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Problem setting
Consider an input-output system :

 −→  −→ y

and a time-invariant asymptotically stable state space
realization

̇ = ƒ () + g()
y = h() (∗)

Assume that (∗) is a valid state space realization of  about
0.
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Problem setting
Questions treated here:

• How to reduce the order of (∗) such that it is useful for
control purposes?

• When is (∗) of minimal order?
• When is (∗) in balanced form?
• Is there a relation with the Hankel operator?
• What if (∗) is unstable?
• Can we use some duality notion for observability and

controllability?
• Can we preserve certain structures: energy, network,....?
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Problem setting
Many large scale modeling examples such as

> Electrical circuit simulators (VLSI design, etc.)

> Any model stemming from spatial discretization
procedures such as

• transmission line, Maxwell equations

• piezoelectric material

• Ovens, (bio-)chemical processes, etc.

• Flexible beams, plates, etc..

> .....
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Model order reduction methods
Ad hoc model order reduction methods are often applied,
i.e., modeler decides based upon physical and engineering
intuition.
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Model order reduction methods
Ad hoc model order reduction methods are often applied,
i.e., modeler decides based upon physical and engineering
intuition.

For us, roughly a division in two branches (see book
Antoulas)

> Moment matching approaches (Krylov, Lanczos, Arnoldi,
etc.) based upon series expansion of the transfer matrix,
and then matching the moments for a certain frequency
up to a certain order.

> Singular value decomposition based methods: balancing
procedures.
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Model reduction for control
Important to realize: purpose of the model order reduction:
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What are the considerations?
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Model reduction for control
Important to realize: purpose of the model order reduction:

Model reduction for control.

What are the considerations?

> Controller design is based upon model of system. In
general: size of controller is same as size of model,
potentially hampering implementation of the controller.

> Part of system that is not controllable or observable does
not show in input-output characteristics of equations.
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Model reduction for control
Important to realize: purpose of the model order reduction:

Model reduction for control.

What are the considerations?

> Controller design is based upon model of system. In
general: size of controller is same as size of model,
potentially hampering implementation of the controller.

> Part of system that is not controllable or observable does
not show in input-output characteristics of equations.

Not necessarily the same consideration as model reduction
for simulation purposes.
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SVD and moment matching

> Moment matching numerically easier to implement,
faster computations. However, no error bound, and no
direct relation to minimality (controllability and
observability) considerations.
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SVD and moment matching

> Moment matching numerically easier to implement,
faster computations. However, no error bound, and no
direct relation to minimality (controllability and
observability) considerations.

> Balancing is based upon the singular values of the Hankel
operator. Computationally more tedious, and thus type
of systems that can be handled are smaller. However, a
priori error bound exists, and direct relation to minimality.

Focus of this course: Balancing
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Overview

> Linear systems:

• Balancing for asymptotically stable linear systems

• Model order reduction by truncation

> Nonlinear systems:

• Energy functions and minimality

• State space balanced realizations

• Model reduction

• Hankel operator considerations
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Stable linear systems
Continuous-time, causal linear input-output system  : → y
with impulse response H(t).

If  is also BIBO stable then the system Hankel operator:

H : Lm2 [0,+∞)→ Lp2[0,+∞)

: ̂→ ŷ(t) =
∫ ∞

0
H(t + τ)̂(τ)dτ.
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Stable linear systems
Continuous-time, causal linear input-output system  : → y
with impulse response H(t).

If  is also BIBO stable then the system Hankel operator:

H : Lm2 [0,+∞)→ Lp2[0,+∞)

: ̂→ ŷ(t) =
∫ ∞

0
H(t + τ)̂(τ)dτ.

Time flipping operator F : Lm2 [0,+∞)→ Lm2 (−∞,0]
û

t t

u

⇒
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Stable linear systems
Continuous-time, causal linear input-output system  : → y
with impulse response H(t).

If  is also BIBO stable then the system Hankel operator:

H : Lm2 [0,+∞)→ Lp2[0,+∞)

: ̂→ ŷ(t) =
∫ ∞

0
H(t + τ)̂(τ)dτ.

Time flipping operator F : Lm2 [0,+∞)→ Lm2 (−∞,0]
û

t t

u

⇒

H(̂) =  ◦F(̂)
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The Hankel operator
When H is compact, then its (Hilbert) adjoint operator, H∗, is
also compact, and H∗H, is a self-adjoint compact operator :

H∗H =
∞
∑

=1

σ2 〈·, ψ〉L2 ψ, σ ≥ 0,

〈ψ, ψj〉L2 = δj, 〈ψ, (H∗H)(ψ)〉L2 = σ2 .

where σ2 is an eigenvalue of H∗H with corresponding
eigenvector ψ, ordered as σ1 ≥ · · · ≥ σn > 0.

σ1, . . . , , σn are the Hankel singular values of .
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State space formulation
Let (A,B,C) be a state space realization of  with dimension
n,

̇ = A + B,
y = C

where  ∈ Rm,  ∈ Rn and y ∈ Rp. Assume that (A,B,C) is as.
stable and minimal (controllable and observable).

Then H = OC, where the controllability and observability
operators are

C : Lm2 [0,+∞)→ Rn : ̂→
∫ ∞

0
eAtB̂(t)dt

O : Rn → Lp2[0,+∞) : → ŷ(t) = CeAt.
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Energy functions

Lc(0) = min
 ∈ L2(−∞,0)

(−∞) = 0, (0) = 0

1

2

∫ 0

−∞
‖ (t) ‖2 dt

Minimum amount of control energy necessary to reach state
0. Lc is the so-called controllability function.
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Energy functions

Lc(0) = min
 ∈ L2(−∞,0)

(−∞) = 0, (0) = 0

1

2

∫ 0

−∞
‖ (t) ‖2 dt

Minimum amount of control energy necessary to reach state
0. Lc is the so-called controllability function.

Lo(0) =
1

2

∫ ∞

0
‖ y(t) ‖2 dt, (0)=0

(τ)=0, 0≤τ<∞

Output energy generated by state 0.
Lo is the so-called observability function.
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Gramians
Theorem: Consider (A,B,C). Then Lc(0) =

1
2

T
0P
−10 and

Lo(0) =
1
2

T
0Q0, where P =

∫∞
0 eAtBBTeA

T tdt is the

controllability Gramian and Q =
∫∞
0 eA

T tCTCeAtdt is the
observability Gramian.

Furthermore P = PT > 0 and Q = QT > 0 are unique solutions
of the Lyapunov equations

AP + PAT = −BBT

and
ATQ + QA = −CTC.
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Gramians and operators
For any 1, 2 ∈ Rn:

< 1, CC∗2 > = T1

∫ ∞

0
eAtBBTeA

T tdt 2 = T1P2

< 1,O∗O2 > = T1

∫ ∞

0
eA

T tCTCeAtdt 2 = T1Q2.

and the relation with the energy functions is given as

Lc() =
1

2
TP−1 =

1

2
〈, (CC∗)−1〉

Lo() =
1

2
TQ =

1

2
〈, (O∗O)〉.
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Balanced realization
Theorem: (Moore 1981) The eigenvalues of QP are
similarity invariants, i.e., they do not depend on the choice
of the state space coordinates. There exists a state space
representation where

 := Q = P =





σ1 0
. . .

0 σn





with σ1 ≥ σ2 ≥ ... ≥ σn > 0 the square roots of the
eigenvalues of QP.

The system is in balanced form. The σ’s, i=1,..,n, equal
the Hankel singular values.
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Hankel norm
The Hankel norm of the system:

‖ G ‖2H=mx
 ∈ Rn

 6= 0

Lo()

Lc()
=mx

 ∈ Rn

 6= 0

TQ

TP−1
=mx

̄ ∈ Rn

̄ 6= 0

̄T2̄

̄T ̄
= σ21 ,

where G = C(s − A)−1B. The other Hankel singular values
may be characterized inductively in a similar way.
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Hankel norm
The Hankel norm of the system:

‖ G ‖2H=mx
 ∈ Rn

 6= 0

Lo()

Lc()
=mx

 ∈ Rn

 6= 0

TQ

TP−1
=mx

̄ ∈ Rn

̄ 6= 0

̄T2̄

̄T ̄
= σ21 ,

where G = C(s − A)−1B. The other Hankel singular values
may be characterized inductively in a similar way.

Theorem: If (A,B,C) is asymptotically stable, then the
realization is minimal if and only if P > 0 and Q > 0.

16



Date 21.05.2023

Question
What is the meaning of a small Hankel singular value:

a). Well controllable and observable

b). Well controllable, badly observable

c). Badly controllable and observable
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Question
What is the meaning of a small Hankel singular value:

a). Well controllable and observable

b). Well controllable, badly observable

c). Badly controllable and observable

Minimality⇔ controllable and observable. No pole-zero
cancellation. Useful for model reduction.

17
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Model reduction by truncation

L̄c(̄0) =
1
2 ̄

T
0
−1̄0 and L̄o(̄0) =

1
2 ̄

T
0̄0.

Small σ, then amount of control energy required to reach
̃ = (0, . . . ,0, ,0, . . . ,0) is large, and generated output
energy is small → badly controllable and observable,
almost non-minimal, almost pole-zero cancellation.
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Model reduction by truncation

L̄c(̄0) =
1
2 ̄

T
0
−1̄0 and L̄o(̄0) =

1
2 ̄

T
0̄0.

Small σ, then amount of control energy required to reach
̃ = (0, . . . ,0, ,0, . . . ,0) is large, and generated output
energy is small → badly controllable and observable,
almost non-minimal, almost pole-zero cancellation.

Hence, if σk � σk+1, k+1 to n can be removed. Partition
system accordingly

A =
�

A11 A12
A21 A22

�

, B =
�

B1
B2

�

, C =
�

C1 C2
�

,

1 = (1, . . . , k)T , 2 = (k+1, . . . , n)T ,  =
�

1 0
0 2

�

,

where 1 = dig(σ1, . . . , σk) and 2 = dig(σk+1, . . . , σn).
18



Date 21.05.2023

Properties reduced order models
Theorem: Both subsystems (A, B, C),  = 1,2, are again in
balanced form, and their controllability and observability
Gramians are equal to ,  = 1,2.

Theorem: Assume that σk > σk+1. Then both subsystems
(A, B, C),  = 1,2, are asymptotically stable.
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Properties reduced order models
Theorem: Both subsystems (A, B, C),  = 1,2, are again in
balanced form, and their controllability and observability
Gramians are equal to ,  = 1,2.

Theorem: Assume that σk > σk+1. Then both subsystems
(A, B, C),  = 1,2, are asymptotically stable.

H∞-norm of G(s) = C(s − A)−1B is

‖G‖∞ = sp
ω∈R

λ
1
2
mx(G(−jω)TG(jω)).

Denote G̃(s) = C1(s − A11)−1B1, then

Theorem: Error bound (Glover 1984)
‖G − G̃‖H ≤ ‖G − G̃‖∞ ≤ 2(σk+1 + · · · + σn).
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Singular perturbation reduction

Set ̇2 = 0 (thus interpreting 2 as a very fast stable state,
which may be approximated by a constant function of 1

and ), then.
2 = −A−122

�

A211 + B2
�

.

Substitution leads to a reduced order model (Â, B̂, Ĉ)

Â := A11 − A12A−122A21
B̂ := B1 − A12A−122B2
Ĉ := C1 − C2A−122A21

For (Â, B̂, Ĉ) same properties hold as for truncated reduced
order model. Intermediate forms by (Heuberger 1990).
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Balancing for stable linear systems

> Non-minimal state space realizations: zero Hankel
singular values → tool in e.g. system identification.

> Balancing "equally" weights frequencies. Frequency
weighting is used to deal with this → next week.

> Standard tool in matlab, "balreal", etc.

21



Date 21.05.2023

Balancing for stable linear systems

> Non-minimal state space realizations: zero Hankel
singular values → tool in e.g. system identification.

> Balancing "equally" weights frequencies. Frequency
weighting is used to deal with this → next week.

> Standard tool in matlab, "balreal", etc.
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Other types of balancing

> LQG balancing

> Coprime balancing

> H∞ balancing

> Positive and bounded real balancing

> Structure preserving balanced reduction techniques such
as

• port-Hamiltonian system structure

• consensus network structure

• gradient system structure

Generalized and extended balancing

22
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Some literature
> Many of the linear methods up to 2005: A.C. Antoulas, Approximation of

Large-Scale Dynamical Systems, SIAM, Philadelphia, 2005.

> Overview of reduction methods for networks: X. Cheng, J.M.A. Scherpen, Model

Reduction Methods for Complex Network Systems. In NE Leonard (ed.), Annual

Review of Control Robotics and Autonomous Systems, Vol. 4, Annual Reviews,

425-453 (2021) https://doi.org/10.1146/annurev-control-061820-083817

> port-Hamiltonian structure preservation, e.g.,

• R. Polyuga and A. J. van der Schaft. Structure preserving model reduction of

port-Hamiltonian systems. In Proc. 18th Int. Symposium on Mathematical

Theory of Networks and Systems, 2008.
• P. Borja, J.M.A. Scherpen, K. Fujimoto, Extended Balancing of Continuous LTI

Systems: a Structure-preserving Approach, IEEE Trans. Aut. Contr., 2022.
• .......
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Overview

> Linear systems:

• Balancing for asymptotically stable linear systems

• Model order reduction by truncation

> Nonlinear systems:

• Energy functions and minimality

• State space balanced realizations

• Model reduction

• Hankel operator considerations
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Background
• For nonlinear systems model reduction often done

on “ad hoc” basis, i.e., dependent on application.

• Maybe most frequently used is model reduction based
on singular perturbation,(e.g., Jardon/Scherpen 2017).
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Background
• For nonlinear systems model reduction often done

on “ad hoc” basis, i.e., dependent on application.

• Maybe most frequently used is model reduction based
on singular perturbation,(e.g., Jardon/Scherpen 2017).

• Proper Orthogonal Decomposition, Karhoenen-Loève
expansions, empirical balancing (e.g., Lall et. al., 2002)

⇒ data-based linear projection methods (based on
SVD), while taking nonlinearities into account.

• Moment matching approach extended to nonlinear
systems by Astolfi et al. (since 2010), with a signal generator and
the internal model approach.
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Today
• “Analytical” methods based on nonlinear extension of

balancing theory ⇒ Topic of today, with focus on
balancing around a stable equilibrium.

Not treated: work of Besselink et al. (incremental
balancing), Kawano et al. (differential balancing), Ionescu et
al. (dissipativity based), etc.

26
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The controllability and observability
function
Smooth system

̇ = ƒ () + g()
y = h()

Assumptions:

> ƒ (0) = 0, 0 as. stable eq. point for  = 0,  ∈W.

> h(0) = 0.

> Controllability function Lc and observability function Lo
smooth and exist.

27
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Gramian extensions
Controllability function:

Lc(0) = min
 ∈ L2(−∞,0)

(−∞) = 0, (0) = 0

1

2

∫ 0

−∞
‖ (t) ‖2 dt

Observability function:

Lo(0) =
1

2

∫ ∞

0
‖ y(t) ‖2 dt, (0)=0

(τ)=0, 0≤τ<∞

28
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Characterization of these functions
Are you familiar with the characterization of the
observability function?
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Characterization of these functions
Are you familiar with the characterization of the
observability function?

And of the controllability function? Do you recognize this as
an optimal control problem?

29
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Observability function
• Lo() is unique smooth solution of Lyapunov type of

equation

∂Lo
∂ ()ƒ () +

1
2h

T()h() = 0, Lo(0) = 0.

30
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Observability function
• Lo() is unique smooth solution of Lyapunov type of

equation

∂Lo
∂ ()ƒ () +

1
2h

T()h() = 0, Lo(0) = 0.

How to obtain?

Assume Ľo() is solution on W.

Lo(0) = 1
2

∫∞
0 ‖y(t)‖

2dt = 1
2

∫∞
0 hT ((t))h((t))dt

= −
∫∞
0

∂Ľo
∂ ((t))ƒ ((t))dt = −

∫∞
0

d
dt Ľo((t))dt

= −Ľo((∞)) + Ľo((0)) = Ľo(0), ∀0 ∈W,

since (0) = 0 and (∞) = 0 by the asymptotic stability of ƒ ().
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Observability function
• Lo() is unique smooth solution of Lyapunov type of

equation

∂Lo
∂ ()ƒ () +

1
2h

T()h() = 0, Lo(0) = 0.
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Observability function
• Lo() is unique smooth solution of Lyapunov type of

equation

∂Lo
∂ ()ƒ () +

1
2h

T()h() = 0, Lo(0) = 0.

How to obtain? Vice versa:

Lo((t)) =
1

2

∫ ∞

t
h((τ))Th((τ))dτ, (τ) ≡ 0, t ≤ τ <∞.

Differentiating with respect to the time t gives us:

dLo
dt ((t)) = −

1
2h((t))

Th((t)) =⇒ ∂Lo
∂ ()ƒ () +

1
2h

T ()h() = 0.
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Observability function
• Lo() is unique smooth solution of Lyapunov type of

equation

∂Lo
∂ ()ƒ () +

1
2h

T()h() = 0, Lo(0) = 0.

How to obtain? Vice versa:

Lo((t)) =
1

2

∫ ∞

t
h((τ))Th((τ))dτ, (τ) ≡ 0, t ≤ τ <∞.

Differentiating with respect to the time t gives us:

dLo
dt ((t)) = −

1
2h((t))

Th((t)) =⇒ ∂Lo
∂ ()ƒ () +

1
2h

T ()h() = 0.

Linear case: TQA + 1
2

TCTC = 0
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Controllability function
Lc() is unique smooth solution of Hamilton-Jacobi equation

∂Lc
∂ ()ƒ () +

1
2
∂Lc
∂ ()g()g

T () ∂
TLc
∂ () = 0, Lc(0) = 0

with −
�

ƒ () + g()gT () ∂
TLc
∂ ()

�

as. stable on W.
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Controllability function
Lc() is unique smooth solution of Hamilton-Jacobi equation

∂Lc
∂ ()ƒ () +

1
2
∂Lc
∂ ()g()g

T () ∂
TLc
∂ () = 0, Lc(0) = 0

with −
�

ƒ () + g()gT () ∂
TLc
∂ ()

�

as. stable on W.

Assume Ľc() smooth solution on W. Then

d
dt Ľc() = ∂Ľc

∂ ()̇ =
∂Ľc
∂ ()ƒ () +

∂Ľc
∂ ()g()

= − 12
∂Ľc
∂ ()g()g

T () ∂
T Ľc
∂ () +

∂Ľc
∂ ()g()

= 1
2 ‖‖

2 − 1
2 ‖ − g

T () ∂
T Ľc
∂ ()‖

2,

Thus

Ľc(0) ≤ 1
2

∫ 0
−∞ ‖(t)‖

2dt, ∀0 ∈W.

Hence with −
�

ƒ () + g()gT () ∂
TLc
∂ ()

�

as. stable on W, Ľc(0) = Lc(o).
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Controllability function
Lc() is unique smooth solution of Hamilton-Jacobi
equation

∂Lc
∂ ()ƒ () +

1
2
∂Lc
∂ ()g()g

T() ∂
TLc
∂ () = 0, Lc(0) = 0

with −
�

ƒ () + g()gT() ∂
TLc
∂ ()

�

as. stable on W.
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Controllability function
Lc() is unique smooth solution of Hamilton-Jacobi
equation

∂Lc
∂ ()ƒ () +

1
2
∂Lc
∂ ()g()g

T() ∂
TLc
∂ () = 0, Lc(0) = 0

with −
�

ƒ () + g()gT() ∂
TLc
∂ ()

�

as. stable on W.

Linear: TP−1A + TP−1BBTP−1 = 0, −(A + BBTP−1) as. stab. Verify!
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Contr. and obs. function
• Converse statements (about existence) also possible.

• Role of observability and controllability for linear
systems is replaced by zero-state observability
and asymptotic reachability (or anti-stabilizability).
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Contr. and obs. function
• Converse statements (about existence) also possible.

• Role of observability and controllability for linear
systems is replaced by zero-state observability
and asymptotic reachability (or anti-stabilizability).

•  is zero-state observable on W ⇐⇒ Lo(0) > 0,
∀0 ∈W, 0 6= 0.
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Contr. and obs. function
• Converse statements (about existence) also possible.

• Role of observability and controllability for linear
systems is replaced by zero-state observability
and asymptotic reachability (or anti-stabilizability).

•  is zero-state observable on W ⇐⇒ Lo(0) > 0,
∀0 ∈W, 0 6= 0.

•  is asymptotically reachable

(i.e., −
�

ƒ () + g()gT() ∂
TLc
∂ ()

�

is as. stable on W)
⇐⇒
Lc() > 0 for  ∈W,  6= 0.

34



Date 21.05.2023

Observability and reachability
Are you familiar with nonlinear notions?
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Observability
Observability and zero-state observability are different for
nonlinear systems. Recall that state is of influence in the
input vector field, i.e., the input also plays a role with
observability!
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Observability
Observability and zero-state observability are different for
nonlinear systems. Recall that state is of influence in the
input vector field, i.e., the input also plays a role with
observability!

Definition: The system is locally observable at 0 if there
exists a neighborhood W of 0 such that for every
neighborhood V ⊂ W of 0 the relation 0V1

(i.e., 0 and 1 are indistinguishable on V, i.e., starting from
0 or 1, apply same input, results in equal outputs)

implies that 1 = 0.
36
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Observability
Definition: If the system is locally observable at each 0
then it is called locally observable.

The system is called observable if 1M2 implies that
1 = 2.
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Observability
Definition: If the system is locally observable at each 0
then it is called locally observable.

The system is called observable if 1M2 implies that
1 = 2.

Definition: The observation space O is the linear space of
functions on M containing h1, . . . , hp, and all repeated Lie
derivatives LX1LX2 · · · LXkhj, for j = 1, . . . , p and with X,
 = 1,2, . . . in the set {ƒ , g1, . . . , gm}.
The observation space O defines the observability
codistribution dO, by setting dO() = spn{dH()|H ∈ O},
 ∈ M.
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Observability
If dim dO(0) = n, then the system is locally observable
at 0. If dimdO() = n for all  ∈ M then the system is
locally observable.

Converse results also available!
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Observability
If dim dO(0) = n, then the system is locally observable
at 0. If dimdO() = n for all  ∈ M then the system is
locally observable.

Converse results also available!

Notice role of input vector field g()! If  ≡ 0, then no g() ⇒
zero-state observability (i.e.,  ≡ 0, y ≡ 0⇒  ≡ 0).

Zero-state observation space O0 as O, but now with
X = ƒ ,  = 1,2, . . ..

Note that zero-state observability implies observability!
38
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Observability

> So far, observability function Lo defined for  ≡ 0, i.e.,
can be related to zero-state observability.
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Observability

> So far, observability function Lo defined for  ≡ 0, i.e.,
can be related to zero-state observability.

> Extension possible, i.e., general observability function is
defined as (Gray and Mesko)

LGo (0) = mx
∈L2(0,∞), ‖‖L2≤α
(0)=0, (∞)=0

1

2

∫ ∞

0
‖y(t)‖2 dt,

where α ≥ 0 is fixed. Assume existence and smoothness.
The natural observability function is defined as

LNo (0) = L
G
o (0) − L

G
o (0).
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(Strong) accessibility
No controllability characterization for nonlinear systems,
only accessibility and strong accessibility. Complete state
space is often not reachable, only a part.

RV(0, T): reachable set from 0 at time T > 0, following
the trajectories which remain in the neighborhood V of 0 for
t ≤ T.
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(Strong) accessibility
No controllability characterization for nonlinear systems,
only accessibility and strong accessibility. Complete state
space is often not reachable, only a part.

RV(0, T): reachable set from 0 at time T > 0, following
the trajectories which remain in the neighborhood V of 0 for
t ≤ T.

Definition: System is locally strongly accessible from 0
if for any neighborhood V of 0 the set RV(0, T) contains a
non-empty open set for any T > 0 sufficiently small. If this
holds for every 0 ∈ M then the system is locally strongly
accessible.
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(Strong) accessibility
Accessibility is less strong, i.e.,

System is locally accessible from 0 if
RVT (0) =

⋃

τ≤T R
V(0, τ) contains a non-empty open set of M

for all neighborhoods V of 0 and all T > 0. If this holds for
every 0 ∈ M then the system is called locally accessible.
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(Strong) accessibility

> Every element of C is linear combination of repeated Lie
brackets as

[Xk , [Xk−1, [ · · · , [X2, X1] · · · ]]]

where X ∈ {ƒ , g1, . . . , gm},  = 1,2, . . .

> Every element of C0 is linear combination of repeated Lie
brackets as

[Xk , [Xk−1, [ · · · , [X2, gj] · · · ]]] j = 1, . . . ,m

where X ∈ {ƒ , g1, . . . , gm},  = 2,3, . . ..
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(Strong) accessibility

> If dimC(0) = n, then system is locally accessible from
0. If dimC() = n for all  ∈ M then the system is locally
accessible.
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(Strong) accessibility

> If dimC(0) = n, then system is locally accessible from
0. If dimC() = n for all  ∈ M then the system is locally
accessible.

> If dimC0(0) = n, then system is locally strongly
accessible from 0.

> If dimC0() = n for all  ∈ M then the system is locally
strongly accessible.

Converse results available, see Nijmeijer/van der Schaft
1990/2016.

Are (strong) accessibility and asymptotic reachability the
same?

43



Date 21.05.2023

Minimality
Why are observability and accessibility important?

> Still certain minimality characterization, i.e., (see e.g.,
Isidori, 1995). An analytic realization (ƒ , g, h) about 0 of
a formal power series c is minimal if and only if
dim C(0) = n and dim dO(0) = n.
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Minimality
Why are observability and accessibility important?

> Still certain minimality characterization, i.e., (see e.g.,
Isidori, 1995). An analytic realization (ƒ , g, h) about 0 of
a formal power series c is minimal if and only if
dim C(0) = n and dim dO(0) = n.

> Recall that for linear case positivity of Gramians and
minimality of system are equivalent. Model reduction
due to small Hankel singular values corresponds to
“almost non-minimality” of system!

44



Date 21.05.2023

Minimality
Under the assumption of constant dimension of C0 and of
dO, (dO0), and under the assumption that the analytic
system (ƒ , g, h) is a realization of the formal power series c,
and that ƒ () is asymptotically stable, then we can proof that

> If 0 < Lc() <∞ and 0 < LNo () <∞ (0 < Lo() <∞) for
 ∈W,  6= 0, then (ƒ , g, h) is minimal realization of c.
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Minimality
Application of previous theory to nonlinear extension of
Kalman decomposition is possible.

Under appropriate constant dimensionality assumptions for
distributions, there exist local coordinates  = (1, 2, 3, 4)
such that

> 1 is strongly accessible and zero-state observable.

> 2 is strongly accessible but not zero-state observable.

> 3 is zero-state observable but not strongly accessible.

> 4 is not zero-state observable nor strongly accessible.
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Minimality
In these coordinates:

̇1 = ƒ1(1, 3) +
m
∑

j=1

g1j (
1, 2, 3, 4)j

̇2 = ƒ2(1, 2, 3, 4) +
m
∑

j=1

g2j (
1, 2, 3, 4)j

̇3 = ƒ3(3)
̇4 = ƒ4(3, 4)
y = h(1, 3).
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Minimality
Assume that as. reachable from 0 part equals strongly
accessible part. Then, under appropriate assumptions on
existence of Lo and Lc

> Lo(1, 2, 3, 4) > 0 whenever (1, 3) 6= (0,0).

> Lo(0, 2,0, 4) = 0 for (0, 2,0, 4).

> Lc(1, 2, 3, 4) is infinite whenever (3, 4) 6= (0,0).

> 0 < Lc(1, 2,0,0) <∞, for (1, 2,0,0), (1, 2) 6= (0,0).
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Introduction balanced realizations
Example:

ƒ () = −
1

625

�

6251 + 11231 + 552
2
12 + 6391

2
2 + 216

3
2

38431 + 6252 + 464
2
12 + 481

2
2 − 63

3
2

�

,

g() =

 

3
p
2
5

4
p
2

25

Ç

25 + 721 + 4812 − 7
2
2

−4
p
2

5
3
p
2

25

Ç

25 + 721 + 4812 − 7
2
2

!

,

h() =

� 2
5 (31 − 42)p
2
25 (41 + 32)

2

�

.
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Introduction balanced realizations
This system is zero-state observable, and ƒ is asymptotically
stable.

Solving the Hamilton-Jacobi equations we obtain:

Lc() =
1

2
T, Lo() =

1

2
T
�

m11() m12()
m21() m22()

�

,

m11() =
2
625 (425 + 72

2
1 − 19212 + 128

2
2)

m12() =m21() =
12
625 (−25 + 9

2
1 − 2412 + 16

2
2)

m22() =
1
625 (1025 + 81

2
1 − 21612 + 144

2
2).
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Introduction balanced realizations
System has the input-normal form.

The eigenvalues of M() are:

λ1() =
1
25 (25 + 9

2
1 − 2412 + 16

2
2) = 1 + (

1
5 (31 − 42))

2

λ2() = 2.

The neighborhood V of 0 where the number of distinct
eigenvalues is constant, is

V = {|(31 − 42)2 < 25},

i.e., λ1() < 2 for  ∈ V, thus λ2() > λ1().
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Introduction balanced realizations
The unitary matrix of eigenvectors is

T() = T =
1

5

�

3 4
−4 3

�

.

Thus, coordinate transformation to diagonalize M() is
�

z1
z2

�

= ν() = TT =
1

5

�

31 − 42
41 + 32

�

,  ∈ V.

Consider coordinates ψ(z) = ν−1(z) for z ∈W, where

W = ψ−1(V) = ν(V) = {z|z21 < 1}.
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Introduction balanced realizations
In new coordinates controllability and observability functions
become for z ∈W

L̃c(z) =
1

2
zTz, L̃o(z) =

1

2
zT
�

2 0
0 1 + z21

�

z.

The so-called singular value functions are τ1(z) = 2 and
τ2(z) = 1 + z21.

Coordinates z ∈W transform system into
input-normal/output-diagonal form.
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Introduction balanced realizations
Input-normal/output-diagonal form:

(

ż1 = −z1 + z1z22 + 1
p
2

ż2 = −z2 − z32 + 2
Ç

2 − 2z21 + 2z
2
2

�

y1 = 2z1
y2 =

p
2z2

Additional coordinate transformation to bring system in
balanced form! Only on the axes!
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Introduction balanced realizations
Additional coordinate transformation z̄ = η(z) as follows:

¨

z̄1 = 2
1
4 z1

z̄2 = z2
, z̄ ∈ W̄ = ν(W) = {z̄|z̄21 < 2

1
2}.

Now controllability and observability functions are in
balanced form, i.e.,

Ľc(z̄) =
1

2
z̄T
�

2−
1
2 0
0 1

�

z̄, Ľo(z̄) =
1

2
z̄T
 

2
1
2 0

0 1 + 2−
1
2 z̄21

!

z̄.
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Introduction balanced realizations
Then at coordinate axes:

Ľc(z̄1,0) =
1

2
p
2
z̄21, Ľc(0, z̄2) =

1

2
z̄22,

Ľo(z̄1,0) =

p
2

2
z̄21, Ľo(0, z̄2) =

1

2
z̄22.

i.e., less input energy is needed to reach states (z̄1,0)
than to reach the states (0, z̄2), and states (z̄1,0) generate a
larger output energy than the states (0, z̄2).

Hence, on neighborhood W̄ z̄1 is a more important state
component than z̄2. 56
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Introduction balanced realizations
For model reduction set z̄2 = 0.

Reduced order system:
(

˙̃z = − z̃ + 2
3
41

ỹ = 2
3
4 z̃

, z̃ ∈ W̃ = {z̃|z̃ < 2
1
2}.

Controllability and observability function

L̃c(z̃) =
1

2
p
2
z̃2 = 2−

3
2 z̃2, nd L̃o(z̃) =

p
2

2
z̃2 = 2−

1
2 z̃2, z̃ ∈ W̃,

Reduced system is asymptotically stable on W̃.
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Semi-quadratic forms
Smooth nonlinear system:

̇ = ƒ () + g()
y = h()

Standing assumptions:
> ƒ () is as. stab. on some neighborhood Y of 0.

> System is zero-state observable on Y.

> Lo and Lc exist and are smooth on Y.

>
∂2Lc

∂2
(0) > 0 and

∂2Lo

∂2
(0) > 0.
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Semi-quadratic forms
Version of the Fundamental Theorem of Integral
Calculus:
Let L be smooth function in convex neighborhood V of 0 in
Rn, with L(0) = 0. Then

L(1, . . . , n) =
n
∑

=1

(1, . . . , n)

for some suitable smooth functions  defined on V, with
(0) =

∂L
∂
(0).
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Semi-quadratic forms
Construction given by proof, i.e.,

L(1, . . . , n) =
∫ 1

0

∂L(t1, . . . , tn)

∂t
dt

=
∫ 1

0

n
∑

=1

∂L

∂
(t1, . . . , tn)dt

Thus, (1, . . . , n) =
∫ 1
0

∂L
∂
(t1, . . . , tn)dt.

60



Date 21.05.2023

Semi-quadratic forms
Construction given by proof, i.e.,

L(1, . . . , n) =
∫ 1

0

∂L(t1, . . . , tn)

∂t
dt

=
∫ 1

0

n
∑

=1

∂L

∂
(t1, . . . , tn)dt

Thus, (1, . . . , n) =
∫ 1
0

∂L
∂
(t1, . . . , tn)dt.

Apply twice, then “semi-quadratic” form!

Next result uses Morse’s lemma for input-normal form.
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Semi-quadratic form
Lemma: There exists coordinate transf.  = ϕ(̄), ϕ(0) = 0
(defined on neighborhood of 0), such that in ̄ = ϕ−1() function
Lc() is of the form

Lc(ϕ(̄)) =
1

2
̄T ̄.

In ̄ = ϕ−1() we can write Lo() in the form

Lo(ϕ(̄)) =
1

2
̄TM(̄)̄ here M(0) =

∂2Lo

∂2
(0),

with M(̄) an n × n symmetric matrix such that its entries are
smooth functions of ̄.
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Semi-quadratic form
Lemma: There exists coordinate transf.  = ϕ(̄), ϕ(0) = 0
(defined on neighborhood of 0), such that in ̄ = ϕ−1() function
Lc() is of the form

Lc(ϕ(̄)) =
1

2
̄T ̄.

In ̄ = ϕ−1() we can write Lo() in the form

Lo(ϕ(̄)) =
1

2
̄TM(̄)̄ here M(0) =

∂2Lo

∂2
(0),

with M(̄) an n × n symmetric matrix such that its entries are
smooth functions of ̄.

Is M(̄) unique?
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Kato’s result
Lemma: If there exists a neighborhood V of 0 where the
number of distinct eigenvalues of M(̄) is constant for ̄ ∈ V,
then on V the eigenvalues λ(̄),  = 1, . . . , n, are smooth
functions of ̄, as well as the associated normalized
eigenvectors.

Ex.: # distinct eig. val. is not constant:

M(̄) =
�

2 + 1 0
0 2 − 1

�
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Input-normal/output-diagonal form
Theorem: Assume condition of Kato’s result is fulfilled. On
neighborhood U of 0 there exists ψ,  = ψ(z), ψ(0) = 0, s.t.
for z ∈W := ψ−1(U) Lc and Lo are of form

L̃c(z) := Lc(ψ(z)) =
1

2
zTz,

L̃o(z) := Lo(ψ(z)) =
1

2
zT





τ1(z) 0
. . .

0 τn(z)



 z.

Here τ1(z) ≥ · · · ≥ τn(z) are smooth functions of z, called the
singular value functions of system.

63



Date 21.05.2023

Balanced form
• Recall for linear systems in balanced form:  = P = Q.

• Input-normal/output-diagonal means P = , Q = 2.

Hence, nonlinear system is not really in balanced form yet!
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Balanced form
• Recall for linear systems in balanced form:  = P = Q.

• Input-normal/output-diagonal means P = , Q = 2.

Hence, nonlinear system is not really in balanced form yet!

To make model reduction stage easier, no aim for full
balance, but only for balance on the coordinate axes,
i.e., aim for extension of

Lc(0, . . . , , . . . ,0) =
1

2
2 σ

−1


Lo(0, . . . , , . . . ,0) =
1

2
2 σ.
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Balanced form

• Take z̄ = η(z) := τ(0, . . . ,0, z,0, . . .0)
1
4 z,  = 1, . . . , n.

Since L̃o(z) > 0, τ(0, . . . ,0, z,0, . . . ,0) > 0, for z 6= 0.
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Balanced form

• Take z̄ = η(z) := τ(0, . . . ,0, z,0, . . .0)
1
4 z,  = 1, . . . , n.

Since L̃o(z) > 0, τ(0, . . . ,0, z,0, . . . ,0) > 0, for z 6= 0.

• Define Ľc(z̄) := L̃c(η−1(z̄)), Ľo(z̄) := L̃o(η−1(z̄)). Then

Ľc(z̄) =
1

2
z̄T











σ1(z̄1)−1 0

. . .

0 σn(z̄n)−1











z̄,

Ľo(z̄) =
1

2
z̄T











σ1(z̄1)−1τ1(η−1(z̄)) 0

. . .

0 σn(z̄n)−1τn(η−1(z̄))











z̄,

with σ(z̄) = τ(0, . . . ,0, η
−1
 (z̄),0, . . . ,0)

1
2 ,  = 1, . . . , n.
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Balanced form
In z̄ coordinates

Ľc(0, . . . ,0, z̄,0, . . . ,0) =
1

2
z̄2 σ(z̄)

−1

Ľo(0, . . . ,0, z̄,0, . . . ,0) =
1

2
z̄2 σ(z̄)
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Balanced form
In z̄ coordinates

Ľc(0, . . . ,0, z̄,0, . . . ,0) =
1

2
z̄2 σ(z̄)

−1

Ľo(0, . . . ,0, z̄,0, . . . ,0) =
1

2
z̄2 σ(z̄)

Linearization of the complete nonlinear procedure results in
the linear balancing procedure.

Linearized system: ˙̂z = Āẑ + B̄
y = C̄ẑ

where Ā = ∂ƒ̄
∂z̄ (0), B̄ = ḡ(0) and C̄ = ∂h̄

∂z̄ (0).
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Balanced form
Based on the linearization, we have the following result:

Theorem: Assume linearized system is minimal and A is
asymptotically stable. If Hankel singular values, σ,
 = 1, . . . , n, of linear system satisfy σ 6= σj for  6= j,
, j = 1, . . . , n, then locally the nonlinear system may be
brought into balanced form.
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Balanced form
Based on the linearization, we have the following result:

Theorem: Assume linearized system is minimal and A is
asymptotically stable. If Hankel singular values, σ,
 = 1, . . . , n, of linear system satisfy σ 6= σj for  6= j,
, j = 1, . . . , n, then locally the nonlinear system may be
brought into balanced form.

Uses the fact that σ 6= σj implies that there exists
neighborhood V of 0 such that # of distinct eigenvalues of
the matrix M(̄) is constant and equal to n (Kato’s result).
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Model reduction
Assume that

τk(z) > τk+1(z)
�

⇒ σ(z̄k)−1τk(η−1(z̄)) > σ(z̄k+1)−1τk+1(η−1(z̄))
�

.

and that nonlinear system is in balanced form.

Partition system as follows:

ƒ̄ (z̄) =
�

ƒ̄(z̄, z̄b)
ƒ̄b(z̄, z̄b)

�

, ḡ(z̄) =
�

ḡ(z̄, z̄b)
ḡb(z̄, z̄b)

�

, h̄(z̄) = h̄(z̄, z̄b)

where z̄ = (z̄1, . . . , z̄k) and z̄b = (z̄k+1, . . . , z̄n).
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Model reduction

Truncation, then z̄b = 0.

∂Ľo

∂z̄
(z̄,0)ƒ̄(z̄,0) +

∂Ľo

∂z̄b
(z̄,0)ƒ̄b(z̄,0) +

1

2
h̄T (z̄,0)h̄(z̄,0) = 0

∂Ľc

∂z̄
(z̄,0)ƒ̄(z̄,0)+

1

2

∂Ľc

∂z̄
(z̄,0)ḡ(z̄,0)ḡT(z̄

,0)
∂T Ľc

∂z̄
(z̄,0) = 0

From the Hamilton-Jacobi equations it follows that the
controllability function of the reduced order system is
equal to Ľc(z̄,0). For observability new condition necessary.
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Model reduction

Theorem: If ∂Ľo
∂z̄b
(z̄,0)ƒ̄b(z̄,0) = 0 for (z̄,0) ∈ W̄ then the

observability function of the reduced order system is given
by Ľo(z̄,0). Furthermore, the reduced order system is in
balanced form having singular value functions
τ1(z,0) ≥ · · · ≥ τk(z,0), for (z,0) = η−1(z̄,0).
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Model reduction

Theorem: If ∂Ľo
∂z̄b
(z̄,0)ƒ̄b(z̄,0) = 0 for (z̄,0) ∈ W̄ then the

observability function of the reduced order system is given
by Ľo(z̄,0). Furthermore, the reduced order system is in
balanced form having singular value functions
τ1(z,0) ≥ · · · ≥ τk(z,0), for (z,0) = η−1(z̄,0).

Theorem: The subsystems
�

ƒ̄(z̄,0), ḡ(z̄,0), h̄(z̄,0)
�

and
(ƒ̄b(0, z̄b), ḡb(0, z̄b), h̄(0, z̄b)), respectively, are both locally
asymptotically stable.
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Model reduction

Theorem: If ∂Ľo
∂z̄b
(z̄,0)ƒ̄b(z̄,0) = 0 for (z̄,0) ∈ W̄ then the

observability function of the reduced order system is given
by Ľo(z̄,0). Furthermore, the reduced order system is in
balanced form having singular value functions
τ1(z,0) ≥ · · · ≥ τk(z,0), for (z,0) = η−1(z̄,0).

Theorem: The subsystems
�

ƒ̄(z̄,0), ḡ(z̄,0), h̄(z̄,0)
�

and
(ƒ̄b(0, z̄b), ḡb(0, z̄b), h̄(0, z̄b)), respectively, are both locally
asymptotically stable.

Theorem: If ƒ̄b(z̄,0) = 0 and Ľo is proper (for each c > 0
the set { ∈ M|0 ≤ Ľo() ≤ c} is compact) on W̄, then the
reduced system is asymptotically stable on (z̄,0) ∈ W̄.
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Relation with minimality

Lo(1,0,0,0) and Lc(1,0,0,0) can be transformed to
input-normal/output-diagonal form, i.e., there exists
1 = ψ(z), ψ(0) = 0, (ψ−1(1),0,0,0) ∈ Y, such that

Lc(ψ(z),0,0,0) =
1

2
zTz

Lo(ψ(z),0,0,0) =
1

2
zT





τ1(z) 0
. . .

0 τn1(z)



 z.

Thus 1-part can be balanced, with singular value functions
τ1(z) ≥ · · · ≥ τn1(z).
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Relation with minimality

Also consider 2, then there exists (z1, z2) = ϕ−1(1, 2) s.t.

Lc(ϕ(z1, z2),0,0) =
1

2
z1

T
z1 +

1

2
z2

T
z2

Lo(ϕ(z1, z2),0,0) =
1

2

�

z1T z2T
�

M(z1, z2)
�

z1

z2

�

.

If Kato’s condition is fulfilled, we may diagonalize M(z1, z2).

Then functions on the diagonal are
τ̄1(z1, z2) ≥ · · · ≥ τ̄n1+n2(z1, z2), where τ̄(z1,0) = τ(z),
 = 1, . . . , n1, and τ̄j(0, 2) = 0, j = n1 + 1, . . . , n1 + n2.
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Relation with minimality
In accordance with the linear case, where unobservable
part yields zero ‘Hankel singular values’.
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Relation with minimality
In accordance with the linear case, where unobservable
part yields zero ‘Hankel singular values’.

Note that it is not possible to transform the whole system in
input-normal/output-diagonal form, since Lc(0,0, 3, 4) is
infinite.
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Relation with minimality
In accordance with the linear case, where unobservable
part yields zero ‘Hankel singular values’.

Note that it is not possible to transform the whole system in
input-normal/output-diagonal form, since Lc(0,0, 3, 4) is
infinite.

Still in accordance with the linear theory, since here we are
dealing with the ‘inverse of the controllability Gramian’.

73



Date 21.05.2023

Relation with minimality
In accordance with the linear case, where unobservable
part yields zero ‘Hankel singular values’.

Note that it is not possible to transform the whole system in
input-normal/output-diagonal form, since Lc(0,0, 3, 4) is
infinite.

Still in accordance with the linear theory, since here we are
dealing with the ‘inverse of the controllability Gramian’.

Hence the part of the system that is not strongly accessible
yields an ‘inverse of the controllability Gramian’ that is
infinite, and thus a ‘controllability Gramian’ that is zero.
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Hankel considerations

> Note that this notion of balanced form for nonlinear
systems is not unique, due to non-uniqueness in
semi-quadratic form!

> Restricted form of balancing, more related to Hankel
operator and similarity invariants are obtained.

> In case semi-quadratic form is given, then unique up to
orthogonal transformation related to multiplicity of
singular value function.

> Other possibility is “block” diagonalization based on
ordering of eigenvalues of matrix M(̄).
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Hankel considerations
• Hankel norm for linear systems

‖‖2H = mx
∈L2+

‖H()‖2

‖‖2
= mx

∈L2+

〈,H∗H()〉
〈, 〉

= mx


TQ

TP−1
= λmx(H∗H) = λmx(PQ) = σ21

• Hankel norm for nonlinear systems

‖‖2H = mx
∈L2+

‖H()‖2

‖‖2
= mx

∈L2+

〈,H∗(H(), )〉
〈, 〉

= mx


Lo()

Lc()
= ???
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Hankel considerations
How to determine ???

• For relation with Hankel operator and Hankel norm,
balanced state-space form does not suffice.

• By considering both eigenstructure of

? differential adjoint (dH(·))∗ (H(·)) and

? full nonlinear Hilbert adjoint H∗(H(), ),

characterization based on sort of parametrization that
is related to the input value yields form that fill in
the ???, i.e., give explicit expression for Hankel norm.
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Hankel considerations
• Appropriate assumptions, then there exists  = (z) s.t.

Lc((z)) =
1

2
zTz

Lo((z)) =
1

2
zTdig(τ1(z), . . . , τn(z))z

∂Lc((z))

∂z
= 0⇐⇒

∂Lo((z))

∂z
= 0

τ(0, . . . ,0, z,0, . . .0) = ρ2 (z), ‖‖H =mxz1
{ρ1(z1)}

Now unique and balanced structure preserving model
reduction tool on coordinate axes!
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Concluding remarks

> Balancing for stable systems treated

> Unstable, structure preserving, etc., exist, also for
nonlinear systems

> Variations: incremental (Besselink et al. 2014),
differential (Kawano/Scherpen 2017), flow balancing
(Verriest/Gray 00’s), etc.

> Computations have always been an issue, Boris is up
next to enlighten us on this!
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