

Wøhhhheat Bilinear control and model reduction

Simple enough, yet too complicated...

Tobias Breiten

Tutorial Sessions Nonlinear Model Reduction for Control Workshop and Conference @ Virginia Tech

May 22-26, 2023

Overview

- 1 Bilinear control systems
 - Finite and infinite approximations
 - Basics from bilinear system theory
- 2 Model reduction of bilinear systems
 - Interpolatory model reduction
 - Balancing-based model reduction
- 3 Optimal control of bilinear systems
 - Open loop control
 - Closed loop control

Overview

- 1 Bilinear control systems
 - Finite and infinite approximations
 - Basics from bilinear system theory

2 Model reduction of bilinear systems

- Interpolatory model reduction
- Balancing-based model reduction

3 Optimal control of bilinear systems

- Open loop control
- Closed loop control

Bilinear control systems

We consider

$$\dot{x}(t) = Ax(t) + \sum_{k=1}^{m} N_k x(t) u_k(t) + Bu(t), \quad x(0) = x_0$$

$$y(t) = Cx(t) + Du(t),$$

where for fixed t, we call

- $x(t) \in \mathbb{R}^n$ the state,
- $u(t) \in \mathbb{R}^m$ the input/control,
- ▶ $y(t) \in \mathbb{R}^p$ the output/observation.

Throughout this talk, we assume

- always D = 0,
- **often** $x_0 = 0$,
- often $N_1 = N, B = b \in \mathbb{R}^n$, $C = c^\top \in \mathbb{R}^{1 \times n}$.

A bilinearly controlled heat equation

- 2-dimensional heat distribution
- boundary control by spraying intensities of a cooling fluid

$$\Omega = (0,1) \times (0,1)$$

$$x_t = \Delta x \qquad \text{in } \Omega$$

$$\nu \cdot \nabla x = u_{1,2,3}(x-1) \qquad \text{on } \Gamma_1, \Gamma_2, \Gamma_3$$

$$x = u_4 \qquad \text{on } \Gamma_4$$

spatial discretization k × k-grid
 ⇒ ẋ ≈ A₁x + ∑_{i=1}³ N_i×u_i + Bu
 output: y = 1/μ₂ [1 ... 1]

Carleman linearization

APPLICATION DE LA THÉORIE DES ÉQUATIONS INTÉGRALES LINÉAIRES AUX SYSTÈMES D'ÉQUATIONS DIFFÉRENTIELLES NON LINÉAIRES.

PAR

TORSTEN CARLEMAN

1. STOCKHOLM

Table des matières.

§ 1. Réduction à un système infini d'équations différentielles linéaires.

- § 2. Étude des équations différentielles ayant une intégrale uniforme et un invariant intégral positif.
- § 3. L'hypothèse ergodique.
- § 4. Développements des solutions comme fonctions des valeurs initiales.

§ 1. Réduction à un système infini d'équations différentielles linéaires.

Dans sa conférence sur >L'avénir des Mathématiques>, au Congrès de Rome en 1908, Poincané a remarqué que l'on devait pouvoir appliquer la théorie des équations intégrales linéaires à la théorie des équations différentielles ordinaires non linéaires. Un premier pas pour réaliser l'idée de Poincaré a été fait par Fredholm dans une Note dans les Comptes rendus 23 aout 1920. FREDROLM arrive à une équation intégrale linéaire mais il constate en même temps que l'état actuel de la théorie des équations intégrales ne paraît cenendant pas permettre une étude suffisamment approfondie de l'équation obtenue. Nous nous proposons d'attaquer le problème par une autre méthode.

Torsten Carleman.

64

(r)

(2)

(1)

Soit un système d'équations différentielles

$$\frac{dx_i}{dt} = A_i(x_i, x_k, \dots, x_s)$$

et supposons d'abord que les A, soient des polynômes en x1, x2, ... zn. Considérons les fonctions

 $w_r = 0, 1, 2, ...$

et erdennens les en une suite simple

$$\varphi_1, \varphi_2, \dots, \varphi_{\nu}, \dots$$

En utilisant les équations (1) on obtient

$$\frac{dg_r}{dt} = \sum_{r=1}^{n} c_{rr} g_r$$

où (c.,) est une matrice n'avant ou'un nombre fini d'éléments non nuls dans chaque ligne et chaque colonne. Le problème d'intégrer les équations (1) se trouve ainsi réduit à un système infini d'équations difficentielles linéaires à coefficients constants.

Il n'est pas nécessaire de choisir pour $\varphi_1, \varphi_2, \dots, \varphi_n, \dots$ le système (2). Nous pouvons prendre n'importe quel système de fonctions pourvu qu'on puisse développer

$$\sum A_{\tau} \frac{\partial \varphi}{\partial x_{\tau}}$$

suivant les a_{i} . Considérons par exemple le système des fonctions $a_{i}(x_{i}, x_{i}, ..., x_{i})$ qui s'obtiennent en orthogonalisant les fonctions

$$\partial^{w_1+w_2+\cdots+w_{n-d}-(z_1^2+z_2^2+\cdots+z_n^2)}$$

 $\partial^{w_1}\sigma_x^{w_1}\sigma_x^{w_2}\cdots\sigma_x^{w_{n-d}}$

de manière que les relations

$$\int_{Z_0}^{\tau} \varphi_p(x_1, x_2, \dots, x_n) \varphi_0(x_1, x_2, \dots, x_n) \mu(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n = \stackrel{\circ}{\underset{\tau}{\overset{\to}{=}}} p = q$$

solent remplies, $\mu(x_1, x_2, ..., x_n)$ étant une fonction positive donnée (ne croissant

Carleman linearization

Question: why should we care about bilinear control systems? Consider a linear-analytic control affine system

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t), \quad x(0) = 0$$

with (convergent) Taylor series around 0

$$f(x) = A_1 x + A_2 x \otimes x + \dots + A_k x \otimes \dots \otimes x + \dots$$
$$g(x) = B_0 + B_1 x + B_2 x \otimes x + \dots + B_{k-1} x \otimes \dots \otimes x + \dots$$

where $A_i, B_i \in \mathbb{R}^{n \times n^i}$.

Carleman linearization cont'd

Let us introduce

$$\mathbf{x}^{\otimes} \coloneqq \begin{bmatrix} \mathbf{x}^{\top} & \mathbf{x}^{\top} \otimes \mathbf{x}^{\top} & \cdots & \underbrace{\mathbf{x}^{\top} \otimes \cdots \otimes \mathbf{x}^{\top}}_{k} \end{bmatrix}^{\mathsf{T}}$$

and consider the bilinear approximation

$$\frac{\mathrm{d}}{\mathrm{d}t} x^{\otimes} \approx \begin{bmatrix} A_1 & A_2 & \cdots & A_k \\ 0 & A_{2,1} & \cdots & A_{2,k-1} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & A_{k,1} \end{bmatrix} x^{\otimes} + \begin{bmatrix} B_1 & \cdots & B_{k-1} & 0 \\ B_{2,0} & \ddots & \vdots & 0 \\ 0 & \vdots & B_{k-1,1} & 0 \\ 0 & 0 & B_{k,0} & 0 \end{bmatrix} x^{\otimes} u + \begin{bmatrix} B_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u$$

where

$$\begin{aligned} A_{i,j} &= A_j \otimes I \otimes \cdots \otimes I + \cdots + I \otimes \cdots \otimes I \otimes A_j \\ B_{i,j} &= B_j \otimes I \otimes \cdots \otimes I + \cdots + I \otimes \cdots \otimes I \otimes B_j \end{aligned}$$

Pros: better approximations than linearization **Cons:** exponential increase of unknowns \rightsquigarrow curse of dimensionality

A dragged Brownian particle

$$\mathrm{d} X_t = -\nabla V(X_t, t) \mathrm{d} t + \sqrt{2\nu} \, \mathrm{d} W_t, \quad X_{t=0} = X_0,$$

- ▶ $W_t \in \mathbb{R}^n$ a Wiener process, ν (dimensionless) temperature,
- ▶ particle confined by potential $V(X_t, t) = G(X_t)$,

A dragged Brownian particle

Consider stochastic particle $X_t \in \Omega \subset \mathbb{R}^n$ and its motion given by

$$\mathrm{d} X_t = -\nabla V(X_t, t) \mathrm{d} t + \sqrt{2\nu} \, \mathrm{d} W_t, \quad X_{t=0} = X_0,$$

▶ $W_t \in \mathbb{R}^n$ a Wiener process, ν (dimensionless) temperature,

▶ particle confined by potential $V(X_t, t) = G(X_t)$,

A dragged Brownian particle

$$\mathrm{d} X_t = -\nabla V(X_t, t) \mathrm{d} t + \sqrt{2\nu} \, \mathrm{d} W_t, \quad X_{t=0} = X_0,$$

- ▶ $W_t \in \mathbb{R}^n$ a Wiener process, ν (dimensionless) temperature,
- ▶ particle confined by potential $V(X_t, t) = G(X_t)$,
- control by optical tweezer $V(X_t, t) = G(X_t) + \alpha(X_t)u(t)$.

A dragged Brownian particle

$$\mathrm{d} X_t = -\nabla V(X_t, t) \mathrm{d} t + \sqrt{2\nu} \, \mathrm{d} W_t, \quad X_{t=0} = X_0,$$

- ▶ $W_t \in \mathbb{R}^n$ a Wiener process, ν (dimensionless) temperature,
- ▶ particle confined by potential $V(X_t, t) = G(X_t)$,
- ▶ control by optical tweezer $V(X_t, t) = G(X_t) + \alpha(X_t)u(t)$.

A dragged Brownian particle

$$\mathrm{d} X_t = -\nabla V(X_t, t) \mathrm{d} t + \sqrt{2\nu} \, \mathrm{d} W_t, \quad X_{t=0} = X_0,$$

- ▶ $W_t \in \mathbb{R}^n$ a Wiener process, ν (dimensionless) temperature,
- ▶ particle confined by potential $V(X_t, t) = G(X_t)$,
- ▶ control by optical tweezer $V(X_t, t) = G(X_t) + \alpha(X_t)u(t)$.

A dragged Brownian particle

$$\mathrm{d} X_t = -\nabla V(X_t, t) \mathrm{d} t + \sqrt{2\nu} \, \mathrm{d} W_t, \quad X_{t=0} = X_0,$$

- ▶ $W_t \in \mathbb{R}^n$ a Wiener process, ν (dimensionless) temperature,
- ▶ particle confined by potential $V(X_t, t) = G(X_t)$,
- ▶ control by optical tweezer $V(X_t, t) = G(X_t) + \alpha(X_t)u(t)$.

A dragged Brownian particle

$$\mathrm{d} X_t = -\nabla V(X_t, t) \mathrm{d} t + \sqrt{2\nu} \, \mathrm{d} W_t, \quad X_{t=0} = X_0,$$

- ▶ $W_t \in \mathbb{R}^n$ a Wiener process, ν (dimensionless) temperature,
- ▶ particle confined by potential $V(X_t, t) = G(X_t)$,
- ▶ control by optical tweezer $V(X_t, t) = G(X_t) + \alpha(X_t)u(t)$.

A dragged Brownian particle

$$\mathrm{d} X_t = -\nabla V(X_t, t) \mathrm{d} t + \sqrt{2\nu} \, \mathrm{d} W_t, \quad X_{t=0} = X_0,$$

- ▶ $W_t \in \mathbb{R}^n$ a Wiener process, ν (dimensionless) temperature,
- ▶ particle confined by potential $V(X_t, t) = G(X_t)$,
- ▶ control by optical tweezer $V(X_t, t) = G(X_t) + \alpha(X_t)u(t)$.

Consider probability distribution function

$$\rho(x,t)\mathrm{d}x = \mathbb{P}[X_t \in [x,x+\mathrm{d}x)]$$

Fokker-Planck equation

$$\begin{split} \frac{\partial \rho}{\partial t} &= \nu \Delta \rho + \nabla \cdot (\rho \nabla V) & \text{in } \Omega \times (0, \infty), \\ 0 &= (\nu \nabla \rho + \rho \nabla V) \cdot \vec{n} & \text{on } \Gamma \times (0, \infty), \\ \rho(x, 0) &= \rho_0(x) & \text{in } \Omega, \end{split}$$

▶ $\Omega \subset \mathbb{R}^n$ bounded open set with boundary $\Gamma = \partial \Omega$,

▶ ρ_0 initial probability distribution with $\int_{\Omega} \rho_0(x) dx = 1$,

$$V(x,t) = G(x) + \alpha(x)u(t).$$

An infinite-dimensional bilinear control system

Consider the bilinear control system

$$\begin{split} \dot{\rho}(t) &= A\rho(t) + N\rho(t)u(t), \\ \rho(0) &= \rho_0, \end{split}$$

where the operators A and N are defined as follows

$$\begin{aligned} A: \mathcal{D}(A) &\subset L^{2}(\Omega) \to L^{2}(\Omega), \\ \mathcal{D}(A) &= \left\{ \rho \in H^{2}(\Omega) \left| (\nu \nabla \rho + \rho \nabla G) \cdot \vec{n} = 0 \text{ on } \Gamma \right\}, \\ A\rho &= \nu \Delta \rho + \nabla \cdot (\rho \nabla G), \end{aligned}$$
$$\begin{aligned} N: H^{1}(\Omega) \to L^{2}(\Omega), \quad N\rho &= \nabla \cdot (\rho \nabla \alpha). \end{aligned}$$

An infinite-dimensional bilinear control system

Consider the bilinear control system

$$\begin{split} \dot{\rho}(t) &= A\rho(t) + N\rho(t)u(t), \\ \rho(0) &= \rho_0, \end{split}$$

its $L^2(\Omega)$ -adjoints are given by

$$\begin{split} A^* \colon \mathcal{D}(A^*) &\subset L^2(\Omega) \to L^2(\Omega), \\ \mathcal{D}(A^*) &= \left\{ \varphi \in H^2(\Omega) \left| (\nu \nabla \varphi) \cdot \vec{n} = 0 \text{ on } \Gamma \right\}, \\ A^* \phi &= \nu \Delta \varphi - \nabla G \cdot \nabla \varphi, \\ N^* \colon H^1(\Omega) \to L^2(\Omega), \quad N^* \varphi &= -\nabla \varphi \cdot \nabla \alpha. \end{split}$$

Figure: 1D Fokker-Planck equation, n = 1024.

... and its deterministic counterpart

Consider motion of $\frac{1}{2} \otimes C \otimes C \otimes C$ Consider motion of $X_t \in \Omega \subset \mathbb{R}^n$

$$\mathrm{d} X_t = -\nabla V(X_t,t) \mathrm{d} t + \sqrt{2\psi}/\sqrt{4}/\sqrt{t}, \quad X_{t=0} = X_0,$$

where $V(X_t, t) = G(X_t) + \alpha(X_t)u(t)$.

We then obtain

$$\dot{\rho}(t) = A\rho(t) + N\rho(t)u(t), \quad \rho(0) = \rho_0,$$

where

$$\begin{aligned} &A\rho = \psi \not A \psi + \nabla \cdot (\rho \nabla G), \quad A^* \phi = \psi \not A \psi - \nabla G \cdot \nabla \varphi \\ &N\rho = \nabla \cdot (\rho \nabla \alpha), \quad N^* \varphi = -\nabla \varphi \cdot \nabla \alpha \end{aligned}$$

Note: A and A^{*} generate Perron-Frobenius and Koopman operator!

Literature

Finite and infinite dimensional approximations

- B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proceedings of the National Academy of Sciences, 17 (1931), 315–318.
- T. Carleman, Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires, Acta Mathematica, 59 (1932), 63–87.
- A. J. Krener, Linearization and bilinearization of control systems, in Proceedings of the 12th Annual Allerton Conference on Circuit and System Theory, vol. 834, Monticello, 1974.
- S. Svornos, G. Stephanopoulos, R. Aris, Bilinear approximation of general non-linear dynamic systems with linear inputs, International Journal of Control Volume 31 (1980), 109–126.
- A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Springer New York, New York, NY, 1994.
- T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics, Acta Numerica, (2016), 681–880.

Overview

1 Bilinear control systems

- Finite and infinite approximations
- Basics from bilinear system theory

2 Model reduction of bilinear systems

- Interpolatory model reduction
- Balancing-based model reduction

3 Optimal control of bilinear systems

- Open loop control
- Closed loop control

The Volterra series

The (nonlinear) time domain mapping $u \mapsto x$

Back to a (simple) bilinear control system

$$\dot{x}(t) = Ax(t) + Nx(t)u(t) + bu(t), \quad x(0) = 0$$

whose solution is given by a Volterra series of the form

$$x(t) = \sum_{i=1}^{\infty} \int_0^t \int_0^{\sigma_1} \cdots \int_0^{\sigma_{i-1}} g_i(t, \sigma_1, \dots, \sigma_{i-1}) u(\sigma_i) \cdots u(\sigma_1) \, \mathrm{d}\sigma_i \cdots \mathrm{d}\sigma_1$$

where $g_i(t, \sigma_1, \dots, \sigma_{i-1}) = \underbrace{e^{A(t-\sigma_1)}N\cdots e^{A(\sigma_{i-2}-\sigma_{i-1})}N}_{i-1 \text{ times}} e^{A(\sigma_{i-1}-\sigma_i)}b$

Regular kernels: change of variables lead to $e^{At_i}N\cdots e^{At_2}Ne^{At_1}b$

Proof idea: successive approximations (via Picard-Lindelöf) related to

$$\dot{x}_1(t) = Ax_1(t) + bu(t), x_1(0) = 0 \dot{x}_i(t) = Ax_i(t) + Nx_{i-1}(t)u(t) + bu(t), x_i(0) = 0$$

Generalized transfer functions

The (nonlinear) frequency domain mapping $u \mapsto y$

 \Rightarrow input-output map depends on $h(t_1, \ldots, t_n) = c^{\top} e^{At_i} N \cdots e^{At_2} N e^{At_1} b$

For f dep. on (t_1, \ldots, t_n) consider multivariate Laplace transformation

$$\widetilde{f}(s_1,\ldots,s_n) = \mathcal{L}[f](s_1,\ldots,s_n) = \int_0^\infty \cdots \int_0^\infty e^{-s_1t_1} \cdots e^{-s_nt_n} f(t_1,\ldots,t_n) \,\mathrm{d}t_1 \cdots \mathrm{d}t_n$$

We obtain generalized transfer functions of the form

$$G_1(s_1) = c^{\top} (s_1 I - A)^{-1} b$$

$$G_k(s_1, \dots, s_k) = c^{\top} (s_k I - A)^{-1} N \cdots (s_2 I - A)^{-1} N (s_1 I - A)^{-1} b$$

Pros: may be used as abstract input-output mappings (for MOR)Cons: lacks physical meaning/interpretation/measurement

Stability notions

$$\dot{x}(t) = Ax(t) + Nx(t)u(t) + bu(t)$$

lf

- ▶ *A* is asymptotically stable, i.e., $\sigma(A) \subset \mathbb{C}_{-}$
- ▶ *u* is uniformly bounded on $[0, \infty)$, i.e., $|u(t)| \le M$ for all t > 0
- ▶ ||N|| is sufficiently small

then

• the Volterra series converges on $[0,\infty)$

Reachability, observability and algebraic Gramians

$$\dot{x}(t) = Ax(t) + Nx(t)u(t) + bu(t), \quad y(t) = c^{\mathsf{T}}x(t)$$

erlin

RG Modelling, Simulation and Optimization of Real Processes

Consider

$$P_{1}(t_{1}) = \int_{0}^{\infty} e^{At_{1}}b, \quad P_{i}(t_{1},...,t_{i}) = e^{At_{i}}NP_{i-1}, \quad i = 2,3,...$$
$$Q_{1}(t_{1}) = \int_{0}^{\infty} e^{A^{T}t_{1}}c, \quad Q_{i}(t_{1},...,t_{i}) = e^{A^{T}t_{i}}N^{T}Q_{i-1}, \quad i = 2,3,...$$

lf

$$P = \sum_{i=1}^{\infty} \int_0^{\infty} \cdots \int_0^{\infty} P_i P_i^{\mathsf{T}} \mathrm{d} t_1 \cdots \mathrm{d} t_i, \quad Q = \sum_{i=1}^{\infty} \int_0^{\infty} \cdots \int_0^{\infty} Q_i Q_i^{\mathsf{T}} \mathrm{d} t_1 \cdots \mathrm{d} t_i$$

exist, then

$$\sigma(I \otimes A + A \otimes I + N \otimes N) \subset \mathbb{C}_{-}$$
 $AP + PA^{T} + NPN^{T} + bb^{T} = 0, P > 0 \Leftrightarrow$ system reachable from 0
 $A^{T}Q + QA + N^{T}QN + cc^{T} = 0, Q > 0 \Leftrightarrow$ system is observable

A generalized \mathcal{H}_2 -norm

Recall: for linear systems, the $\mathcal{H}_2\text{-norm}$ is defined as

$$\|(A,b,c)\|^2_{\mathcal{H}_2(\mathbb{C}_+)} \coloneqq \sup_{\sigma>0} \int_{-\infty}^{\infty} \|G_1(\sigma+\imath\omega)\|^2_{\mathrm{F}} \, \mathrm{d}\omega = c^\top P c$$

with $AP + PA^{\mathsf{T}} + bb^{\mathsf{T}} = 0 \Rightarrow ||G||^{2}_{\mathcal{H}_{2}(\mathbb{C}_{+})} = c^{\mathsf{T}} \left(\int_{0}^{\infty} (e^{At}b)(e^{At}b)^{\mathsf{T}} dt \right) c$

Natural idea: use regular Volterra kernels and define

$$\|(A, N, b, c)\|_{\mathcal{H}_2} \coloneqq \sum_{k=1}^{\infty} \int_0^{\infty} \cdots \int_0^{\infty} g_k^{(\ell_1, \dots, \ell_k)} (g_k^{(\ell_1, \dots, \ell_k)})^{\mathsf{T}} \mathrm{d} t_1 \cdots \mathrm{d} t_k$$

where $g_k^{(\ell_1,\ldots,\ell_k)} = c^{\mathsf{T}} e^{At_k} N \cdots e^{At_2} N e^{At_1} b.$

Note: $\|(A, N, b, c)\|_{\mathcal{H}_2}^2 = c^\top P c$ with $AP + PA^\top + NPN^\top + bb^\top = 0$

A generalized \mathcal{H}_2 -norm cont'd If

$$\sigma(I\otimes A+A\otimes I+N\otimes N)\subset\mathbb{C}_-$$

then for

$$\dot{x}(t) = Ax(t) + Nx(t)u(t) + bu(t), x(0) = 0, y(t) = c^{T}x(t)$$

we have

$$\sup_{t\geq 0} |y(t)| \leq \|(A, N, b, c)\|_{\mathcal{H}_2} \exp\left(0.5\|u^0\|_{L^2}^2\right) \|u\|_{L^2}$$

where $u^0 \equiv 0$ if $N \equiv 0$.

Note: \mathcal{H}_2 -norm relates L^2 and L^{∞} (as in the linear case)

A link to linear stochastic control systems

Consider the linear stochastic systems

$$\mathrm{d} X_t = A X_t \, \mathrm{d} t + N X_t \, \mathrm{d} W_t, \quad X_{t=0} = X_0.$$

Then the following are equivalent:

- $\ \ \, \sigma(I\otimes A+A\otimes I+N\otimes N)\subset \mathbb{C}_{-}$
- ▶ The system is exponentially mean square stable, i.e.,

$$\mathbb{E}\|X_t(x_0)\|_2^2 \leq M\|x_0\|_2^2 e^{-ct},$$

for some $M \ge 1$ and c > 0.

Literature

Bilinear control theory

- C. Bruni, G. DiPillo, G. Koch, On the mathematical models of bilinear systems, Automatica 2 (1971), 11–26.
- R. R. Mohler, Bilinear Control Processes, New York Academic Press, 1973.
- P. D'Alessandro, A. Isidori, A. Ruberti, Realization and structure theory of bilinear dynamical systems, SIAM Journal on Control and Optimization 12 (1974), 517–535.
- A. J. Krener, Linearization and bilinearization of control systems, Proceedings of the 12th Annual Allerton Conference on Circuit and System Theory, vol. 834, 1974.
- E. Gilbert, Functional expansions for the response of nonlinear differential systems, IEEE Transactions on Automatic Control 22 (1977), 909–921.
- W. J. Rugh, Nonlinear System Theory, The Johns Hopkins University Press, 1982.
- H. Schwarz, Stability of discrete-time equivalent homogeneous bilinear systems, Control Theory and Advanced Technology 3 (1987), 263–269.
- T. Siu, M. Schetzen, Convergence of Volterra series representation and BIBO stability of bilinear systems, International Journal of Systems Science 22 (1991), 2679–2684.
- D. L. R. Elliott, Bilinear control systems: matrices in action, vol. 169, Springer, 2009.
- R. R. Mohler, Natural bilinear control processes, IEEE Transactions on Systems Science and Cybernetics 6 (2007), 192–197.

Overview

1 Bilinear control systems

- Finite and infinite approximations
- Basics from bilinear system theory

2 Model reduction of bilinear systems

- Interpolatory model reduction
- Balancing-based model reduction
- 3 Optimal control of bilinear systems
 - Open loop control
 - Closed loop control

Model reduction by projection

Given

$$\dot{x}(t) = Ax(t) + Nx(t)u(t) + bu(t), \quad x(0) = x_0$$

we seek an approximation $\widetilde{x}(t) \in \mathcal{V} \subseteq \mathbb{R}^n$ with $\dim(\mathcal{V}) = r$.

Consequence

$$\dot{\widetilde{x}}(t) \approx A\widetilde{x}(t) + N\widetilde{x}(t)u(t) + bu(t)$$

Petrov-Galerkin condition

$$\dot{\widetilde{x}}(t) - A\widetilde{x}(t) - N\widetilde{x}(t)u(t) - bu(t) = \operatorname{res}(t) \perp W$$

where $\mathcal{W} \subseteq \mathbb{R}^n$, dim $(\mathcal{W}) = r$ is another (test) subspace.

Model reduction by projection cont'd

Given

$$\dot{x}(t) = Ax(t) + Nx(t)u(t) + bu(t), \quad x(0) = x_0$$

consider bases $\{v_1, \ldots, v_r\}$ and $\{w_1, \ldots, w_r\}$ of \mathcal{V}, \mathcal{W} .

Approximation $\widetilde{x}(t)$ characterized by coordinate vector $x_r(t)$

$$x(t) \approx \widetilde{x}(t) = V x_r(t), \quad V = [v_1, \dots, v_r] \in \mathbb{R}^{n \times r}, \quad x_r(t) \in \mathbb{R}^r$$

Petrov-Galerkin condition in vector form reads

$$\langle \dot{\widetilde{x}}(t) - A\widetilde{x}(t) - N\widetilde{x}(t)u(t) - bu(t), w_i \rangle = 0, \quad i = 1, \dots, r$$

and in matrix form

$$W^{\mathsf{T}}(\dot{\widetilde{x}}(t) - A\widetilde{x}(t) - Nx(t)u(t) - bu(t)) = 0.$$

Model reduction by projection cont'd

Given biorthogonal $V, W \in \mathbb{R}^{n \times r}$, i.e., $W^{\top}V = I$, replace

$$\dot{x}(t) = Ax(t) + Nx(t)u(t) + bu(t),$$

$$y(t) = c^{\mathsf{T}}x(t)$$

by a reduced-order model

$$\dot{x}_{r}(t) = \underbrace{(W^{\mathsf{T}}AV)}_{=:A_{r}} x_{r}(t) + \underbrace{(W^{\mathsf{T}}NV)}_{=:N_{r}} x_{r}(t)u(t) + \underbrace{(W^{\mathsf{T}}b)}_{=:b_{r}} u(t),$$
$$y_{r}(t) = \underbrace{(c^{\mathsf{T}}V)}_{=:c_{r}^{\mathsf{T}}} x_{r}(t)$$

Goals: $r \ll n$ and $y_r \approx y$, but how?

Overview

1 Bilinear control systems

- Finite and infinite approximations
- Basics from bilinear system theory

2 Model reduction of bilinear systems

- Interpolatory model reduction
- Balancing-based model reduction

3 Optimal control of bilinear systems

- Open loop control
- Closed loop control

Interpolatory model reduction in a nutshell

Krylov spaces and moment matching

Consider w.l.o.g. the $\ensuremath{\mathsf{SISO}}$ case

$$\dot{x}(t) = Ax(t) + bu(t), \quad x(0) = 0$$
$$y(t) = c^{\mathsf{T}}x(t)$$

and observe that for s such that $\left\|\frac{1}{s}A\right\| < 1$

$$G(s) = c^{\top} (sI - A)^{-1} b = c^{\top} (s(I - \frac{1}{s}A))^{-1} b$$
$$= \frac{1}{s} c^{\top} (I - \frac{1}{s}A)^{-1} b = \frac{1}{s} c^{\top} \sum_{i=0}^{\infty} (s^{-1}A)^{i} b$$
$$= s^{-1} c^{\top} b + s^{-2} c^{\top} A b + s^{-3} c^{\top} A^{2} b + \cdots$$

where we used the Neumann series.

The terms $c^{T}A^{k}b$ are called Markov parameters.

Interpolatory model reduction in a nutshell Krylov spaces and moment matching cont'd

(How) can we construct $G_r(s) = c_r^{\top}(sI - A_r)^{-1}b_r$ such that

$$\boldsymbol{c}^{\mathsf{T}}\boldsymbol{A}^{k}\boldsymbol{b} = \boldsymbol{c}_{r}^{\mathsf{T}}\boldsymbol{A}_{r}^{k}\boldsymbol{b}_{r}, \quad k = 0, \dots, q-1.$$
 (1)

This process is called moment matching.

Consider Krylov subspace $\mathcal{V} = \mathcal{K}_q(A, b) = \operatorname{span}\{b, Ab, \dots, A^{q-1}b\}.$

If $V = [v_1, \dots, v_q]$ basis of \mathcal{V} and $W \in \mathbb{R}^{n \times q}$ s.t. $W^\top V = I_q$ then

$$A_r = W^{\mathsf{T}} A V, \quad b_r = W^{\mathsf{T}} b, \quad c_r = V^{\mathsf{T}} c$$

defines G_r satisfying (1).

Proof uses projection $P = VW^{\top}$ onto \mathcal{V} .

If additionally $\mathcal{W} = \mathcal{K}_q(A^{\mathsf{T}}, c)$, then (1) holds up to k = 2q - 1.

Interpolatory model reduction in a nutshell

Rational interpolation by projection

Note that

$$G(s) = c^{T}(sI - A)^{-1}b, \quad G'(s) = -c^{T}(sI - A)^{-2}b, \dots$$

New goal: for $s = \sigma$ not an eigenvalue of A

$$G^{(k)}(\sigma) = G_r^{(k)}(\sigma), \quad k = 0, 1, \dots, q-1.$$

This constitutes a rational interpolation problem.

Can be achieved by rational Krylov subspaces of the form

$$\mathcal{V} = \mathcal{K}_q(A, b; \sigma) = \operatorname{span}\{(\sigma I - A)^{-1}b, \dots, (\sigma I - A)^{-q}b\},\$$
$$\mathcal{W} = \mathcal{K}_q(A^{\mathsf{T}}, c; \sigma) = \operatorname{span}\{(\sigma I - A^{\mathsf{T}})^{-1}c, \dots, (\sigma I - A^{\mathsf{T}})^{-q}c\}.$$

Note: $x = (\sigma I - A)^{-1}b \Leftrightarrow Ax - x\sigma + b \cdot 1 = 0 \Rightarrow AX - X\Lambda + b\mathbb{1}^{\top} = 0$

Back to the bilinear case

Multimoments

As in the linear case, we may expand G_k based on

$$G_{k}(s_{1},...,s_{k}) = c^{\top} \left(\prod_{j=2}^{k} (s_{j}I - A)^{-1}N \right) (s_{1}I - A)^{-1}b$$

= $(-1)^{k} c^{\top} \left(\prod_{j=2}^{k} (A - \sigma_{j}I - (s_{j} - \sigma_{j})I)^{-1}N \right)$
 $\cdot (A - \sigma_{1}I - (s_{1} - \sigma_{1})I)^{-1}b$
= $(-1)^{k} c^{\top} \left(\prod_{j=2}^{k} (I - (s_{j} - \sigma_{j})(A - \sigma_{j}I)^{-1})^{-1}(A - \sigma_{j}I)^{-1}N \right)$
 $\cdot (I - (s_{1} - \sigma_{1})(A - \sigma_{1}I)^{-1})^{-1}(A - \sigma_{1}I)^{-1}b$

Multimoments cont'd

$$G_{k}(s_{1},...,s_{k}) = (-1)^{k} c^{\mathsf{T}} \left(\prod_{j=2}^{k} (I - (s_{j} - \sigma_{j})(A - \sigma_{j}I)^{-1})^{-1} (A - \sigma_{j}I)^{-1} N \right)$$
$$\cdot (I - (s_{1} - \sigma_{1})(A - \sigma_{1}I)^{-1})^{-1} (A - \sigma_{1}I)^{-1} b$$

Using Neumann series for s_j around σ_j we can substitute

$$(I - (s_j - \sigma_j) (A - \sigma_j I)^{-1})^{-1} = \sum_{i=0}^{\infty} (s_j - \sigma_j)^i (A - \sigma_j I)^{-i}$$

and obtain

$$G_k(s_1,\ldots,s_k) = (-1)^k c^{\mathsf{T}} \Big(\prod_{j=2}^k \Big(\sum_{i=0}^\infty (s_j - \sigma_j)^i (A - \sigma_j I)^{-(i+1)} \Big) N \Big)$$
$$\cdot \Big(\sum_{i=0}^\infty (s_j - \sigma_j)^i (A - \sigma_j I)^{-(i+1)} \Big) b .$$

Multimoments cont'd

A multivariable power series notation leads to

$$G_k(s_1,...,s_k) = \sum_{l_k=1}^{\infty} ... \sum_{l_1=1}^{\infty} m(l_1,...,l_k)(s_1 - \sigma_1)^{l_1-1} ... (s_k - \sigma_k)^{l_k-1},$$

where

$$m(I_1,...,I_k) = (-1)^k c^T (A - \sigma_k I)^{-I_k} N \dots (A - \sigma_2 I)^{-I_2} N (A - \sigma_1 I)^{-I_1} b$$

are multimoments associated with the *k*-th transfer function.

Analogously, expansions around $s_i = \infty$ lead to

$$m(l_1,\ldots,l_k)=c^{\mathsf{T}}A^{l_k-1}N\ldots A^{l_2-1}NA^{l_1-1}b$$

Question: how to construct a ROM with $m(l_1, \ldots, l_k) = \widehat{m}(l_1, \ldots, l_k)$?

Multimoment matching

Construct a ROM by Petrov-Galerkin projection $P = VW^{T}$

$$\widehat{A} = W^{\mathsf{T}} A V, \quad \widehat{N} = W^{\mathsf{T}} N V, \quad \widehat{b} = W^{\mathsf{T}} b, \quad \widehat{c} = W^{\mathsf{T}} c$$

such that

$$\begin{split} & \operatorname{span}\{V^{(1)}\} = \mathcal{K}_q((A - \sigma_1 I)^{-1}, (A - \sigma_1 I)^{-1}b), \\ & \operatorname{span}\{V^{(k)}\} = \mathcal{K}_q((A - \sigma_k I)^{-1}, (A - \sigma_k I)^{-1}NV^{(k-1)}), \quad k = 2, \dots, r \\ & \operatorname{span}\{V\} = \operatorname{span}\left\{\bigcup_{k=1}^r \operatorname{span}\{V^{(k)}\}\right\}. \end{split}$$

Then $m(l_1, \ldots, l_k) = \widehat{m}(l_1, \ldots, l_k)$, for $k = 1, \ldots, r, l_1, \ldots, l_k = 1, \ldots, q$. This process is called multimoment matching.

Pros: easy to implement **Cons:** local approach, "good" choice of σ_i nontrivial

\mathcal{H}_2 -optimal model reduction

Bilinear
$$\mathcal{H}_2$$
-optimal MOR: $G_r = \underset{\widetilde{G} \in \mathcal{H}_2}{\arg \min} \|G - \widetilde{G}\|_{\mathcal{H}_2}$
Define

$$\begin{aligned} A_{\text{err}} &= \begin{pmatrix} A & 0 \\ 0 & \widetilde{A} \end{pmatrix}, \quad N_{\text{err}} = \begin{pmatrix} N & 0 \\ 0 & \widetilde{N} \end{pmatrix}, \quad b_{\text{err}} = \begin{pmatrix} b \\ \widetilde{b} \end{pmatrix}, \quad c_{\text{err}} = \begin{pmatrix} c \\ -\widetilde{c} \end{pmatrix} \\ P_{\text{err}} &= \begin{pmatrix} P & X \\ X^{\top} & \widetilde{P} \end{pmatrix}, \quad Q_{\text{err}} = \begin{pmatrix} Q & Y \\ Y & \widetilde{Q} \end{pmatrix} \\ 0 &= A_{\text{err}} P_{\text{err}} + P_{\text{err}} A_{\text{err}}^{\top} + N_{\text{err}} P_{\text{err}} N_{\text{err}}^{\top} + b_{\text{err}} b_{\text{err}}^{\top}, \\ 0 &= A_{\text{err}}^{\top} Q_{\text{err}} + Q_{\text{err}} A_{\text{err}} + N_{\text{err}}^{\top} Q_{\text{err}} N_{\text{err}} + c_{\text{err}} c_{\text{err}}^{\top} \\ 0 &= X^{\top} P + \widetilde{Q} \widetilde{b}, \quad 0 = \widetilde{c}^{\top} \widetilde{P} - c^{\top} X, \\ 0 &= X^{\top} Y + \widetilde{P} \widetilde{Q}, \quad 0 = X^{\top} NY + \widetilde{Q} \widetilde{N} \widetilde{P} \end{aligned}$$

Volterra series interpolation

(How) does this relate to multimoments/Volterra series?

If $(\widehat{A}, \widehat{N}, \widehat{b}, \widehat{c})$ is a locally \mathcal{H}_2 -optimal ROM, then

$$\sum_{k=1}^{\infty} \sum_{\ell_1=1}^{r} \cdots \sum_{\ell_k=1}^{r} \widehat{\Phi}_{\ell_1,\dots,\ell_k} G_k(-\widehat{\lambda}_1,\dots,-\widehat{\lambda}_k)$$
$$= \sum_{k=1}^{\infty} \sum_{\ell_1=1}^{r} \cdots \sum_{\ell_k=1}^{r} \widehat{\Phi}_{\ell_1,\dots,\ell_k} \widehat{G}_k(-\widehat{\lambda}_1,\dots,-\widehat{\lambda}_k)$$

where

$$\widehat{\lambda}_i \text{ are the eigenvalues of } \widehat{A}$$

$$\widehat{\Phi}_{\ell_1,...,\ell_k} := \lim_{s_k \to \widehat{\lambda}_{\ell_k}} (s_k - \widehat{\lambda}_k) \cdots \lim_{s_1 \to \widehat{\lambda}_{\ell_1}} (s_1 - \widehat{\lambda}_1) \ \widehat{G}_k(s_1,...,s_k)$$

Note 1: optimality char. by multipoint Volterra series interpolation **Note 2:** if N = 0, we have $G_1(-\widehat{\lambda}_i) = \widehat{G}_1(-\widehat{\lambda}_i) \Rightarrow \mathsf{IRKA}$

An iterative algorithm

Algorithm Generalized Sylvester iteration (B-IRKA)

Input:
$$(A, N_k, B, C)$$
, $(\widehat{A}, \widehat{N}_k, \widehat{B}, \widehat{C})$
Output: $(\widehat{A}, \widehat{N}_k, \widehat{B}, \widehat{C})$ satisyfing 1st order \mathcal{H}_2 opt. cond.

1: repeat

2:

Solve
$$AX + X\widehat{A}^{\mathsf{T}} + \sum_{k=1}^{m} N_k X \widehat{N}_k^{\mathsf{T}} + B\widehat{B}^{\mathsf{T}} = 0.$$

Solve $A^{\mathsf{T}}Y + Y\widehat{A} + \sum_{k=1}^{m} N_k^{\mathsf{T}}Y\widehat{N}_k - C^{\mathsf{T}}\widehat{C} = 0.$
 $V = \operatorname{orth}(X), W = \operatorname{orth}(Y), Z = W(V^{\mathsf{T}}W)^{-1}$
 $\widehat{A} = Z^{\mathsf{T}}AV, \ \widehat{N}_k = Z^{\mathsf{T}}N_kV, \ \widehat{B} = Z^{\mathsf{T}}B, \ \widehat{C} = CV$
until convergence

Overview

1 Bilinear control systems

- Finite and infinite approximations
- Basics from bilinear system theory

2 Model reduction of bilinear systems

- Interpolatory model reduction
- Balancing-based model reduction

3 Optimal control of bilinear systems

- Open loop control
- Closed loop control

Basic idea

• (A, N, b, c), is called balanced, if solutions P, Q of

 $AP + PA^{\mathsf{T}} + NPN^{\mathsf{T}} + bb^{\mathsf{T}} = 0, \quad A^{\mathsf{T}}Q + QA + N^{\mathsf{T}}QN + cc^{\mathsf{T}} = 0$

satisfy: $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$.

Basic idea

• (A, N, b, c), is called balanced, if solutions P, Q of

 $AP + PA^{\mathsf{T}} + NPN^{\mathsf{T}} + bb^{\mathsf{T}} = 0, \quad A^{\mathsf{T}}Q + QA + N^{\mathsf{T}}QN + cc^{\mathsf{T}} = 0$

satisfy: $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$.

• $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of G.

Basic idea

• (A, N, b, c), is called balanced, if solutions P, Q of

 $AP + PA^{\mathsf{T}} + NPN^{\mathsf{T}} + bb^{\mathsf{T}} = 0, \quad A^{\mathsf{T}}Q + QA + N^{\mathsf{T}}QN + cc^{\mathsf{T}} = 0$

satisfy: $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$.

- $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of G.
- Compute balanced realization via state-space transformation

$$\begin{aligned} \mathcal{T}: (A, N, b, c) &\mapsto (TAT^{-1}, TNT^{-1}, Tb, T^{-\intercal}c) \\ &= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{bmatrix}, \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \right). \end{aligned}$$

Basic idea

• (A, N, b, c), is called balanced, if solutions P, Q of

 $AP + PA^{\mathsf{T}} + NPN^{\mathsf{T}} + bb^{\mathsf{T}} = 0, \quad A^{\mathsf{T}}Q + QA + N^{\mathsf{T}}QN + cc^{\mathsf{T}} = 0$

satisfy: $P = Q = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$ with $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n > 0$.

- $\{\sigma_1, \ldots, \sigma_n\}$ are the Hankel singular values (HSVs) of *G*.
- Compute balanced realization via state-space transformation

$$\begin{aligned} \mathcal{T}:(A,N,b,c) &\mapsto (TAT^{-1},TNT^{-1},Tb,T^{-\top}c) \\ &= \left(\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \begin{bmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{bmatrix}, \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}, \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \right). \end{aligned}$$

▶ Truncation $\rightsquigarrow (\widehat{A}, \widehat{N}, \widehat{b}, \widehat{c}) = (A_{11}, N_{11}, b_1, c_1).$

Balanced truncation for bilinear systems cont'd

Do we have an energy interpretation similar to the linear case? We need the dual, antistable bilinear system

$$\dot{\xi} = -A^{\mathsf{T}}\xi - N^{\mathsf{T}}\xi u + cu.$$

For $x_0 \in \mathbb{R}^n$ let $u = u_{x_0}$ be L^2 minimal, s.t. $\lim_{t \to \infty} \xi(t, x_0, u) = 0$.

Define the energy functionals

$$E_{c}(x_{0}) = \min_{\substack{u \in L^{2}((-\infty,0])\\ x(-\infty,x_{0},u)=0}} \|u\|_{L^{2}((-\infty,0])}^{2}, \quad E_{c}(x_{0}) = \|y(\cdot,x_{0},u_{x_{0}})\|_{L^{2}([0,\infty))}^{2}.$$

Energy bounds

If G is a balanced bilinear system with $P = Q = \text{diag}(\sigma_1, \ldots, \sigma_n)$, then there exists $\varepsilon > 0$ s.t. for all canonical unti vectors e_i it holds

$$E_{\mathrm{c}}(\varepsilon e_j) > \varepsilon^2 \sigma_j^{-1}, \quad E_{\mathrm{o}}(\varepsilon e_j) < \varepsilon^2 \sigma_j.$$

Potential $G(x) = \frac{5}{2}(x_1^2 - 1)^2 + 5x_2^2$

Evolution of $\rho(x, t)$ on a 50 × 50-grid, $u(t) = 5 \sin(2\pi t), t = 0s$

Evolution of $\rho(x, t)$ on a 50 × 50-grid, $u(t) = 5\sin(2\pi t), t = 0.25s$

Evolution of $\rho(x, t)$ on a 50 × 50-grid, $u(t) = 5\sin(2\pi t), t = 0.5s$

Evolution of $\rho(x, t)$ on a 50 × 50-grid, $u(t) = 5 \sin(2\pi t)$, t = 0.75s

Evolution of $\rho(x, t)$ on a 50 × 50-grid, $u(t) = 5 \sin(2\pi t), t = 1s$

Literature

Model reduction by multimoment matching

- J. R. Phillips, Projection frameworks for model reduction of weakly nonlinear systems, Proceedings of Design Automatic Conference (2000), 184–189.
- Z. Bai, Krylov subspace techniques for reduced-order modeling of nonlinear dynamical systems, Applied Numerical Mathematics 43 (2002), 9–44.
- J. R. Phillips, Projection-based approaches for model reduction of weakly nonlinear, time-varying systems, IEEE Transactions on Circuits and Systems 22 (2003), 171–187.
- Z. Bai, D. Skoogh, A projection method for model reduction of bilinear dynamical systems, Linear Algebra and its Applications 415 (2006), 406–425.
- L. Feng, P. Benner, A note on projection techniques for model order reduction of bilinear systems, Numerical Analysis and Applied Mathematics, AIP Conference Proceedings vol. 936 (2007), 208–211.
- T. Breiten, T. Damm, Krylov subspace methods for model order reduction of bilinear control systems, Systems & Control Letters 59 (2010), 443–450.

Literature

Bilinear \mathcal{H}_2 norm and optimal model reduction

- L. Zhang, J. Lam, On H₂ model reduction of bilinear systems, Automatica 38 (2002), 205–216.
- P. Benner, T. Breiten, Interpolation-based H₂-model reduction of bilinear control systems, SIAM Journal on Matrix Analysis and Applications 33 (2012), 859–885.
- G. Flagg, Interpolation methods for the model reduction of bilinear systems, PhD Thesis, Virginia Tech (2012).
- T. Breiten, Interpolatory methods for model reduction of large-scale dynamical systems, PhD Thesis, Otto-von-Guericke Universität Magdeburg (2013).
- G. Flagg, S. Gugercin, Multipoint Volterra series interpolation and H₂ optimal model reduction of bilinear systems, SIAM Journal on Matrix Analysis and Applications 36 (2015), 549–579.
- M. Redmann, Bilinear Systems A New Link to H₂-norms, relations to stochastic systems, and further properties, SIAM Journal on Control and Optimization 59 (2021).

Literature

Algebraic Gramians and Lyapunov equations

- C. S. Hsu, U. B. Desai, C. A. Crawley, Realization algorithms and approximation methods of bilinear systems, The 22nd IEEE Conference on Decision and Control (1983), 783–788.
- S. A. Al-Baiyat, M. Bettayeb, A new model reduction scheme for k-power bilinear systems, Proceedings of the 32nd IEEE Conference on Decision and Control (1993), 22–27.
- S. A. Al-Baiyat, A. S. Farag, M. Bettayeb, Transient approximation of a bilinear two-area interconnected power system, Electric Power Systems Research 26 (1993), 11-19.
- W. S. Gray, J. Mesko, Energy functions and algebraic Gramians for bilinear systems, IFAC Proceedings Volumes 32 (1998), 101-106.
- L. Zhang, J. Lam, B. Huang, G. Yang, On Gramians and balanced truncation of discrete-time bilinear systems, International Journal of Control 76 (2003), 414–427.
- M. Condon, R. Ivanov, Nonlinear systems algebraic gramians and model reduction, COMPEL 24 (2005), 202–219.
- M. Condon, R. Ivanov, Krylov subspaces from bilinear representations of nonlinear systems, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 26 (2007), 11–26.
- T. Damm, Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations, Numerical Linear Algebra with Applications 15 (2008), 853–871.
- P. Benner, T. Damm, Lyapunov equations, energy functionals and model order reduction of bilinear and stochastic sytems, SIAM Journal on Control and Optimization 49 (2011), 686–711.
- C. Hartmann, A. Zueva, B. Schäfer-Bung, Balanced model reduction of bilinear systems with applications to stochastic control, SIAM Journal on Control and Optimization 51 (2013), 2356–2378.

Overview

- 1 Bilinear control systems
 - Finite and infinite approximations
 - Basics from bilinear system theory
- 2 Model reduction of bilinear systems
 - Interpolatory model reduction
 - Balancing-based model reduction
- 3 Optimal control of bilinear systems
 - Open loop control
 - Closed loop control

A general optimal control problem

Given a general nonlinear control system

$$\dot{x}(t) = f(t, x(t), u(t)), \quad x(t_0) = x_0, y(t) = g(t, x(t), u(t))$$
(2)

and a cost functional $\mathcal{J}{:}\mathcal{U}_{ad} \rightarrow \mathbb{R}$

$$\mathcal{J}(u) \coloneqq h_f(x(t_f, u)) + \int_{t_0}^{t_f} h(t, x(t, u), y(t, u), u(t)) dt$$

consider the optimal control problem

$$\inf_{u \in \mathcal{U}_{\mathrm{ad}}} \mathcal{J}(u) \, \mathrm{ s.t. } (2)$$

Here: \mathcal{U}_{ad} set of admissible controls, e.g., $\mathcal{U}_{ad} = L^2((t_0, t_f); \mathbb{R}^m)$

Lagrange function and Hamiltonian

Recall from constrained optimization

$$\min_{x \in \mathbb{R}^n} j(x) \quad \text{s.t.} \quad f(x) = 0$$

the Lagrange function

$$\mathcal{L}(x,\lambda) = j(x) + \lambda^{\mathsf{T}} f(x)$$

with Lagrange multiplier $\lambda \in \mathbb{R}^m$. Optimality via $\mathcal{L}_{\lambda} = 0, \mathcal{L}_{x} = 0$.

Dynamical systems: introduce Hamiltonian \mathcal{H}

 $\mathcal{H}(x(t), u(t), p(t)) = h(x(t), u(t)) + p(t)^{\mathsf{T}} f(x(t), u(t))$

with co-state $p: [t_0, t_f] \mapsto \mathbb{R}^n$

Note: co-state/adjoint takes role of Lagrange multiplier

Pontryagin's maximum principle

Assume (\tilde{u}, \tilde{x}) is an optimal pair, then

$$\dot{\tilde{x}}(t) = \mathcal{H}_{p}(\tilde{x}(t), \tilde{u}(t), p(t))$$
$$\mathcal{H}(\tilde{x}(t), \tilde{u}(t), p(t)) = \inf_{u} \mathcal{H}(\tilde{x}(t), u(t), p(t)) \quad \forall t \in [t_{0}, t_{f}]$$
$$\dot{p}(t) = -\mathcal{H}_{x}(\tilde{x}(t), \tilde{u}(t), p(t))$$
$$p(t_{f}) = \nabla h_{f}(x(t_{f}))$$

First order opt. conditions called Pontryagin's maximum principle.

Linear-quadratic optimal control

For the special linear-quadratic case

$$\min_{u \in \mathcal{U}_{ad}} \mathcal{J}(u) \coloneqq \frac{1}{2} \left(x(t_f)^\top M x(t_f) + \int_{t_0}^{t_f} \begin{pmatrix} x(t) \\ u(t) \end{pmatrix}^\top \begin{pmatrix} Q(t) & S(t) \\ S(t)^\top & R(t) \end{pmatrix} \begin{pmatrix} x(t) \\ u(t) \end{pmatrix} \mathrm{d}t \right)$$

s.t. $\dot{x}(t) = A(t)x(t) + B(t)u(t), \quad x(t_0) = x_0$

Pontryagin's maximum principle yields

$$\begin{pmatrix} I_n & 0 & 0\\ 0 & -I_n & 0\\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \dot{x}(t)\\ \dot{p}(t)\\ \dot{u}(t) \end{pmatrix} = \begin{pmatrix} A & 0 & B\\ Q & A^{\mathsf{T}} & S\\ S^{\mathsf{T}} & B^{\mathsf{T}} & R \end{pmatrix} \begin{pmatrix} x(t)\\ p(t)\\ u(t) \end{pmatrix}$$

with boundary conditions

$$x(t_0) = x_0, \quad p(t_f) = Mx(t_f).$$

Optimal feedback control

Assumption: for simplicity Q, S = 0

Ansatz:
$$p(t) = P(t)x(t)$$
 with $P(t) \in \mathbb{R}^{n \times n}$ and $P(t_f) = M$
 $\dot{p}(t) = \dot{P}(t)x(t) + P(t)\dot{x}(t)$
 $p(t_f) = P(t_f)x(t_f)$

After some algebraic manipulations

$$\dot{x} = (A - BR^{-1}B^{\mathsf{T}}P)x$$
$$\dot{P}x = -(A^{\mathsf{T}}P + PA - PBR^{-1}B^{\mathsf{T}}P + Q)x$$

We obtain the differential Riccati equation

$$\dot{P} = -(A^{\mathsf{T}}P + PA - PBR^{-1}B^{\mathsf{T}}P + Q), \quad P(t_f) = M$$

and the optimal (linear) feedback law

$$u(t) = -R(t)^{-1}B(t)^{\mathsf{T}}P(t)x(t)$$

Optimal feedback control cont'd

If we consider the time-invariant infinite-horizon problem

$$\min_{u \in \mathcal{U}_{ad}} \mathcal{J}(u) \coloneqq \frac{1}{2} \left(\int_0^\infty x(t)^\top Q x(t) + u(t)^\top R u(t) \, \mathrm{d}t \right)$$

s.t. $\dot{x}(t) = A x(t) + B u(t), \quad x(0) = x_0$

we obtain the algebraic Riccati equation

$$0 = A^{\mathsf{T}}P + PA - PBR^{-1}B^{\mathsf{T}}P + Q$$

and the static optimal (linear) feedback law

$$u(t) = -R^{-1}B^{\mathsf{T}}Px(t)$$

Bilinear infinite-horizon optimal control

Let us go back to a bilinear control system

$$\dot{x}(t) = Ax(t) + Nx(t)u(t) + bu(t), \quad x(0) = x_0,$$

 $y(t) = c^{T}x(t),$

►
$$A, N \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n$$
,

- control $u: [0, \infty) \to \mathbb{R}$ and
- output $y:[0,\infty) \to \mathbb{R}$ of the system,
- ▶ (A, b) stabilizable.

For this system, we introduce the minimal value function

$$\mathcal{V}(x_0) = \inf_{u \in L^2(0,\infty)} \frac{1}{2} \int_0^\infty \|y(t)\|^2 \mathrm{d}t + \frac{\beta}{2} \int_0^\infty u(t)^2 \mathrm{d}t.$$

The dynamic programming principle

By the dynamic programming principle, for any x_0 and $\tau > 0$:

$$\mathcal{V}(x_0) = \inf_{u \in L^2(0,\tau)} \int_0^\tau \ell(y(u,x_0;t),u(t)) \,\mathrm{d}t + \mathcal{V}(x(u,x_0;\tau)),$$

where $\ell(y, u) = \frac{1}{2} ||y||^2 + \frac{\beta}{2} u^2$.

Under smoothness assumptions on \mathcal{V} , we obtain

$$\min_{u\in\mathbb{R}}\left[\left(Ax+\left(Nx+b\right)u\right)^{\mathsf{T}}\nabla\mathcal{V}(x)+\frac{1}{2}\|c^{\mathsf{T}}x\|^{2}+\frac{\beta}{2}u^{2}\right]=0, \quad \mathcal{V}(0)=0.$$

The Hamilton-Jacobi-Bellman equation

Consider again

$$\min_{u\in\mathbb{R}}\left[(Ax+(Nx+b)u)^{\top}\nabla\mathcal{V}(x)+\frac{1}{2}||y||^{2}+\frac{\beta}{2}u^{2}\right]=0, \quad \mathcal{V}(0)=0.$$

Minimization yields Hamilton-Jacobi-Bellman (HJB) equation

$$x^{\mathsf{T}}A^{\mathsf{T}}\nabla \mathcal{V}(x) + \frac{1}{2} \|c^{\mathsf{T}}x\|^2 - \frac{1}{2\beta} ((Nx+b)^{\mathsf{T}}\nabla \mathcal{V}(x))^2 = 0, \quad \mathcal{V}(0) = 0.$$

Optimal feedback law via solving HJB equation

$$u_{\text{opt}}(x) = -\frac{1}{\beta}(Nx+b)^{\mathsf{T}}\nabla \mathcal{V}(x).$$

Problem: The HJB equation is a nonlinear *n*-dimensional PDE...

Taylor expansions – basic idea

Assume that ${\mathcal V}$ can be expanded around 0 as follows

$$\mathcal{V}(x) = \underbrace{\mathcal{V}(0)}_{\in \mathbb{R}} + \underbrace{\mathcal{D}\mathcal{V}(0)}_{\in \mathbb{R}^n}(x) + \frac{1}{2!} \underbrace{\mathcal{D}^2\mathcal{V}(0)}_{\in \mathbb{R}^{n \times n}}(x, x) + \frac{1}{3!} \underbrace{\mathcal{D}^3\mathcal{V}(0)}_{\in \mathbb{R}^{n \times n \times n}}(x, x, x) + \dots$$

Approximate feedback law can be determined via

$$u_{d} = -\frac{1}{\beta} \sum_{k=2}^{d} \frac{1}{(k-1)!} D^{k} \mathcal{V}(0) (Nx + b, x, \dots, x)$$

Question: what can be said about the quality of such u_d ?

Smoothness and error estimates

Smoothness of the value function

There ex. $\varepsilon > 0$ s.t. \mathcal{V} is infinitely differentiable on $\mathcal{B}_{\varepsilon} := \{x \in \mathbb{R}^n \mid ||x|| < \varepsilon\}.$

Smoothness and error estimates

Smoothness of the value function

There ex. $\varepsilon > 0$ s.t. \mathcal{V} is infinitely differentiable on $\mathcal{B}_{\varepsilon} := \{x \in \mathbb{R}^n \mid ||x|| < \varepsilon\}.$

Estimates for polynomial feedback laws There exists \widehat{c} s.t. $\forall x_0 \in \mathcal{B}_{\widehat{c}}$ it holds that:

$$\max\left(\|u_{\mathrm{opt}} - u_d\|_{L^2(0,\infty)}, \|x_{\mathrm{opt}} - x_d\|_{H^1(0,\infty;\mathbb{R}^n)}\right) \le M \|x_0\|^d,$$

where

$$\begin{aligned} \dot{x_d} &= A x_d + (N x_d + b) u_d, \quad x_d(0) = x_0, \\ u_d &= -\frac{1}{\beta} \sum_{j=2}^d \frac{1}{(j-1)!} D^j \mathcal{V}(0) (N x_d + b, x_d, \dots, x_d). \end{aligned}$$

Smoothness of $\mathcal{V}{:}$ proof idea

Sensitivity analysis, inverse function theorem

Define the space $H := \mathbb{R}^n \times L^2(0,\infty;\mathbb{R}^n) \times L^2(0,\infty;\mathbb{R}^n) \times L^2(0,\infty).$ Consider $\Phi: H^1(0,\infty;\mathbb{R}^n) \times L^2(0,\infty) \times H^1(0,\infty;\mathbb{R}^n) \to X$ defined by

$$\Phi(x, u, p) = \begin{pmatrix} x(0) \\ \dot{x} - Ax - Nxu - bu \\ -\dot{p} - A^{\mathsf{T}}p - uN^{\mathsf{T}}p - cc^{\mathsf{T}}x \\ \beta u + p^{\mathsf{T}}(Nx + b) \end{pmatrix}.$$

Key ingredient: $\Phi(x_{opt}, u_{opt}, p) = (x_0, 0, 0, 0)$.

Proposition

There exist $\delta' > 0$ and three C^{∞} -mappings

$$x_0 \in B_{\delta'} \mapsto \left(\mathcal{X}(x_0), \mathcal{U}(x_0), \mathcal{P}(x_0)\right) \in H^1(0, \infty; \mathbb{R}^n) \times L^2(0, \infty) \times H^1(0, \infty; \mathbb{R}^n)$$

s.t. $(\mathcal{X}(x_0), \mathcal{U}(x_0))$ is the unique optimal state and $\mathcal{P}(x_0)$ is the unique associated costate.

Estimates for polynomial feedback laws: proof idea

RG Modelling, Simulation and Optimization of Real Processo

Consider the nonlinear closed-loop system (CL)

$$\begin{aligned} \dot{x_d} &= Ax_d + (Nx_d + b)(-\frac{1}{\beta}\sum_{j=2}^{d}\frac{1}{(j-1)!}D^j\mathcal{V}(0)(Nx_d + b, x_d, \dots, x_d)) \\ &= (Ax_d - \frac{1}{\beta}bD^2\mathcal{V}(0)(b, x_d)) - \frac{1}{\beta}Nx_dD^2\mathcal{V}(0)(Nx_d + b, x_d) \\ &+ (Nx_d + b)(-\frac{1}{\beta}\sum_{j=3}^{d}\frac{1}{(j-1)!}D^j\mathcal{V}(0)(Nx_d + b, x_d, \dots, x_d)) \end{aligned}$$

The proof is based on the following results

- ▶ $D^2 \mathcal{V}(0) \cong \Pi$ where Π solves algebraic Riccati equation
- Iocal well-posed of (CL) by fixed point argument
- ▶ feedback formulation $u_{opt}(x_{opt}) = -\frac{1}{\beta}D\mathcal{V}(x_{opt})(Nx_{opt} + b)$
- Taylor remainder term for error system $\dot{e} = \dot{x}_{opt} \dot{x}_d = \dots$

Figure: 1D Fokker-Planck equation

Figure: 1D Fokker-Planck equation, $\beta = 10^{-3}$.

Bilinear control and model reduction

Figure: 1D Fokker-Planck equation, $\beta = 10^{-4}$.

Bilinear control and model reduction

Figure: 1D Fokker-Planck equation, $\beta = 10^{-5}$.

Literature

Optimal control, Pontryagin's maximum principle (monographies)

- M. R. Hestenes, Calculus of Variations and Optimal Control Theory, John Wiley & Sons, 1966.
- H. Kwakernaak, R. Sivan, Linear Optimal Control Systems, Wiley, 1972.
- J. Macki, A. Strauss Introduction to Optimal Control Theory, 1992.
- D. Liberzon, Calculus of Variations and Optimal Control Theory A Concise Introduction, Princeton University Press, 2012.
- J. A. Burns, Introduction to the Calculus of Variations and Control with Modern Applications, CRC Press, 2014.

Literature

Feedback control and Hamilton-Jacobi-Bellman equations

- M. G. Crandall, P.-L. Lions, Viscosity Solutions of Hamilton-Jacobi Equations, Transactions of the American Mathematical Society 277, 1–42, 1983.
- L. C. Evans, Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators, Transactions of the American Mathematical Society 275, 245–255, 1983.
- M. Bardi, I.C. Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Springer, 1997.
- E. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer, 1998.
- W. H. Fleming, H. M. Soner, Controlled Markov processes and viscosity solutions WH Fleming, 2006.

Literature

Taylor approximation based feedback control

- E. Al'brekht, On the optimal stabilization of nonlinear systems, Journal of Applied Mathematics and Mechanics 25, 1961.
- D. L. Lukes, Optimal Regulation of Nonlinear Dynamical Systems, SIAM Journal on Control 7, 75–100, 1969.
- W. Garrard, Suboptimal feedback control for nonlinear systems, Automatica 8, 219–221, 1972.
- C. Navasca, A. Krener, Patchy solutions of Hamilton-Jacobi-Bellman partial differential equations, Festschrift in Honor of Giorgio Picci, Springer, 251–270, 2007.
- C. Aguilar, A. Krener, Numerical solutions to the Bellman equation of optimal control, Journal of Optimization Theory and Applications 160, 527–552, 2014.
- J. Borggaard and L. Zietsman, Computation of Nonlinear Feedback for Flow Control Problems, 2018 Annual American Control Conference (ACC), 1726–1731.
- T. Breiten, K. Kunisch, L. Pfeiffer, Numerical study of polynomial feedback laws for a bilinear control problem, Mathematical Control and Related Fields 8, 557–582, 2018.
- T. Breiten, K. Kunisch, L. Pfeiffer, Taylor Expansions of the Value Function Associated with a Bilinear Optimal Control Problem, Annales de l'Institut Henri Poincare C, Analyse non lineaire 36, 1361–1399, 2019.