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\vdots \\
\psi_{K}
\end{array}\right] \\
& =\underset{\hat{\mathbf{K}} \in \mathbb{R}^{K \times K}}{\operatorname{argmin}}\|\underbrace{\psi\left(\mathbf{x}\left(t_{i+1}\right)\right)^{T}}_{T \times K}-\underbrace{\psi\left(\mathbf{x}\left(t_{i}\right)\right)^{T}}_{T \times K} \hat{\mathbf{K}}\|_{F}
\end{aligned}
\end{aligned}
$$

(2) Recover Koopman modes and eigenpairs $\left(\nu_{k}, \mu_{k}, \phi_{k}\right)_{k=1}^{K}$.
(3) Recover the original system $F\left(\mathbf{x}\left(t_{i}\right)\right) \approx \sum_{k=1}^{K} \nu_{k} \mu_{k} \phi_{k}\left(\mathbf{x}\left(t_{i}\right)\right)$

$$
\text { Original Dynamics: } \mathbf{x}\left(t_{i+1}\right)=F\left(\mathbf{x}\left(t_{i}\right)\right) \approx \sum_{k=1}^{K} \nu_{k} \mu_{k} \phi_{k}\left(\mathbf{x}\left(t_{i}\right)\right)
$$

Dynamic Mode Decomposition as a special case of EDMD

- Dynamic Mode Decomposition Algorithm: [Sch10, RMBSH09]
- Choose $\psi_{k}=e_{k}^{T}$ and $k=1, \cdots, N$. So we are now given $\left\{\mathbf{x}_{k}\left(t_{i}\right)\right\}_{i=0}^{T}$.
- Then EDMD minimization problem becomes:

$$
\begin{aligned}
\mathbf{K} & =\underset{\hat{\mathbf{k}} \in \mathbb{R}^{K \times K}}{\operatorname{argmin}}\|\underbrace{\psi\left(\mathbf{x}\left(t_{i+1}\right)\right)^{T}}_{T \times K}-\underbrace{\psi\left(\mathbf{x}\left(t_{i}\right)\right)^{T}}_{T \times K} \hat{\mathbf{K}}\|_{F} \\
& =\underset{\hat{\mathbf{k}} \in \mathbb{R}^{K \times K}}{\operatorname{argmin}}\|\underbrace{\mathbf{x}\left(t_{i+1}\right)^{T}}_{T \times K}-\underbrace{\mathbf{x}\left(t_{i}\right)^{T}}_{T \times K} \hat{\mathbf{K}}\|_{F}
\end{aligned}
$$

- This minimization problem is equivalent to

$$
\mathbf{K}=\underset{\widetilde{\mathbf{K}} \in \mathbb{R}^{K \times K}}{\operatorname{argmin}}\left\|\mathbf{x}\left(t_{i+1}\right)-\widetilde{\mathbf{K}}^{T} \mathbf{x}\left(t_{i}\right)\right\|_{F}
$$

- With these specific observables $\psi_{k}=e_{k}^{T}$ EDMD algorithm recovers the Dynamic Mode Decomposition algorithm.

ioDMD [BHM18]

Given time series data $\mathbf{x}\left(t_{i}\right), \mathbf{y}\left(t_{i}\right), \mathbf{u}\left(t_{i}\right)$ from the unknown input/output dynamical system

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=f(\mathbf{x}(t), \mathbf{u}(t)) \\
& \mathbf{y}(t)=\mathbf{C x}(t),
\end{aligned}
$$

ioDMD aims to to get the best linear least squares approximation

$$
\begin{aligned}
& \mathbf{x}\left(t_{i+1}\right) \approx \mathbf{A} \mathbf{x}\left(t_{i}\right)+\mathbf{B u}\left(t_{i}\right) \\
& \mathbf{y}\left(t_{i}\right) \approx \mathbf{C} \mathbf{x}\left(t_{i}\right)+\mathbf{D u}\left(t_{i}\right)
\end{aligned}
$$

To do this, similar to DMD, we solve the minimization problem

$$
\Gamma=\underset{\hat{\Gamma} \in \mathbb{R}^{(N+D) \times(N+M)}}{\operatorname{argmin}}\left\|\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{Y}_{0}
\end{array}\right]-\hat{\Gamma}\left[\begin{array}{l}
\mathbf{X}_{0} \\
\mathbf{U}_{0}
\end{array}\right]\right\|_{F}
$$

and get the closed form solution

$$
\Gamma=\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}_{1} \\
\mathbf{Y}_{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{X}_{0} \\
\mathbf{U}_{0}
\end{array}\right]^{\dagger}
$$

Table of Contents

(1) Extended Dynamic Mode Decomposition and Koopman Operator

(2) Understanding Wavelet-based Dynamic Mode Decomposition as EDMD

(3) Numerical Results

Why WDMD?

- Assume access to only the output data $\mathbf{y}\left(t_{i}\right) \in \mathbb{R}^{D}$ of an unknown dynamical system with forcing $\mathbf{u}(t) \in \mathbb{R}^{M}$ with state $\mathbf{x}(t) \in \mathbb{R}^{N}$:

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=f(\mathbf{x}(t), \mathbf{u}(t)) \\
& \mathbf{y}(t)=\mathbf{C x}(t)
\end{aligned}
$$

- Standard methods (e.g., ioDMD) usually require having the full state data $\mathbf{x}\left(t_{i}\right)$. But in most cases we only have $\mathbf{y}\left(t_{i}\right)=\mathbf{C} \mathbf{x}\left(t_{i}\right)$.

Solution: Construct auxiliary states \mathbf{z} from the output samples $\mathbf{y}\left(t_{i}\right)$ and apply known methods to the auxiliary dynamical system

$$
\begin{aligned}
\mathbf{z}\left(t_{i+1}\right) & =f_{\mathbf{z}}\left(\mathbf{z}\left(t_{i}\right), \mathbf{u}\left(t_{i}\right)\right) \\
\mathbf{y}\left(t_{i}\right) & =\mathbf{C}_{\mathbf{z}} \mathbf{z}\left(t_{i}\right)
\end{aligned}
$$

How do we construct a "good auxiliary state"?

Wavelet Transform

- We will use wavelet transform of $\mathbf{y}(t)$ to create the auxiliary state.
- Assume we are given a mother wavelet $\psi: \mathbb{R} \rightarrow \mathbb{R}$ and an L_{2} function $f: \mathbb{R} \rightarrow \mathbb{R}$.
- Define $\Psi_{j}^{k}(t)=\Psi\left(\frac{t}{2^{j}}-k \Delta t\right)$ and $\omega_{j}^{k}(f)$:

$$
\omega_{j}^{k}(f)=\left\langle f, \Psi_{j}^{k}\right\rangle_{2}=\left\langle f, \Psi\left(\frac{t}{2^{j}}-k \Delta t\right)\right\rangle_{2}=\frac{1}{2^{j / 2}} \int_{-\infty}^{\infty} f(t) \Psi^{*}\left(\frac{t}{2^{j}}-k \Delta t\right) d t
$$

- We can reconstruct f as

$$
f(t)=\sum_{j, k} \omega_{j}^{k}(f) \Psi_{j}^{k}(t)
$$

- Requires f but only have $\left\{f\left(t_{i}\right)\right\}$ since the dynamics is unknown.
- Need to approximate $\omega_{j}^{k}(f)$ from time series data $\left\{f\left(t_{i}\right)\right\}$.

Maximal Overlap Discrete Wavelet Transform [PW13]

For $f: \mathbb{R} \rightarrow \mathbb{R}$ assume we are given:

- time series data $\mathbf{f}=\left[\begin{array}{llll}f\left(t_{0}\right) & f\left(t_{1}\right) & \cdots & f\left(t_{T-1}\right)\end{array}\right]^{T} \in \mathbb{R}^{T}$
- high/low pass filters $\mathbf{h}_{j}, \mathbf{g}_{j} \in \mathbb{R}^{T}$
(1) Construct projections $\mathcal{W}_{j}, \mathcal{V}_{j} \in \mathbb{R}^{T \times T}$ from $\mathbf{h}_{j}, \mathbf{g}_{j}$ respectively.
(2) $j^{\text {th }}$ (discrete) wavelet and scaling coefficients of f :

$$
\omega_{j}(\mathbf{f})=\mathcal{W}_{j} \mathbf{f} \quad \text { and } \quad \theta_{j}(\mathbf{f})=\mathcal{V}_{j} \mathbf{f}
$$

MODWT Recovery

Define $d_{j}^{(i)}(\mathbf{f})=e_{i+1}^{T} \mathcal{W}_{j}^{T} \omega_{j}(\mathbf{f})$ and $s_{j}^{(i)}(\mathbf{f})=e_{i+1}^{T} \mathcal{V}_{j}^{T} \theta_{j}(\mathbf{f})$.

$$
\mathbf{f}\left(t_{i}\right)=\sum_{j=1}^{J} e_{i+1}^{T} \mathcal{W}_{j}^{T} \omega_{j}(\mathbf{f})+e_{i+1}^{T} \mathcal{V}_{J}^{T} \theta_{J}(\mathbf{f})=\sum_{j=1}^{J} d_{j}^{(i)}(\mathbf{f})+s_{J}^{(i)}(\mathbf{f})
$$

WDMD Algorithm [KGT21]

- Without loss of generality take $D=1$ (number of outputs). Given $\mathbf{Y}=\left[\begin{array}{llll}\mathbf{y}\left(t_{0}\right) & \mathbf{y}\left(t_{1}\right) & \cdots & \mathbf{y}\left(t_{T-1}\right)\end{array}\right] \in \mathbb{R}^{T}$ and $\mathbf{u}(t) \in \mathbb{R}^{M}$.
(1) Construct $d_{j}(\mathbf{Y})$ and $s_{j}(\mathbf{Y})$ by MODWT.
(2) Construct the samples of the lifted (auxiliary) state:

$$
\mathbf{z}\left(t_{i}\right)=\mathbf{w}\left(t_{i}\right)=\left[\begin{array}{llll}
d_{1}^{(i)}(\mathbf{Y}) & \cdots & d_{J}^{(i)}(\mathbf{Y}) & s_{J}^{(i)}(\mathbf{Y})
\end{array}\right]^{T} \in \mathbb{R}^{J+1}
$$

(3) Approximate the lifted dynamical system by a linear dynamical system

$$
\begin{array}{rlrl}
\mathbf{z}\left(t_{i+1}\right) & =f_{\mathbf{z}}\left(\mathbf{z}\left(t_{i}\right), \mathbf{u}\left(t_{i}\right)\right) \\
\mathbf{y}\left(t_{i}\right) & =\mathbf{1}_{J+1} \mathbf{z}\left(t_{i}\right) & \mathbf{z}\left(t_{i+1}\right) & \left.=\mathbf{A}_{\mathbf{z}} \mathbf{z}\left(t_{i}\right)+\mathbf{B}_{\mathbf{z}} \mathbf{u}\left(t_{i}\right)\right) \\
\mathbf{y}\left(t_{i}\right) & =\mathbf{C}_{\mathbf{z}} \mathbf{z}\left(t_{i}\right)+\mathbf{D}_{\mathbf{z}} \mathbf{u}\left(t_{i}\right)
\end{array}
$$

How to Obtain $\mathbf{A}_{\mathbf{z}}, \mathbf{B}_{\mathbf{z}}, \mathbf{C}_{\mathbf{z}}, \mathbf{D}_{\mathbf{z}}$

Given $\mathbf{y}\left(t_{i}\right), \mathbf{u}\left(t_{i}\right)$, form $\mathbf{z}\left(t_{i}\right)$, auxiliary state samples. Define

$$
\begin{aligned}
& \mathbf{Y}_{0}=\left[\begin{array}{llll}
\mathbf{y}\left(t_{0}\right) & \mathbf{y}\left(t_{1}\right) & \cdots & \mathbf{y}\left(t_{K-1}\right)
\end{array}\right] \\
& \mathbf{U}_{0}=\left[\begin{array}{llll}
\mathbf{u}\left(t_{0}\right) & \mathbf{u}\left(t_{1}\right) & \cdots & \mathbf{u}\left(t_{K-1}\right)
\end{array}\right] \\
& \mathbf{Z}_{0}=\left[\begin{array}{llll}
\mathbf{z}\left(t_{0}\right) & \mathbf{z}\left(t_{1}\right) & \cdots & \mathbf{z}\left(t_{K-1}\right)
\end{array}\right] \\
& \mathbf{Z}_{1}=
\end{aligned} \quad\left[\begin{array}{llll}
\mathbf{z}\left(t_{1}\right) & \mathbf{z}\left(t_{2}\right) & \cdots & \mathbf{z}\left(t_{K}\right)
\end{array}\right]=f_{\mathbf{z}}\left(\mathbf{Z}_{0}, \mathbf{U}_{0}\right) . .
$$

Algorithm

Find the best $\mathbf{A}_{\mathbf{z}}, \mathbf{B}_{\mathbf{z}}, \mathbf{C}_{\mathbf{z}}, \mathbf{D}_{\mathbf{z}}$ such that

$$
\begin{aligned}
\mathbf{z}\left(t_{i+1}\right) & =f_{\mathbf{z}}\left(\mathbf{z}\left(t_{i}\right), \mathbf{u}\left(t_{i}\right)\right) \approx \begin{aligned}
\mathbf{z}\left(t_{i+1}\right) & \left.=\mathbf{A}_{\mathbf{z}} \mathbf{z}\left(t_{i}\right)+\mathbf{B}_{\mathbf{z}} \mathbf{u}\left(t_{i}\right)\right) \\
\mathbf{y}\left(t_{i}\right) & =\mathbf{1}_{J+1} \mathbf{z}\left(t_{i}\right)
\end{aligned}=\mathbf{C}_{\mathbf{z}} \mathbf{z}\left(t_{i}\right)+\mathbf{D}_{\mathbf{z}} \mathbf{u}\left(t_{i}\right) \\
\Phi=\left[\begin{array}{ll}
\mathbf{A}_{\mathbf{z}} & \mathbf{B}_{\mathbf{z}} \\
\mathbf{C}_{\mathbf{z}} & \mathbf{D}_{\mathbf{z}}
\end{array}\right] & =\underset{\hat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\mathbf{c}}, \hat{\mathbf{D}}}{\operatorname{argmin}}\left\|\left[\begin{array}{l}
\mathbf{Z}_{1} \\
\mathbf{Y}_{0}
\end{array}\right]-\left[\begin{array}{ll}
\hat{\mathbf{A}} & \hat{\mathbf{B}} \\
\hat{\mathbf{C}} & \hat{\mathbf{D}}
\end{array}\right]\left[\begin{array}{l}
\mathbf{Z}_{0} \\
\mathbf{U}_{0}
\end{array}\right]\right\|_{F} \Longrightarrow \Phi=\left[\begin{array}{l}
\mathbf{Z}_{1} \\
\mathbf{Y}_{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{Z}_{0} \\
\mathbf{U}_{0}
\end{array}\right]^{\dagger}
\end{aligned}
$$

Can we interpret WDMD as EDMD analytically?

Without loss of generality, let $t_{i+1}=t_{i}+\Delta t$.
Assume there is no input: $\mathbf{u}(t)=0$.

- In WDMD we use the auxiliary state data $\mathbf{z}\left(t_{i}\right)=\{$

$$
\left\{\left[\begin{array}{c}
d_{1}^{(i)}(\mathbf{Y}) \\
\vdots \\
\left.d_{J}^{(i)} \mathbf{Y}\right) \\
s_{J}^{(i)}(\mathbf{Y})
\end{array}\right]\right\}
$$

- EDMD requires observable evaluations:

$$
\begin{equation*}
\left\{\psi_{j}\left(\mathbf{x}\left(t_{i}\right)\right)\right\} \approx\left\{d_{j}^{(i)}(\mathbf{Y})\right\} \tag{2}
\end{equation*}
$$

How to choose the right observables ψ_{j} to satisfy (2)?

Observables for WDMD

- Wavelet Transform:

$$
\omega_{j}^{k}(\mathbf{y}(t))=\frac{1}{2^{j / 2}} \int_{-\infty}^{\infty} \Psi_{j}^{k}(t) \mathbf{y}(t) d t \rightarrow \mathbf{y}(t)=\sum_{k} \sum_{j} \omega_{j}^{k} \Psi_{j}^{k}(t)
$$

- Define the WDMD observables: $\psi_{j}(\mathbf{x}(t))=\omega_{j}^{0}(\mathbf{y}(t)) \psi_{j}^{0}(t)$

$$
\mathcal{K}\left[\psi_{j}\right](\mathbf{x}(t))=\omega_{j}^{0}(\mathbf{y}(t+\Delta t)) \Psi_{j}^{0}(t+\Delta t)=\omega_{j}^{1}(\mathbf{y}(t)) \Psi_{j}^{1}(t)
$$

- Approximate by MODWT:

$$
\psi_{j}(\mathbf{x}(t))=\omega_{j}^{0}(\mathbf{y}(t)) \Psi_{j}^{0}(t) \approx d_{j}^{(0)}(\mathbf{Y}) \text { and } s_{J}^{(0)}(\mathbf{Y})
$$

Lemma: WDMD as EDMD

Assume we are given only the time series data $\mathbf{Y}=\left[\begin{array}{lll}\mathbf{y}\left(t_{0}\right) & \cdots & \mathbf{y}\left(t_{T}\right)\end{array}\right]$ from an unknown input-output dynamical system with forcing $\mathbf{u}(t) \in \mathbb{R}^{M}$ with state $\mathbf{x}(t) \in \mathbb{R}^{N}$.

$$
\begin{aligned}
& \dot{\mathbf{x}}(t)=f(\mathbf{x}(t), \mathbf{u}(t)) \\
& \mathbf{y}(t)=\mathbf{C x}(t) .
\end{aligned}
$$

Then WDMD can be interpreted as a specific case of EDMD algorithm where the observables are chosen as

$$
\psi_{j}(\mathbf{x})=\omega_{j}^{0}(\mathbf{y}(t)) \Psi_{j}^{0}(t)=\left(\frac{1}{2^{j / 2}} \int_{-\infty}^{\infty} \Psi_{j}^{k}(t) \mathbf{y}(t) d t\right) \psi_{j}^{0}(t)
$$

Moreover if we let $d_{j}(\mathbf{Y})$ and $s_{j}(\mathbf{Y})$ be the MODWT coefficients for the time series \mathbf{Y} we can approximate these observables $\psi_{j}(\mathbf{x})$ as

$$
\psi_{j}(\mathbf{x}) \approx d_{j}^{(0)}(\mathbf{Y}) \quad \text { and } \quad \psi_{J+1}(\mathbf{x}(t)) \approx s_{j}^{(0)}(\mathbf{Y})
$$

Table of Contents

(1) Extended Dynamic Mode Decomposition and Koopman Operator

(2) Understanding Wavelet-based Dynamic Mode Decomposition as EDMD

(3) Numerical Results

SIR Model

The SIR model is given as

$$
\begin{aligned}
& \frac{d S}{d t}=-\frac{\beta S I}{N} \\
& \frac{d I}{d t}=\frac{\beta S I}{N}-\gamma I \\
& \frac{d R}{d t}=\gamma I
\end{aligned}
$$

- $S(0)=90, I(0)=10$ and $R(0)=0$.
- $N=S(0)+I(0)+R(0)=100$.
- We compare WDMD to delay DMD [YZWL21].

Numerical Results on the SIR Model

Figure: Fully Observed System with Noise, J = 2

Results

Figure: Partially Observed System with Noise, J = 5

Conclusions and Future Work

- We analytically connected WDMD to EDMD
- Observables are obtained via the Wavelet transform
- Future work:
- A more through analysis of the impact of WDMD on noisy data
- A more detailed comparison with other methods such as Delay DMD.
- Incorporating the input $\mathbf{u}(t)$ and working with a bilinear model

References

- M. Krishnan, S. Gugercin, and P. Tarazaga (2022). Mechanical Systems and Signal Processing.
- J. Tu, C. Rowley, D. Luchtenburg, S. Brunton, and N. J. Kutz, "On dynamic mode decomposition: Theory and applications," Journal of Computational Dynamics, vol. 1, no. 2, pp. 391-421, 2014.
- D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis, vol. 4. Cambridge University Press, 2000.
- Williams, Matthew \& Kevrekidis, loannis \& Rowley, Clarence. (2014). A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition. Journal of Nonlinear Science.

References

- P. J. Schmid. "Dynamic mode decomposition of numerical and experimental data." Journal of fluid mechanics, vol. 656, pp. 5-28, 2010.
- Rowley, Clarence W., Igor Mezić, Shervin Bagheri, Philipp Schlatter and Dan S. Henningson. "Spectral analysis of nonlinear flows." Journal of Fluid Mechanics 641 (2009): 115-127.
- P. Benner, C. Himpe, and T. Mitchell, "On Reduced Input-Output Dynamic Mode Decomposition," Advances in Computational Mathematics, vol. 44, pp. 1751-1768, Dec 2018.
- Y. Yuan, K. Zhou, W. Zhou, X. Wen, and Y. Liu, "Flow prediction using dynamic mode decomposition with time-delay embedding based on local measurement," Physics of Fluids, vol. 33, no. 9, p. 095109, 2021.

Recovering Eigenpairs of \mathcal{K} (if K is given)

Assume we have $\phi_{j} \approx \sum_{k=1}^{K} \psi_{k} \xi_{k j}=\psi^{T} \xi_{j}$ and recall $\mathcal{K}[\varphi] \approx \psi^{T} \mathbf{K a}$ so

$$
\mathcal{K}\left[\phi_{j}\right] \approx \mathcal{K}\left[\sum_{k=1}^{K} \psi_{k} \xi_{k j}\right]=\sum_{k=1}^{K} \mathcal{K}\left[\psi_{k}\right] \xi_{k j} \approx \psi^{T} \mathbf{K} \xi_{j}
$$

Since $\mathcal{K}\left[\phi_{j}\right]=\mu_{j} \phi_{j} \approx \psi^{T} \mu_{j} \xi_{j}$, we have

$$
\psi^{T} \mathbf{K} \xi_{j} \approx \mathcal{K}\left[\phi_{j}\right] \approx \psi^{T} \mu_{j} \xi_{j}, \quad \psi=\left[\begin{array}{llll}
\psi_{1} & \psi_{2} & \cdots & \psi_{K}
\end{array}\right]^{T} .
$$

$\left(\mu_{j}, \xi_{j}\right)$: eigenpairs of $\mathbf{K} \rightarrow\left(\mu_{j}, \psi^{\top} \xi_{j}\right)$: approximate eigenpairs of \mathcal{K}.

In matrix form: $\bar{\Xi}_{i j}=\xi_{i j}, \mathbf{w}_{j}:=$ left eigenvectors of \mathbf{K} and $\mathbf{w}_{i}^{*} \xi_{j}=\delta_{i j}$.

$$
\psi^{T} \equiv \approx \phi^{T} \Longleftrightarrow \psi^{T} \approx \phi^{T} \mathbf{W}^{*}, \quad \mathbf{W}=\left[\begin{array}{llll}
\mathbf{w}_{1} & \mathbf{w}_{2} & \cdots & \mathbf{w}_{K}
\end{array}\right]
$$

Recovering Koopman Modes

Approximate the full state observable, $\mathbf{g}(\mathbf{x})=\mathbf{x}$, as

$$
g_{n}=e_{n}^{T} \approx \sum_{k=1}^{K} b_{k n} \psi_{k}, \quad \mathbf{g}=\left[\begin{array}{llll}
g_{1} & g_{2} & \cdots & g_{N}
\end{array}\right]^{T}
$$

In the matrix format we have

$$
\mathbf{g} \approx \mathbf{B}^{T} \psi, \quad \mathbf{B}_{i j}=b_{i j}
$$

Use $\phi^{T} \mathbf{W}^{*} \approx \psi^{T}$ to recover the Koopman modes ν_{i} as rows of $\mathbf{W}^{*} \mathbf{B}$:

$$
\mathbf{g} \approx \mathbf{B}^{T} \psi \approx \mathbf{B}^{T} \mathbf{W} \phi
$$

Recall that ν_{i} is defined as $\mathbf{g}=\sum_{i=1}^{L} \nu_{i} \phi_{i}=\mathbf{V} \phi$.
But how do we obtain K?

Proof for WDMD as EDMD

We need to prove: $\left\{\psi_{j}\left(\mathbf{x}\left(t_{i}\right)\right)\right\} \approx\left\{d_{j}^{(i)}(\mathbf{Y})\right\}$ and the minimization problems being equivalent.

- Observables conforming to data $\psi_{j}\left(\mathbf{x}\left(t_{i}\right)\right)=\mathcal{K}^{i}\left[\psi_{j}\right]\left(\mathbf{x}\left(t_{0}\right)\right)$: For $i=0$ we have the approximation by MODWT. Then for $i=1, \cdots, T$ we have

$$
\begin{aligned}
& \omega_{j}^{0}(\mathbf{C} \mathbf{x}(t+i \Delta t))=\int_{-\infty}^{\infty} \Psi^{*}\left(\frac{t}{2^{j}}\right) \mathbf{y}(t+i \Delta t) d t= \\
& =\int_{-\infty}^{\infty} \psi^{*}\left(\frac{\hat{t}-i \Delta t}{2^{j}}\right) \mathbf{y}(\hat{t}) d \hat{t}=\int_{-\infty}^{\infty} \Psi_{j}^{i}(\hat{t}) \mathbf{y}(\hat{t}) d \hat{t}=\omega_{j}^{i}(\mathbf{C} \mathbf{x}(t))
\end{aligned}
$$

- Minimization problems are equivalent: The EDMD minimization problem for this choice of observables becomes

$$
\underset{\hat{\mathbf{K}}}{\operatorname{argmin}}\left\|\mathbf{Z}_{1}^{T}-\mathbf{Z}_{0}^{T} \hat{\mathbf{K}}\right\|_{F} \equiv \underset{\widetilde{\mathbf{K}}}{\operatorname{argmin}}\left\|\mathbf{Z}_{1}-\widetilde{\mathbf{K}}^{T} \mathbf{Z}_{0}\right\|_{F}
$$

