

Towards data-driven non-intrusive reduced-order modeling for plasma

turbulence via Operator Inference

Constantin Gahr^{1,†}, Ionut-Gabriel Farcas², Frank Jenko¹

¹Max-Planck Institut for Plasmaphysics. ²Oden Institute for Computational Engineering & Sciences [†]constantin.gahr@ipp.mpg.de

Background plasma physics and fusion research

Considered plasma model: Hasegawa Wakatani equations

Learning data-driven non-intrusive ROMs via Operator Inference

Preliminary results

Possible enhancements of the basic Operator Inference formulation

Max-Planck-Institute for Plasma Physics (Munich)

Thermonuclear fusion: Deuterium-Tritium fusion

Source: Wikipedia, Deuterium-Tritium Fusion

- uses magnetic fields to contain particles
- needs temperatures $10 \times$ hotter then the sun
- planed to be achieved in ITER

International Thermonuclear Experiment Reactor (ITER)

Source: https://www.iter.org/mach

Numerical models and plasma turbulence

Challenge:

- · measuring QoIs in a plasma is hard
- build a new new reactor/experiment is very expensive
- numerical simulations are (slightly) less hard and less expensive:
 - needs to resolve several magnitude of spatial and temporal scales
 - highly non-linear

Solution:

reduced order model for plasma turbulence

Background plasma physics and fusion research

Considered plasma model: Hasegawa Wakatani equations

Learning data-driven non-intrusive ROMs via Operator Inference

Preliminary results

Possible enhancements of the basic Operator Inference formulation

Hasegawa-Wakatani (HW) equation

Hasegawa-Wakatani equation

$$\partial_t \mathbf{n} = \mathbf{c}_1(\phi - \mathbf{n}) - \{\phi, \mathbf{n}\} + \kappa \partial_y \phi + \nu \nabla^6 \mathbf{n}$$
$$\partial_t \nabla^2 \phi = \mathbf{c}_1(\phi - \mathbf{n}) - \{\phi, \nabla^2 \phi\} + \nu \nabla^8 \phi$$

where

- *n* is the density,
- ϕ the potential,
- $\nabla^2 \phi$ the vorticity,
- and $\{\cdot, \cdot\}$ the Poisson brackets $\{f, g\} := \partial_x f \partial_y g \partial_y f \partial_x g$

Hasegawa-Wakatani (HW) equation (cont.)

- 40 001 snaphots per simulation
- * 512×512 grid points
- 120GB per simulation

- periodic in *x* and *y* direction
- solved using RK4 method
- 1 simulation takes \sim 24 hours

accurate state predictions not important"Is the system statistically correct?"

Particle Flux Γ_n :

$$\Gamma_n(t) = \iint n \,\partial_y \phi \,\mathrm{d}x \mathrm{d}y$$

- rate at which free energy is extracted from the background gradient¹
- · characterizes turbulent behavior

Wasserstein metric W₁

Given

- distributions μ_1 and μ_2
- with cumulative distribution functions P_1 and P_2 ,

define

$$W_1(\mu_1,\mu_2) = \int_{-\infty}^{\infty} |P_1(x) - P_2(x)| \,\mathrm{d}x$$

Loss function

compare the distributions of Γ_n using Wasserstein distance

Table of Contents

Background plasma physics and fusion research

Considered plasma model: Hasegawa Wakatani equations

Learning data-driven non-intrusive ROMs via Operator Inference

Preliminary results

Possible enhancements of the basic Operator Inference formulation

Reduced order model - setup

1. State:

$$\mathbf{q}_t = \begin{pmatrix} n_t \\ \phi_t \end{pmatrix} \in \mathbb{R}^N$$

2. Snapshot matrix **Q**:

$$\mathbf{Q} = \begin{pmatrix} | & | \\ \mathbf{q}_1 & \dots & \mathbf{q}_m \\ | & | \end{pmatrix} \in \mathbb{R}^{N \times m}$$

3. rank *r* POD basis from the thin SVD of **Q**:

 $\mathbf{Q} \approx \mathbf{V}_r \mathbf{\Sigma}_r \mathbf{U}_r^T, \qquad \mathbf{V}_r \in \mathbb{R}^{N \times r}$

Operator Inference (OpInf)

Reduced state:

$$\hat{\mathbf{q}}_t = \mathbf{V}_r^T \mathbf{q}_t \in \mathbb{R}^r, \qquad \mathbf{q}_t \approx \mathbf{V}_r \hat{\mathbf{q}}_t$$

Full order model:

Reduced order model:

$$\dot{\mathbf{q}}_t = \mathbf{A}\mathbf{q}_t + \mathbf{H}\mathbf{q}_t \otimes \mathbf{q}_t \qquad \qquad \dot{\hat{\mathbf{q}}}_t = \mathbf{V}_r^T \mathbf{A} \mathbf{V}_r \hat{\mathbf{q}}_t + \mathbf{V}_r^T \mathbf{H} (\mathbf{V}_r \hat{\mathbf{q}}_t) \otimes (\mathbf{V}_r \hat{\mathbf{q}}_t)$$

Instead of computing \hat{A}, \hat{H} intrusively, solve

$$\underset{\hat{\mathbf{A}},\hat{\mathbf{H}}}{\operatorname{argmin}} \sum_{t} \|\dot{\hat{\mathbf{q}}}_{t} - \hat{\mathbf{A}}\hat{\mathbf{q}}_{t} - \hat{\mathbf{H}}(\hat{\mathbf{q}}_{t} \otimes \hat{\mathbf{q}}_{t})\|_{2}^{2} + \alpha_{1} \|\hat{\mathbf{A}}\|_{F}^{2} + \alpha_{2} \|\hat{\mathbf{H}}\|_{F}^{2}.$$

Table of Contents

Background plasma physics and fusion research

Considered plasma model: Hasegawa Wakatani equations

Learning data-driven non-intrusive ROMs via Operator Inference

Preliminary results

Possible enhancements of the basic Operator Inference formulation

Predicting Γ_n using Operator Inference ROM (rank r = 100)

POD basis doesn't generalize beyond training data

Snapshots are not correlated over time

How good can I possibly be? (rank = 80)

Well...

Table of Contents

Background plasma physics and fusion research

Considered plasma model: Hasegawa Wakatani equations

Learning data-driven non-intrusive ROMs via Operator Inference

Preliminary results

Possible enhancements of the basic Operator Inference formulation

Idea I: shifted POD / operator inference¹

¹Issan et al., "Predicting Solar Wind Streams from the Inner-Heliosphere to Earth via Shifted Operator Inference" (2022)

Idea I: shifted POD / operator inference (cont.)

$$\partial_t n = c_1(\phi - n) - \{\phi, n\} + \nu \nabla^6 n + \kappa \partial_y \phi$$
$$\partial_t \nabla^2 \phi = c_1(\phi - n) - \{\phi, \nabla^2 \phi\} + \nu \nabla^8 \phi$$

 \rightarrow constant velocity driftwaves in *y*-direction

Steps:

- 1. determine velocity κ
- 2. remove drift from data
- 3. better decay of singular values

Idea I: shifted POD / OpInf - singular values and retained energy

Idea II: filtering & OpInf²

²Farcas et al., *"On Filtering in Non-Intrusive Data-Driven Reduced-Order Modeling"* (2022) IPP I CONSTANTIN GAHR I 26.05.2023 OPERATOR INFERENCE FOR PLASMA TURBULEN

Idea III: quadratic manifolds³

Operator inference for non-intrusive model reduction with nonlinear manifolds Rudy Geelen^{*} Stephen Wright[†] Karen Willcox^{*}

Idea:

- 1. normal SVD to project:
 - $\hat{\mathbf{q}}_t = \mathbf{V}_r^T \mathbf{q}_t$
- 2. quadratic map to reconstruct:

$$\mathbf{q}_t = \Xi(\hat{\mathbf{q}}_t) = \mathbf{V}_r \hat{\mathbf{q}}_t + \mathbf{W} \hat{\mathbf{q}}_t \otimes \hat{\mathbf{q}}_t$$

Challenge:

ROM becomes

$$egin{aligned} \dot{\hat{\mathsf{q}}}_t &= \hat{\mathsf{A}}\hat{\mathsf{q}}_t + \hat{\mathsf{H}}_2(\hat{\mathsf{q}}_t\otimes\hat{\mathsf{q}}_t) \ &+ \hat{\mathsf{H}}_3(\hat{\mathsf{q}}_t\otimes\hat{\mathsf{q}}_t\otimes\hat{\mathsf{q}}_t\otimes\hat{\mathsf{q}}_t) \ &+ \hat{\mathsf{H}}_4(\hat{\mathsf{q}}_t\otimes\hat{\mathsf{q}}_t\otimes\hat{\mathsf{q}}_t\otimes\hat{\mathsf{q}}_t\otimes\hat{\mathsf{q}}_t\otimes\hat{\mathsf{q}}_t) \end{aligned}$$

 \implies we are restricted to rank \sim 20

³Jain et al., "A Quadratic Manifold for Model Order Reduction of Nonlinear Structural Dynamics" (2017) OPERATOR INFERENCE FOR PLASMA TURBULENCE

Idea III: quadratic manifolds (cont.)

Idea IV (WIP): using a different basis

Fourier decomposition of n

wavelet basis⁴

⁴Farge, "Wavelet transforms and their applications to turbulence" (1992)

Table of Contents

Background plasma physics and fusion research

Considered plasma model: Hasegawa Wakatani equations

Learning data-driven non-intrusive ROMs via Operator Inference

Preliminary results

Possible enhancements of the basic Operator Inference formulation

Constructing predictive and accurate ROMs for plasma turbulence models is very challenging

Hasegawa-Wakatani equations:

• OpInf: learn reduced operators via $\underset{\hat{\mathbf{A}},\hat{\mathbf{H}}}{\operatorname{argmin}} \sum_{t} \|\dot{\hat{\mathbf{q}}}_{t} - \hat{\mathbf{A}}\hat{\mathbf{q}}_{t} - \hat{\mathbf{H}}(\hat{\mathbf{q}}_{t} \otimes \hat{\mathbf{q}}_{t})\|_{2}^{2}$ $+ \alpha_{1} \|\hat{\mathbf{A}}\|_{F}^{2} + \alpha_{2} \|\hat{\mathbf{H}}\|_{F}^{2}.$ • OpInf reduced order model:

- possible improvements:
 - shifted POD
 - filtering
 - quadratic manifolds
 - different basis

eMail: constantin.gahr@ipp.mpg.de