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Model reduction

System:

ẋ(t) = f (t , x , u)

y(t) = h(t , x , u), x(t) ∈ Rn, y(t) ∈ Rp

Approximated/reduced order system:

˙̂x(t) = f̂ (t , x̂ , u)

ŷ(t) = ĥ(t , x̂ , u), x̂(t) ∈ Rr , ŷ(t) ∈ Rp

where r << n.

Criteria

Small approximation error.

Possible error bound.

Preservation of structural properties e.g. stability, passivity, symmetry.

Computational efficiency.
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Linear balancing

Linear system :

ẋ = Ax + Bu

y = Cx
(1)

Controllability Gramian:

Wgc =

∫ ∞

0
eAτBB⊤eA⊤τdτ

Observability Gramian:

Wgo =

∫ ∞

0
eA⊤τC⊤CeAτdτ

A⊤Wgo + WgoA + C⊤C = 0

AWgc + WgcA⊤ + BB⊤ = 0
(2)
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ẋ = Ax + Bu

y = Cx
(1)

Controllability Gramian:

Wgc =

∫ ∞

0
eAτBB⊤eA⊤τdτ

Observability Gramian:

Wgo =

∫ ∞

0
eA⊤τC⊤CeAτdτ

A⊤Wgo + WgoA + C⊤C = 0

AWgc + WgcA⊤ + BB⊤ = 0
(2)

Arijit Sarkar and Jacquelien M.A. Scherpen 4



Introduction Balanced truncation Generalised balancing for nonlinear systems Outlook & Conclusion

Linear balancing

Let T ∈ Rn×n is an invertible matrix s.t.

T⊤WgcT = T−1WgoT−⊤ = Σ, (3)

Σ = {σ1, σ2, · · · , σn},

where σ1 ≥ σ2 ≥, · · · ,≥ σn. [
˙̄x1
˙̄x2

]
=

[
Ā11 Ā12

Ā21 Ā22

] [
x̄1

x̄2

]
+

[
B̄1

B̄2

]
u

ȳ =
[
C̄1 C̄2

] [x̄1

x̄2

]
Reduced-order model:

˙̂x = Âx̂ + B̂u

ŷ = Ĉx̂ ,
(4)

where, Â = Ā11, B̂ = B̄1 and Ĉ = C̄1.
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Controllability and Observability functions

Nonlinear system:

ẋ = f (x) + g(x)u

y = h(x)
(5)

Controllability function :

Lc(x0) := min
u∈L2(−∞,0),

x(−∞)=0,x(0)=x0

1
2

∫ 0

−∞
||u(t)||2dt ,

Observability function :

Lo(x0) :=
1
2

∫ ∞

0
||y(t)||2dt , x(0) = x0, u(t) ≡ 0, 0 ≤ t <∞.

For linear system →
Lc(x0) =

1
2

x⊤
0 W−1

gc x0 Lo(x0) =
1
2

x⊤
0 Wgox0 (6)
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Controllability and Observability functions

Theorem
a If 0 is an asymptotically stable equilibrium of f (x) on a neighbourhood U of 0, then for all x ∈ U, Lo(x) is the
unique smooth solution of

∂Lo

∂x
f (x) +

1
2

h⊤(x)h(x) = 0, Lo(0) = 0 (7)

Moreover, for all x ∈ U, Lc(x) is the smooth solution of

∂Lc(x)
∂x

f (x) +
1
2
∂Lc(x)
∂x

g(x)g⊤(x)
∂⊤Lc(x)
∂x

= 0, Lc(0) = 0 (8)

such that 0 is an asymptotically stable equilibrium of −(f (x) + g(x)g⊤(x) ∂
⊤Lc (x)
∂x ) on U.

aJ.M.A. Scherpen, "Balancing for nonlinear systems", In Systems and Control Letters, vol. 21, no. 2, pp. 143-153, 1993.
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Generalized observability and controllability functions

If L̃o(x) > 0 is a smooth solution of

∂L̃o(x)
∂x

(x)f (x) +
1
2

h⊤(x)h(x) ≤ 0, L̃o(0) = 0, (9)

Lo(x0) ≤ L̃o(x0). (10)

If L̃c(x) > 0 is a smooth solution of

∂L̃c(x)
∂x

f (x) +
1
2
∂L̃c(x)
∂x

g(x)g⊤(x)
∂⊤L̃c(x)
∂x

≤ 0, L̃c(0) = 0, (11)

Lc(x0) ≥ L̃c(x0). (12)
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Port-Hamiltonian structure

Figure 1: Port-Hamiltonian structure
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Port-Hamiltonian Systems

Input-state-output nonlinear port-Hamiltonian (PH) system :

ΣPH :


ẋ = (J(x)− R(x))

∂H(x)
∂x

+ g(x)u

y = g⊤(x)
∂H(x)
∂x

(13)

What is the goal now?
Propose a balanced realization of the port-Hamiltonian system in which the generalized controllability function
L̃c and generalized observability function L̃o are truly balanced and the Hamiltonian H is also in diagonal form
as well.

Arijit Sarkar and Jacquelien M.A. Scherpen 10
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Necessary assumptions

We define F (x) := (J(x)− R(x))

Assumption

For a nonlinear port-Hamiltonian system, assume the following holds

0 is an asymptotically stable equilibrium of F (x) ∂H(x)
∂x on some neighbourhood U of 0.

The linearized system at the origin is asymptotically stable.

0 is an asymptotically stable equilibrium of −(F (x) ∂H(x)
∂x + g(x)g⊤(x) ∂

⊤ L̃c (x)
∂x ) on U.

L̃o and L̃c are smooth on U.
∂2L̃c
∂x2 (0) ≻ 0, ∂2L̃o

∂x2 (0) ≻ 0 and ∂2H
∂x2 (0) ≻ 0.

Arijit Sarkar and Jacquelien M.A. Scherpen 12
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PH structure-preserving generalized balancing

Lemma

There exists a coordinate transformation ϕ : Rn → Rn such that x = ϕ(z), ϕ(0) = 0 (defined on a
neighbourhood of the origin) and L̃c(x) in the new coordinates has the following form

L̃c(ϕ(z)) =
1
2

z⊤z. (14)

Moreover, we can also write L̃o(x) and H(x) in the new coordinates in the following forms

L̃o(ϕ(z)) =
1
2

z⊤M(z)z, M(0) =
∂2L̃o

∂x2 (0),

H(ϕ(z)) =
1
2

z⊤H(z)z, H(0) =
∂2H
∂x2 (0),

(15)

where M(z) and H(z) are n × n symmetric matrices with entries which are smooth functions of z.

Arijit Sarkar and Jacquelien M.A. Scherpen 13
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PH structure-preserving generalized balancing

Assumption

There exists L̃c(x), L̃o(x) > 0 such that the eigenvalues of ∂2L̃c
∂x2 (0)−1 ∂2L̃o

∂x2 (0) as well as the eigenvalues of
∂2H
∂x2 (0)

−1 ∂2L̃c
∂x2 (0)−1 ∂2L̃o

∂x2 (0) are distinct.

Lemma

If there exists a neighbourhood V of 0 where the number of distinct eigenvalues of M(z), H(z) and
H−1(z)M(z) is constant for z ∈ V, then on V the eigenvalues of M(z) and H(z) are smooth functions of z
along with the associated eigenvectors.
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PH structure-preserving generalized balancing

Theorem

Consider the system (13) and assume that Assumption 2 and Lemma 3 are fulfilled. Then, on a
neighbourhood U of 0 there exists a transformation ψ : Rn → Rn such that x = ψ(z̄), ψ(0) = 0 and L̃c(x) in
the new coordinates z̄ ∈ W := ψ−1(U) takes the form

L̃c(ψ(z̄)) =
1
2

z̄⊤z̄. (16)

Moreover, L̃o and H in the new coordinates are of the following form

L̃o(ϕ(z̄)) =
1
2

z̄⊤

λ̄1(z̄) 0
. . .

0 λ̄n(z̄)

 z̄,

H(ϕ(z̄)) =
1
2

z̄⊤

κ̄1(z̄) 0
. . .

0 κ̄n(z̄)

 z̄,

(17)

where λ̄1(z̄) ≥ λ̄2(z̄) ≥ · · · ≥ λ̄n(z̄) and κ̄1(z̄) ≥ κ̄2(z̄) ≥ · · · ≥ κ̄n(z̄) are smooth functions of z.
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PH structure-preserving generalized balancing

Theorem

Suppose that the assumptions hold. Then there exists a transformation Φ : Rn → Rn on a neighbourhood U of
the origin such that x = Φ(z),Φ(0) = 0 which converts the system into a new realization where the following
holds

L̃c(Φ(z)) =
1
2

z⊤z,

L̃o(Φ(z)) =
1
2

n∑
i=1

(ziσi(zi))
2,

H(Φ(z)) =
1
2

n∑
i=1

z2
i ηi(zi),

(18)

where σ1(z1) ≥ σ2(z2) ≥ · · · ≥ σn(zn) and η1(z1) ≥ η2(z2) ≥ · · · ≥ ηn(zn) are smooth functions.

Proof→ We can prove that there exist a smooth transformation for n=2. Then we can generalize for any n via
mathematical induction.
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PH structure-preserving generalized balancing
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,
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1
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n∑
i=1

z̄2
i σ̄i(z̄i),

H(Φ̄(z̄)) =
1
2

n∑
i=1

z2
i
η̄i(z̄i)

σ̄i(z̄i)
,

(19)

where σ̄1(z̄1) ≥ σ̄2(z̄2) ≥ · · · ≥ σ̄n(z̄n) and η̄1(z̄1) ≥ η̄2(z̄2) ≥ · · · ≥ η̄n(z̄n) are smooth functions.
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z̄i = ϕ̄−1

i (zi) := zi
√
σi(zi) to the system in z coordinates..
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Reduced order PH model

In z̄ coordinates, the state-space representation of (13) reads

Σ̄PH :


˙̄z = (Jz̄(z̄)− Rz̄(z̄))

∂Hz̄

∂z̄
+ gz̄(z̄)u,

y = g⊤
z̄ (z̄)

∂Hz̄

∂z̄
,

(20)

where

Hz̄(Φ̄
−1(x)) = H(x), Jz̄(Φ̄

−1(x)) =
∂⊤Φ̄−1(x)

∂x
J(x)

∂Φ̄−1(x)
∂x

,

Rz̄(Φ̄
−1(x)) =

∂⊤Φ̄−1(x)
∂x

R(x)
∂Φ̄−1(x)
∂x

,

gz̄(Φ̄
−1(x)) =

∂⊤Φ̄−1(x)
∂x

g(x).

Note that Jz̄(z̄) = −J⊤
z̄ (z̄), Rz̄(z̄) = R⊤

z̄ (z̄) ⪰ 0, Hz̄(z̄) ≻ 0, ∂Hz̄
∂z̄ (0) = 0 and ∂2Hz̄

∂z̄2 (0) ≻ 0.
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Reduced order PH model

We split z̄ = [z̄⊤
r , z̄⊤

t ]⊤, where z̄r = [z̄1, z̄2, · · · , z̄k ]
⊤ ∈ Rn and z̄t = [z̄k+1, z̄k+2, · · · , z̄n]

⊤ ∈ Rn−k . Similarly,

Jz̄ =

[
Jz̄,rr (z̄r , z̄t) Jz̄,rt(z̄r , z̄t)
−J⊤

z̄,rt(z̄r , z̄t) Jz̄,tt(z̄r , z̄t)

]
,

Rz̄ =

[
Rz̄,rr (z̄r , z̄t) Rz̄,rt(z̄r , z̄t)
Rz̄,rt(z̄r , z̄t) Rz̄,tt(z̄r , z̄t)

]
,

gz̄ =

[
gz̄,r (z̄r , z̄t)
gz̄,t(z̄r , z̄t)

]
,

where Jz̄,rr (z̄r , z̄t) and Jz̄,tt(z̄r , z̄t) are skew-symmetric, Rz̄,rr (z̄r , z̄t) and Rz̄,tt(z̄r , z̄t) are symmetric and positive
semidefinite.
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Reduced-order PH model

Theorem

Consider a continuous-time nonlinear input-state-output port-Hamiltonian system ΣPH . Suppose that the
assumptions are satisfied and we obtain a balanced realization of the system as in (19). Then a
reduced-order model can be represented as follows

Σr :


˙̄zr = (Jz̄,rr (z̄r , 0)− Rz̄,rr (z̄r , 0))

∂Hz̄(z̄r , 0)
∂z̄r

+ gz̄,r (z̄r , 0)u,

yr = g⊤
z̄,r (z̄r , 0)

∂Hz̄(z̄r , 0)
∂z̄r

,

(21)

which is also a port-Hamiltonian system with the Hamiltonian Hz̄(z̄r , 0).
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Special case

Let us consider the following nonlinear port-Hamiltonian system

ΣPH :


ẋ = (J(x)− R(x))

∂H(x)
∂x

+ Bu,

y = B⊤ ∂H(x)
∂x

,

(22)

Consider H(x) = 1
2 x⊤Hx , where H = H⊤ ≻ 0.

Note that the nonlinearity of the system is completely represented by the interconnection and damping
structure.
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Generalized balancing via linear transformation

If there exist constant matrices P ≻ 0 and Q ≻ 0 which satisfy

QF (x)H + HF⊤(x)Q + HBB⊤H ⪯ 0 (23)

and
F (x)HP + PHF⊤(x) + BB⊤ ⪯ 0 (24)

respectively for all x ∈ Rn, then we can find an invertible matrix W ∈ Rn which transforms the system to
generalized balanced coordinates in which

W⊤PW = W−1QW−⊤ = ΛPQ (25)

such that ΛPQ = diag{σ1, σ2, · · · , σn}, where σ1 ≥ σ2 ≥ · · · ≥ σn > 0. Note that L̃o(x) = 1
2 x⊤Qx and

L̃c(x) = 1
2 x⊤P−1x satisfy (9) and (11) respectively.
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PH structure-preserving balancing via linear transformation

Let P ≻ 0 be a solution to (24). Consider a full rank matrix ϕP ∈ Rn×n such that

P = ϕ⊤
P ϕP ,

ϕPHϕ⊤
P = UHPΛHPU⊤

HP ,

Define

Fc(x) := U⊤
HPϕ

−⊤
P F (x)ϕ−1

P UHP ,

Bc := U⊤
HPϕ

−⊤
P B.

(26)

If
Λ2

PQΛ
−1
HPFc(x) + F⊤

c (x)Λ−1
HPΛ

2
PQ + BcB⊤

c ⪯ 0 (27)

holds for a diagonal matrix ΛPQ for all x ∈ Rn, then

Q = ϕ−1
P UHPΛ

2
PQU⊤

HPϕ
−⊤
P (28)

is a solution of (23). Moreover, the linear transformation

Wspc = ϕ⊤
P UHPΛ

− 1
2

PQ (29)

balances the system and diagonalizes H.
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Algorithm

1 Find a positive definite matrix P.
2 Find a diagonal matrix ΛPQ .
3 Compute Q.
4 Transform the system into the balanced coordinates using Wspc in which H̄ is positive definite and

diagonal.
5 Discard the states corresponding to small values of σis i.e. the diagonal entries of ΛPQ to arrive at a

reduced order model which is also a port-Hamiltonian system.
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Example
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Frictional nonlinearity

Coulomb friction :

Fi =


−δi , q̇i > 0,

[−δi , δi ], q̇i = 0,

δi , q̇i < 0.

Smooth approximation :

Fi = − δi q̇i√
γi + q̇2

i

where 0 ≤ γi <∞.
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Dynamics of the nonlinear mass-spring-damper system

[
q̇
ṗ

]
=

[
0 In
−In −(D + R)

]
︸ ︷︷ ︸

(J - R)

[
K 0
0 M−1

]
︸ ︷︷ ︸

H

[
q
p

]
︸︷︷︸

x

+

[
0
G

]
︸︷︷︸

B

u

y =
[
0 G⊤] [K 0

0 M−1

] [
q
p

] (30)

R = diag
{ δimi√

γim2
i + p2

i

}
≥ 0,

for i = 1, 2, · · · , n.
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How to solve the inequalities?

Let F = {F0,F1, · · · ,Fn} be a finite set of matrices with

F0 =

[
0n In
−In −D

]
,

Fi =
[

0n In
−In −(D + diag(0, · · · , δi

mi
√

γi
, · · · , 0))

]
,

where i = 1, 2, · · · , n. The i th diagonal entry of Fi should be δi
mi

√
γi
, i = {1, 2, · · · , n} and every other diagonal

entry is zero. Now, we can consider F (x) = (J(x)− R(x)) satisfies the following inclusion

F (x) ∈ ConvexHull(F)

for all x ∈ Rn.
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Simulation Results

0 10 20 30 40 50 60 70 80

State number (i)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

i v
a
lu

e

The diagonal entries of 
PQ

Figure 2: Diagonal entries of ΛPQ depicting the importance of the state variables in balanced coordinates
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Simulation results
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Figure 3: Comparison of output trajectories of original and reduced order model
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Outlook & Conclusion

Generalized balancing is a framework for nonlinear balancing which provides flexibility to preserve
port-Hamiltonian structure using the generalized controllability and observability functions.

For special cases of nonlinear pH systems, the algorithm can also computationally tractable.

Future directions:
Computational tractability of the approach for the generic case.

Possible apriori error bound based on Lipschitz type of assumptions on the drift vector field.

Ongoing:
Balanced truncation for nonlinear differential algebraic control systems(Will be presenting in European
Control Conference 2023, Bucharest, Romania).

Utilization of generalized differential balancing to preserve monotonicity(generalization of positivity for
nonlinear systems) of nonlinear systems.
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Thank You!
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