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Structured Physical Systems are Everywhere!

(a) Dojo [Howell et al., 2022] (b) Atmospheric river [Laurtizen et al., 2022]

Physical systems have interesting properties like conservation laws,
symplecticity, reversibility or configuration space structure

Structure-preserving methods preserve underlying geometric structure

Conserve discrete quantities which are close to continuous quantity
Reproduce long-time behavior

Long-time numerical simulation of large-scale systems using
structure-preserving methods is computationally prohibitive

Need for physics-preserving surrogate models
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Problem Setting

Lagrange-d’Alembert principle

δB(q) = δ

∫ tK

t0

L(q, q̇) dt +

∫ tK

t0

f(q, q̇, t) · δq dt = 0

Nonlinear wave equations

Lagrangian full-order models

Mechanical systems

Sine-Gordon equationSoft-robotic fishtail
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Mechanical Systems with Nonconservative Forcing

Forced Euler-Lagrange equations

∂L(q, q̇)

∂q
− d

dt

(
∂L(q, q̇)

∂q̇

)
+ f(q, q̇, t) = 0

Full-order model (FOM) governing equations

Mq̈(t) + Cq̇(t) + Kq(t) = Bu(t)

along with the output equation

y(t) = Eq(t)

Key features
1 Lagrangian symplectic structure
2 Symmetric positive-definite property of system matrices
3 Energy conservation for conservative mechanical systems

Goal: Learning Lagrangian reduced-order models (ROMs) nonintrusively
from data without assuming access to FOM operators
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Related Work

1 Intrusive structure-preserving model reduction for Lagrangian systems
([Lall et al., 2004], [Carlberg et al., 2015])
Drawback: Requires access to FOM operators

2 Structure-preserving neural networks ([Cranmer et al., 2019], [Lutter
et al., 2019], [Gupta et al., 2020])
Drawback: Ill-suited for high-dimensional systems

3 Nonintrusive model reduction via operator inference (OpInf)

Operator inference for nonlinear systems ([Peherstorfer and Willcox,
2016], [Benner et al., 2020] )
Lift & Learn ([Qian et al., 2020], [Swischuk et al., 2020] )

Drawback: Does not preserve the Lagrangian structure

Key idea: Embed Lagrangian structure into OpInf framework
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Problem Formulation: FOM Data

Given: Snapshot data matrices from Lagrangian FOM simulations

Q = [q1, · · · ,qK ] ∈ Rn×K

Output snapshot matrix

Y = [y1, · · · , yK ] ∈ Rp×K

Input snapshot matrix

U = [u(t1), · · · ,u(tK )] ∈ Rm×K

Next step: Project FOM data onto low-dimensional subspaces
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Problem Formulation: Projection

Computing POD basis via SVD

Q = VΞW>

where V ∈ Rn×n, Ξ ∈ Rn×n, and W ∈ RK×n

Projecting FOM data to obtain reduced snapshot data

Q̂ = V>r Q = [q̂1, · · · , q̂K ] ∈ Rr×K

Reduced time-derivative data

˙̂Q = [ ˙̂q1, · · · , ˙̂qK ] ∈ Rr×K , ¨̂Q = [¨̂q1, · · · , ¨̂qK ] ∈ Rr×K

Next step: Fit reduced operators to the projected trajectories in a
structure-preserving way
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Problem Formulation: Model Form for Learning ROM

Reduced Lagrangian with reduced mass matrix M̂ = Ir

L̂r (q̂, ˙̂q) =
1

2
˙̂q> ˙̂q− 1

2
q̂>K̂q̂,

Reduced forcing
f̂(q̂, ˙̂q, t) = Ĉ ˙̂q− B̂u(t)

Model form for learning Lagrangian ROMs based on L̂r (q̂, ˙̂q)

¨̂q(t) + Ĉ ˙̂q(t) + K̂q̂(t) = B̂u(t)

along with the reduced output equation

y(t) = Êq̂(t)

Model form ensures that the reduced models are Lagrangian
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Novel Operator Inference for Mechanical Systems

Constrained optimization problem to compute Ĉ ∈ Rr×r , K̂ ∈ Rr×r ,
and B̂ ∈ Rr×m

min
K̂=K̂

>�0,Ĉ=Ĉ
>�0,

B̂

|| ¨̂Q + Ĉ ˙̂Q + K̂Q̂− B̂U||F

where the specific choice of M̂ simplifies the constrained inference
problem ([Gosea, Gugercin, and Werner, 2023])

Separate linear least-squares problem to compute Ê ∈ Rp×r

min
Ê
||Y− ÊQ̂||F

Constrained optimization problem solved using the semidefinite
programming mode in CVX1

Structure-preserving learning of ROMs via hard constraints
1

M. Grant and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, 2014
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Novel Operator Inference for Nonlinear Wave Equations

L(x , q, qx , qt) =
1

2

((
∂q

∂t

)2

−
(
∂q

∂x

)2
)
− Unl(q)

Use knowledge about the nonlinear potential energy Unl at the PDE
level to build the nonlinear forcing snapshot data matrix

Fnl = [fnl(q1), · · · , fnl(qK )] ∈ Rn×K

Projecting FOM snapshot data Q and forcing snapshot data Fnl

Q̂ = V>r Q ∈ Rr×K , F̂nl = V>r Fnl ∈ Rr×K

Constrained optimization problem to compute K̂ ∈ Rr×r

min
K̂=K̂

>
‖ ¨̂Q− F̂nl − K̂Q̂‖F

Learned ROM operator K̂ respects the symmetric property
introduced during the structure-preserving spatial discretization
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Sine-Gordon Equation (n=2000): State Error

Nonlinear hyperbolic PDE with a nonpolynomial nonlinearity

∂2q

∂t2
=
∂2q

∂x2
− sin(q)
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Sine-Gordon Equation (n = 2000): Bounded Energy Error
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L-OpInf ROM r = 14
Intrusive Lagrangian ROM r = 14

Preserving Lagrangian structure yields stable ROMs with bounded
energy error far outside the training data regime
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Sine-Gordon Equation (n = 2000): Extrapolation in Time
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Accurate predictions 400% outside training time interval
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Soft-robotic Fishtail

Soft robotic fish2 designed to emulate escape responses in addition to
forward swimming because such maneuvers require rapid body
accelerations and continuum-body motion

Fish’s soft body is an array of fluidic elastomer actuators
2

A. D. Marchese, C. D. Onal, and D. Rus, Autonomous soft robotic fish capable of escape maneuvers using fluidic
elastomer actuators, Soft Robotics, 1 (2014), pp. 75–87.
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Fishtail CAD Model3

Main tubes Side tubes Chambers

(a) Fluid chamber system

Carbon center beam Silicon hull POI

(b) Complete fishtail model

ρ
∂2q(t, z)

∂t2
= ∇z · σ(t, z)

3
D. Siebelts, A. Kater, and T. Meurer, Modeling and motion planning for an artificial fishtail, IFAC-PapersOnLine, 51

(2018), pp. 319–324.
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Soft-robotic Fishtail (n = 779, 232): Sigmoid Input
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L-OpInf provides accurate predictions for forced mechanical systems
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Soft-robotic Fishtail (n = 779, 232): Step Input
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L-OpInf works well even for unknown control inputs
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Conclusions and Ongoing Work

Lagrangian operator inference:

ensures reduced models are Lagrangian systems
respects the structure of system matrices

Numerical results

Accurate long-time predictions far outside the training data regime
Robust to unknown control inputs
Stable ROMs with bounded FOM energy error

Discussion about open research directions
1 How to tackle unknown nonlinear terms?
2 Theoretical results about stability and bounds on the FOM energy error
3 Using lifting transformations in a structure-preserving way

Ongoing work
1 Combination with structure-preserving machine learning techniques to

learn nonlinear potential energy terms from data
2 Using data-driven quadratic manifold approximations for

structure-preserving model reduction of transport-dominated problems
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Thank you!

Preserving Lagrangian structure in data-driven reduced-order
modeling of large-scale mechanical systems
Sharma, H., Kramer, B., arXiv:2203.06361

Symplectic model reduction of Hamiltonian systems using
data-driven quadratic manifolds
Sharma, H., Mu, H., Buchfink, P., Geelen, R., Glas, S., Kramer, B.,
arXiv:2305.15490

Hamiltonian operator inference: Physics-preserving learning of
reduced-order models for canonical Hamiltonian systems
Sharma, H., Wang, Z., Kramer, B., Physica D: Nonlinear Phenomena,
Volume 431, 2022, 13312

Bayesian Identification of Nonseparable Hamiltonian Systems
Using Stochastic Dynamic Models
Sharma, H., Galioto, N., Gorodetsky, A., Kramer, B., 2022 61st IEEE
Conference on Decision and Control (CDC)
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