Sum-of-squares approximations to energy functions

Hamza Adjerid

with Jeff Borggaard

Virginia Tech, May 2023

Outline

(1) Introduction

- Problem formulation
- Motivation
(2) SOS
- History
- Formulation of SOS polynomials
- Completing the square
- Combined complete the square and collocation method
- Collocation method in SOS polynomial form
- Issues for large regions Ω in \mathbb{R}^{n}
(3) Numerical results
- Numerical results in 1D
- Numerical results in 2D
(4) Summary and future work
(5) References

Problem formulation

Nonlinear systems

- The general form of nonlinear dynamical system:

$$
E \dot{x}(t)=f(x(t))+B u(t), \quad y(t)=C x(t)
$$

with $x \in \mathbb{R}^{n}, u \in \mathbb{R}^{n}, y \in \mathbb{R}^{p}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}$, and $E \in \mathbb{R}^{n \times n}$.

- One particular case of non-linearity is the quadratic one given by:

$$
f(x)=A x(t)+N_{2} x^{2}(t),
$$

where $N_{2} \in \mathbb{R}^{n \times n^{2}}$ and $x^{(2)}(t)$ is a 2-times Kronecker product of $x(t)$.

Problem formulation

Energy functions (J. M. Scherpen, 1996) [2]

The \mathcal{H}_{∞} energy functions related to nonlinear dynamical systems are:

- The \mathcal{H}_{∞} past energy function:

$$
\mathcal{E}_{\gamma}^{-}\left(x_{0}\right):=\min _{u \in L_{2}(-\infty, 0]} \frac{1}{2} \int_{-\infty}^{0}\left(1-\gamma^{-2}\right)\|y(t)\|^{2}+\|u(t)\|^{2} d t
$$

where $x(-\infty)=0, x(0)=x_{0}$, and $0<\gamma \neq 1$.

- The \mathcal{H}_{∞} future energy function:

$$
\mathcal{E}_{\gamma}^{+}\left(x_{0}\right):=\min _{u \in L_{2}[0, \infty)} \frac{1}{2} \int_{0}^{\infty}\|y(t)\|^{2}+\frac{\|u(t)\|^{2}}{1-\gamma^{-2}} d t,
$$

where $x(-\infty)=0, x(0)=x_{0}$, and $\gamma>1$ and min is replaced by \max if $0<\gamma<1$.

Problem formulation

Hamilton-Jacobi-Bellman equations (J. M. Scherpen and A. Van der Schaft, 1994) [3]

The \mathcal{H}_{∞} energy functions are solutions to the following PDEs:

$$
\begin{aligned}
& 0=\frac{\partial \mathcal{E}_{\gamma}^{-}}{\partial x}(x) f(x)+\frac{1}{2} \frac{\partial \mathcal{E}_{\gamma}^{-}}{\partial x}(x) B B^{T} \frac{\partial^{T} \mathcal{E}_{\gamma}^{-}}{\partial x}-\frac{1}{2}\left(1-\gamma^{-2}\right) x^{T} C C^{T} x \\
& 0=\frac{\partial \mathcal{E}_{\gamma}^{+}}{\partial x}(x) f(x)-\frac{1}{2}\left(1-\gamma^{-2}\right) \frac{\partial \mathcal{E}_{\gamma}^{+}}{\partial x}(x) B B^{T} \frac{\partial^{T} \mathcal{E}_{\gamma}^{+}}{\partial x}+\frac{1}{2} x^{T} C C^{T} x
\end{aligned}
$$

where $\mathcal{E}_{\gamma}^{-}(0)=\mathcal{E}_{\gamma}^{+}(0)=0$.

Problem formulation

Energy function as an optimal control [2]

$\mathcal{E}_{\gamma}^{-}(x)$ being a solution to the HJB gives rise an to optimal control $u^{*}(x)$ given by:

$$
u^{*}(x)=-R^{-1} B^{T} \frac{\partial \mathcal{E}_{\gamma}^{-}(x)}{\partial x}
$$

with the following quadratic cost function

$$
\hat{\mathcal{E}}\left(x_{0}, u\right)=\frac{1}{2} \int_{0}^{\infty} x^{T}(t) Q x(t)+u^{T}(t) R u(t) d t
$$

that drives the following system to stability:

$$
\dot{x}(t)=-f(x(t))+B u(x(t)) .
$$

Motivation

Polynomial Approximation (B. Kramer et al., 2022) [4]

The \mathcal{H}_{∞} Energy functions can be approximated by :

$$
\begin{aligned}
\mathcal{E}_{\gamma}^{-}(x) & =\frac{1}{2}\left(w_{2}^{T} x^{(2)}+w_{3}^{T} x^{(3)}+\cdots+w_{d}^{T} x^{(๑)}\right) \\
\mathcal{E}_{\gamma}^{+}(x) & =\frac{1}{2}\left(v_{2}^{T} x^{(2)}+v_{3}^{T} x^{(3)}+\cdots+v_{d}^{T} x^{(1)}\right)
\end{aligned}
$$

where $\mathcal{E}_{\gamma}^{-}(0)=\mathcal{E}_{\gamma}^{+}(0)=0$.

Motivation

- Polynomial approximations are very good around the origin. The main issue with these approximations is NEGATIVITY away from the origin. However, energy functions must be positive by definition.

Motivation

- Polynomial approximations are very good around the origin. The main issue with these approximations is NEGATIVITY away from the origin. However, energy functions must be positive by definition.
- One way to overcome this issue is to propose function approximations that impose positivity.

Motivation

- One alternative can be a Sum-of-Squares, formulated as follows:

$$
f_{s o s}(x)=\sum_{i=1}^{N} f_{i}^{2}(x)
$$

where $f_{i}(x)$ can be any generic function and N any finite number.

- In this work, we are more interested in the sum-of-squares using polynomials

where each $p_{i}(x)$ is a polynomial.

Motivation

- One alternative can be a Sum-of-Squares, formulated as follows:

$$
f_{s o s}(x)=\sum_{i=1}^{N} f_{i}^{2}(x)
$$

where $f_{i}(x)$ can be any generic function and N any finite number.

- In this work, we are more interested in the sum-of-squares using polynomials

$$
f_{\text {sos }}(x)=\sum_{i=1}^{N} p_{i}^{2}(x)
$$

where each $p_{i}(x)$ is a polynomial.

History

- The case of sum-of-squares of polynomials is a well analyzed problem, first studied by David Hilbert in 1900.
- Sum-of-squares, as a tractable way to perform positive semi-definite programming for dynamical systems, was first proposed by Pablo A.Parrilo in his thesis in 2000. [5]
- It allowed the control community to tackle different problems such as, optimization problems, Lyapunov stability analysis, or computation of tight upper bounds.

History

- The case of sum-of-squares of polynomials is a well analyzed problem, first studied by David Hilbert in 1900.
- Sum-of-squares, as a tractable way to perform positive semi-definite programming for dynamical systems, was first proposed by Pablo A.Parrilo in his thesis in 2000. [5]
- It allowed the control community to tackle different problems such as, optimization problems, Lyapunov stability analysis, or computation of tight upper bounds.

History

- The case of sum-of-squares of polynomials is a well analyzed problem, first studied by David Hilbert in 1900.
- Sum-of-squares, as a tractable way to perform positive semi-definite programming for dynamical systems, was first proposed by Pablo A.Parrilo in his thesis in 2000. [5]
- It allowed the control community to tackle different problems such as, optimization problems, Lyapunov stability analysis, or computation of tight upper bounds.

Formulation of SOS polynomials

Proposition: [5]

A polynomial $p(x)$ of degree $2 d$ is a SOS if and only if there exists a positive semidefinite matrix Q and vector of monomials $Z(x)$ containing monomials in x of degree $\leq \mathrm{d}$ such that:

$$
p(x)=Z(x)^{T} Q Z(x)
$$

Formulation of SOS polynomials

Example:[5]

Suppose we want to know in the following polynomial

$$
p\left(x_{1}, x_{2}\right)=2 x_{1}^{4}+2 x_{1}^{3} x_{2}-x_{1}^{2} x_{2}^{2}+5 x_{2}^{4}
$$

is a sum-of-squares. We let $Z(x)=\left[\begin{array}{lll}x_{1}^{2} & x_{1} x_{2} & x_{2}^{2}\end{array}\right]^{T}$ and we put

$$
p\left(x_{1}, x_{2}\right)=Z(x)^{T} Q Z(x)
$$

where $Q \in \mathbb{R}^{n \times n}$, and we look for a $P S D$ matrix Q.

Formulation of SOS polynomials

Example:[5]

In fact by expanding $Z(x)^{T} Q Z(x)$ and matching the coefficients, a $P S D$ matrix Q can be formed as

$$
Q=\left(\begin{array}{ccc}
2 & 1 & -3 \\
1 & 5 & 0 \\
-3 & 0 & 5
\end{array}\right)=L L^{T} \quad \text { with } \quad L=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
2 & 0 \\
1 & 3 \\
-3 & 1
\end{array}\right)
$$

hence

$$
p\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(2 x_{1}^{2}+x_{1} x_{2}-3 x_{2}^{2}\right)^{2}+\frac{1}{2}\left(x_{2}^{2}+3 x_{1} x_{2}\right)^{2}
$$

is, in fact, a SOS.

Formulation of SOS polynomials

The use of SOS programming in HJB problems have been addressed in prior works, e.g. [6]. In our work, we approach the problem in three different SOS formulations:

- Completing the square: Adding higher degree terms to a given polynomial approximation to make it SOS .
- Completing the square and collocation method: Lower degree terms match a given polynomial approximation, collocation used to determine highest degree terms.
- Collocation method: Use Parrilo's formulation of SOS within a least-squares collocation method

Here, the approaches are applied to the the past energy function $\mathcal{E}_{\gamma}^{-}(x)$ The same procedure can be applied to the future energy function $\mathcal{E}_{\gamma}^{+}(x)$

Formulation of SOS polynomials

The use of SOS programming in HJB problems have been addressed in prior works, e.g. [6]. In our work, we approach the problem in three different SOS formulations:

- Completing the square: Adding higher degree terms to a given polynomial approximation to make it SOS.
- Completing the square and collocation method: Lower degree terms match a given polynomial approximation, collocation used to determine highest degree terms.
- Collocation method: Use Parrilo's formulation of SOS within a least-squares collocation method

Here, the approaches are applied to the the past energy function $\varepsilon_{\rho}^{-}(x)$ The same procedure can be applied to the future energy function $\mathcal{E}_{\gamma}^{+}(x)$

Formulation of SOS polynomials

The use of SOS programming in HJB problems have been addressed in prior works, e.g. [6]. In our work, we approach the problem in three different SOS formulations:

- Completing the square: Adding higher degree terms to a given polynomial approximation to make it SOS.
- Completing the square and collocation method: Lower degree terms match a given polynomial approximation, collocation used to determine highest degree terms.
- Collocation method: Use Parrilo's formulation of SOS within a least-squares collocation method

Here, the approaches are applied to the the past energy function $\varepsilon_{-}^{-}(x)$ The same procedure can be applied to the future energy function $\mathcal{E}_{\gamma}^{+}(x)$

Formulation of SOS polynomials

The use of SOS programming in HJB problems have been addressed in prior works, e.g. [6]. In our work, we approach the problem in three different SOS formulations:

- Completing the square: Adding higher degree terms to a given polynomial approximation to make it SOS.
- Completing the square and collocation method: Lower degree terms match a given polynomial approximation, collocation used to determine highest degree terms.
- Collocation method: Use Parrilo's formulation of SOS within a least-squares collocation method.

Formulation of SOS polynomials

The use of SOS programming in HJB problems have been addressed in prior works, e.g. [6]. In our work, we approach the problem in three different SOS formulations:

- Completing the square: Adding higher degree terms to a given polynomial approximation to make it SOS.
- Completing the square and collocation method: Lower degree terms match a given polynomial approximation, collocation used to determine highest degree terms.
- Collocation method: Use Parrilo's formulation of SOS within a least-squares collocation method.
Here, the approaches are applied to the the past energy function $\mathcal{E}_{\gamma}^{-}(x)$. The same procedure can be applied to the future energy function $\mathcal{E}_{\gamma}^{+}(x)$.

Completing the square

Combined complete the square and collocation method
Collocation method in SOS polynomial form
Issues for large regions Ω in \mathbb{R}^{n}

Completing the square

- Given a degree d approximation to $\mathcal{E}_{\gamma}^{-}(x)$

$$
v(x)=\frac{1}{2}\left(v_{2}^{\top} x^{(2)}+\cdots v_{d}^{\top} x^{(๑)}\right)
$$

- We propose a sum-of-squares approximation $\mathcal{E}_{\text {sos }}^{-}(x)$ as:

- The $d-1$ coefficients of $\mathcal{E}_{\text {sos }}^{-}$are found by matching the lowest degree terms in $v(x)$.
- This is done without the involvement of the HJB equation. The HJB information is implicitly embedded in the approximation $v(x)$.

Completing the square

- Given a degree d approximation to $\mathcal{E}_{\gamma}^{-}(x)$

$$
v(x)=\frac{1}{2}\left(v_{2}^{\top} x^{(2)}+\cdots v_{d}^{\top} x^{(๑)}\right)
$$

- We propose a sum-of-squares approximation $\mathcal{E}_{\text {sos }}^{-}(x)$ as:

$$
\mathcal{E}_{\text {sos }}^{-}(x)=\left(\tilde{v}_{1}^{T} x+\tilde{v}_{2}^{T} x^{(2)}+\cdots+\tilde{v}_{d-1}^{T} x^{()^{(-1)}}\right)^{2}
$$

- The $d-1$ coefficients of $\mathcal{E}_{\text {sos }}^{-}$are found by matching the lowest degree terms in $v(x)$.
- This is done without the involvement of the HJB equation. The HJB information is implicitly embedded in the approximation $v(x)$.

Completing the square

- Given a degree d approximation to $\mathcal{E}_{\gamma}^{-}(x)$

$$
v(x)=\frac{1}{2}\left(v_{2}^{\top} x^{(2)}+\cdots v_{d}^{\top} x^{(๑)}\right)
$$

- We propose a sum-of-squares approximation $\mathcal{E}_{\text {sos }}^{-}(x)$ as:

$$
\mathcal{E}_{\text {sos }}^{-}(x)=\left(\tilde{v}_{1}^{T} x+\tilde{v}_{2}^{T} x^{(2)}+\cdots+\tilde{v}_{d-1}^{T} x^{\oplus(1)}\right)^{2}
$$

- The $d-1$ coefficients of $\mathcal{E}_{\text {sos }}^{-}$are found by matching the lowest degree terms in $v(x)$.
- This is done without the involvement of the HJB equation. The HJB information is implicitly embedded in the approximation $v(x)$.

History

Completing the square

- Given a degree d approximation to $\mathcal{E}_{\gamma}^{-}(x)$

$$
v(x)=\frac{1}{2}\left(v_{2}^{\top} x^{(2)}+\cdots v_{d}^{\top} x^{(๑)}\right)
$$

- We propose a sum-of-squares approximation $\mathcal{E}_{\text {sos }}^{-}(x)$ as:

$$
\mathcal{E}_{\text {sos }}^{-}(x)=\left(\tilde{v}_{1}^{T} x+\tilde{v}_{2}^{T} x^{(2)}+\cdots+\tilde{v}_{d-1}^{T} x^{\left({ }^{(-1)}\right.}\right)^{2}
$$

- The $d-1$ coefficients of $\mathcal{E}_{\text {sos }}^{-}$are found by matching the lowest degree terms in $v(x)$.
- This is done without the involvement of the HJB equation. The HJB information is implicitly embedded in the approximation $v(x)$.

Completing the square

Example with $n=2$:

Given a degree $d=3$ approximation $v(x)$. Let the degree of the SOS approximation be $2(d-1)=4$. Then

$$
\mathcal{E}_{\text {sos }}^{-}(x)=\left(\tilde{v}_{1}^{\top} x+\tilde{v}_{2}^{\top} x^{(®)}\right)^{2}
$$

where $\tilde{v}_{1}^{T} \in \mathbb{R}^{2 \times 2}$ and $\tilde{v}_{2}^{T} \in \mathbb{R}^{2 \times 4}$. Expanding this,

Completing the square

Example with $n=2$:

Given a degree $d=3$ approximation $v(x)$. Let the degree of the SOS approximation be $2(d-1)=4$. Then

$$
\mathcal{E}_{\text {sos }}^{-}(x)=\left(\tilde{v}_{1}^{T} x+\tilde{v}_{2}^{T} x^{(2)}\right)^{2}
$$

where $\tilde{v}_{1}^{T} \in \mathbb{R}^{2 \times 2}$ and $\tilde{v}_{2}^{T} \in \mathbb{R}^{2 \times 4}$. Expanding this,

$$
\begin{gathered}
\mathcal{E}_{\text {sos }}^{-}(x)=x^{T} \tilde{v}_{1} \tilde{v}_{1}^{T} x+2 x^{T} \tilde{v}_{1} \tilde{v}_{2}^{T} x^{(2)}+\left(x^{(2)}\right)^{T} \tilde{v}_{2} \tilde{v}_{2}^{T} x^{(2)} \\
\mathcal{E}_{\text {sos }}^{-}(x)=\operatorname{vec}\left(\tilde{v}_{1} \tilde{v}_{1}^{T}\right)^{T} x^{(2}+2 \operatorname{vec}\left(\tilde{v}_{1} \tilde{v}_{2}^{T}\right)^{T} x^{(3}+\operatorname{vec}\left(\tilde{v}_{2} \tilde{v}_{2}^{T}\right)^{T} x^{(4)}
\end{gathered}
$$

Completing the square

Example (continued):

Matching the $O\left(x^{(2)}\right)$ and $O\left(x^{3}\right)$ terms leads to the following systems of equations:

$$
\begin{aligned}
\tilde{v}_{1} \tilde{v}_{1}^{T} & =\frac{1}{2} V_{2} & & \text { (solve by Cholesky) } \\
2 \tilde{v}_{1} \tilde{V}_{2}^{T} & =\frac{1}{2} V_{3} & & \text { (solve by backsubstitution) }
\end{aligned}
$$

where $V_{2}=\operatorname{reshape}\left(v_{2}^{\top}, 2,2\right)$ and $V_{3}=\operatorname{reshape}\left(v_{3}^{\top}, 2,4\right)$.

Adding collocation

- In this approach, we write $\mathcal{E}_{\text {sos }, c}^{-}(x)$ in the same polynomial squared form:

$$
\mathcal{E}_{\text {sos }, c}^{-}(x) \equiv\left(\tilde{v}_{1}^{\top} x+\tilde{v}_{2}^{\top} x^{(2)}+\cdots+\tilde{v}_{d-1}^{T} x^{(-1-1)}+\tilde{v}_{d}^{T} x^{\oplus}\right)^{2}
$$

- and we solve for the first $d-1$ coefficients by matching a degree $2 d-1$ polynomial approximation.
- Finally, optimizing the residual function given by

$$
J\left(\tilde{v}_{d}^{T}\right)=\sum_{k=1}^{N}\left(H J B\left(x_{k}\right)\right)^{2},
$$

where N is the number of sample points in a domain $\Omega \subset \mathbb{R}^{n}$ and $H J B(x)$ is the residual of the HJB equation, we get:

$\tilde{v}_{d}^{T} \in \mathbb{R}^{n^{d}}$

Adding collocation

- In this approach, we write $\mathcal{E}_{\text {sos }, c}^{-}(x)$ in the same polynomial squared form:

$$
\mathcal{E}_{\text {sos }, c}^{-}(x) \equiv\left(\tilde{v}_{1}^{T} x+\tilde{v}_{2}^{T} x^{(๑)}+\cdots+\tilde{v}_{d-1}^{T} x^{(-1-1)}+\tilde{v}_{d}^{T} x^{\oplus}\right)^{2}
$$

- and we solve for the first $d-1$ coefficients by matching a degree $2 d-1$ polynomial approximation.
- Finally, optimizing the residual function given by

where N is the number of sample points in a domain $\Omega \subset \mathbb{R}^{n}$ and $\operatorname{HJB}(x)$ is the residual of the $H J B$ equation, we get:

Adding collocation

- In this approach, we write $\mathcal{E}_{\text {sos,c }}^{-}(x)$ in the same polynomial squared form:

$$
\left.\mathcal{E}_{\text {sos }, c}^{-}(x) \equiv\left(\tilde{v}_{1}^{\top} x+\tilde{v}_{2}^{\top} x^{(๑)}+\cdots+\tilde{v}_{d-1}^{T} x^{\oplus-1}\right)+\tilde{v}_{d}^{T} x^{\oplus}\right)^{2}
$$

- and we solve for the first $d-1$ coefficients by matching a degree $2 d-1$ polynomial approximation.
- Finally, optimizing the residual function given by:

$$
J\left(\tilde{v}_{d}^{T}\right)=\sum_{k=1}^{N}\left(H J B\left(x_{k}\right)\right)^{2},
$$

where N is the number of sample points in a domain $\Omega \subset \mathbb{R}^{n}$ and $H J B(x)$ is the residual of the $H J B$ equation, we get:

$$
\tilde{v}_{d}^{T}=\underset{\tilde{v}_{d}^{T} \in \mathbb{R}^{n^{d}}}{\operatorname{argmin}} J\left(\tilde{v}_{d}^{T}\right)
$$

Collocation method

- These two complete the square approaches resolve the negativity issue, but relies on having a good polynomial approximation. These are typically accurate locally, but have no guarantee away from the origin.
- Using Parrilo's formulation, we write $\mathcal{E}_{p}^{-}(x)$ as:

where $Z(x) \in \mathbb{R}^{\nu}$ is a vector of all monomials of degree $\leq d$ and $Q \in \mathbb{R}^{\nu \times \nu}$ is a positive definite matrix. [1]

Collocation method

- These two complete the square approaches resolve the negativity issue, but relies on having a good polynomial approximation. These are typically accurate locally, but have no guarantee away from the origin.
- Using Parrilo's formulation, we write $\mathcal{E}_{p}^{-}(x)$ as:

$$
\mathcal{E}_{p}^{-}(x)=Z(x)^{T} Q Z(x)
$$

where $Z(x) \in \mathbb{R}^{\nu}$ is a vector of all monomials of degree $\leq d$ and $Q \in \mathbb{R}^{\nu \times \nu}$ is a positive definite matrix. [1]

Collocation method

- The number of monomial terms, ν, in $Z(x)$ is defined as follows:

$$
\nu=\sum_{i=1}^{d} \operatorname{deg}_{i}(n)
$$

where $\operatorname{deg}_{i}(n)$ is the number of monomial terms of degree i in dimension n defined as follows:

$$
\operatorname{deg}_{i}(n)=\sum_{j=1}^{n} \operatorname{deg}_{i-1}(j) \quad \text { for } i \geq 2
$$

with $\operatorname{deg}_{1}(n)=n$

```
History

\section*{Collocation method}
- \(Q\) has a Cholesky factorization:
\[
\mathcal{E}_{p}^{-}(x)=p_{\text {sos }}(x)=Z(x)^{T} L L^{T} Z(x)
\]
where \(L \in \mathbb{R}^{\nu \times \nu}\) is the Cholesky factor of \(Q\)
- The optimization problem arguments are the entries of \(L\), and the residual function in this case is:

where \(N\) is the number of sample points in a region \(\Omega \in \mathbb{R}^{n}\), \(\operatorname{HJB}(x)\) is the residual of the HJB equation and
\[
L^{*}=\underset{\nu \in \mathbb{P} \nu \times \nu}{\operatorname{argmin}} J(L)
\]

\section*{Collocation method}
- \(Q\) has a Cholesky factorization:
\[
\mathcal{E}_{p}^{-}(x)=p_{\text {sos }}(x)=Z(x)^{T} L L^{T} Z(x)
\]
where \(L \in \mathbb{R}^{\nu \times \nu}\) is the Cholesky factor of \(Q\)
- The optimization problem arguments are the entries of \(L\), and the residual function in this case is:
\[
J(L)=\sum_{k=1}^{N}\left(H J B\left(x_{k}\right)\right)^{2}
\]
where \(N\) is the number of sample points in a region \(\Omega \in \mathbb{R}^{n}\), \(\operatorname{HJB}(x)\) is the residual of the \(H J B\) equation and
\[
L^{*}=\underset{L \in \mathbb{R}^{\nu} \times \nu}{\operatorname{argmin}} J(L)
\]
is the optimal solution.

History

\section*{Issues for larger domains in \(\mathbb{R}^{n}\)}
- Optimization for small regions around the origin is a convex optimization problem. For example, a degree 4 approximation in \(\Omega=[-1 ; 1] \subset \mathbb{R}\) has a graph (fixing \(L_{11}\) at \(L_{11}^{*}\) ) [4]


Formulation of SOS polynomials

\section*{Completing the square}

Combined complete the square and collocation method

\section*{Issues for large regions \(\Omega\) in \(\mathbb{R}^{n}\)}
- Considering larger domains, e.g. \(\Omega=[-20 ; 20] \subset \mathbb{R}\), the problem becomes non-convex even for low dimensions:


Log of the objective function with fixing L11 at L11* and optimization range [-20 20]


\section*{Windowing procedure}
- Windowing can overcome this issue. Windowing procedure can be seen as an iterative way of solving the optimization problem.
- We start with an optimization in small region around the origin, where the SOS approximation will mimic the behaviour of the lower order terms of the polynomial approximation.
- Then, the optimization results are set as starting values for problems with larger domains and increasing numbers of sample points.


\section*{Windowing procedure}
- Windowing can overcome this issue. Windowing procedure can be seen as an iterative way of solving the optimization problem.
- We start with an optimization in small region around the origin, where the SOS approximation will mimic the behaviour of the lower order terms of the polynomial approximation.
- Then, the optimization results are set as starting values for problems with larger domains and increasing numbers of sample points.


\section*{Windowing procedure}
- Windowing can overcome this issue. Windowing procedure can be seen as an iterative way of solving the optimization problem.
- We start with an optimization in small region around the origin, where the SOS approximation will mimic the behaviour of the lower order terms of the polynomial approximation.
- Then, the optimization results are set as starting values for problems with larger domains and increasing numbers of sample points.
\[
L_{[-1 ; 1]}^{*\left(N_{1}\right)} \rightarrow L_{[-10 ; 10]}^{*\left(N_{2}\right)} \rightarrow L_{[-20 ; 20]}^{*\left(N_{3}\right)} \rightarrow \cdots
\]

\section*{Numerical results in 1D}

We simulate the collocation method on the example from [4], in \(\Omega=[-1 ; 1]\), with a degree 4 approximation:


\section*{Numerical results in 1D}

\section*{Optimization for \(\Omega=[-10 ; 10]\) with and without windowing:}



\section*{Numerical results in 1D}

Optimization for \(\Omega=[-20 ; 20]\) with and without windowing:



\section*{Numerical results in 1D}
- We compare the quality of the approximations based on the relative error with respect to the analytical solution:
Error \(=\frac{\left\|\mathcal{E}_{\text {approx }}^{-}(x)-\mathcal{E}_{\text {exact }}^{-}(x)\right\|_{2}}{\left\|\mathcal{E}_{\text {exact }}^{-}(x)\right\|_{2}}\)
\begin{tabular}{||c|c|c||}
\hline\(\Omega\) & Poly Approximation & SOS Approximation \\
\hline \hline\([-1 ; 1]\) & \(8.15 \times 10^{-4}\) & \(7.16 \times 10^{-4}\) \\
\hline\([-10 ; 10]\) & \(1.52 \times 10^{-1}\) & \(5.67 \times 10^{-2}\) \\
\hline\([-20 ; 20]\) & \(4.02 \times 10^{-1}\) & \(6.65 \times 10^{-2}\) \\
\hline
\end{tabular}

\section*{Numerical results in 2D}
- In the 2D and higher dimensions settings, we don't generally have the exact solution, so we will measure the quality of the approximation by using it as control for the system:
\[
\dot{x}(t)=-f(x(t))+B u(x(t))
\]
where
\[
u^{*}(x)=-B^{T} \frac{\partial \mathcal{E}_{\gamma}^{-}(x)}{\partial x}
\]
and compare its value at \(x=x_{0}\) with:
\[
\mathcal{E}_{\text {integral }}^{-}\left(x_{0}\right)=\frac{1}{2} \int_{0}^{\infty}\left(1-\gamma^{-2}\right)\|y(t)\|^{2}+\left\|u(t)^{*}\right\|^{2} d t
\]
such that \(x(-\infty)=0\) and \(x(0)=x_{0}\)

\section*{Numerical results in 2D}
- We apply the collocation method with windowing to the following system, which is analogous to the 1D case system: [4]
\[
A=-2 I \quad B=2 I \quad C=3 I \quad N=\left[\begin{array}{ll}
I & I
\end{array}\right] \text { and } \quad \gamma=\sqrt{2}
\]
where \(I\) is the identity matrix in \(\mathbb{R}^{2 \times 2}\)
- We start from the square domain \(\Omega_{1}=[-0.1 ; 0.1] \times[-0.1 ; 0.1]\), using the optimal coefficients as initial points for
 finally to \(\Omega_{4}=[-7 ; 7] \times[-7 ; 7]\)

\section*{Numerical results in 2D}
- We apply the collocation method with windowing to the following system, which is analogous to the 1D case system: [4]
\[
A=-2 I \quad B=2 I \quad C=3 I \quad N=\left[\begin{array}{ll}
I & I
\end{array}\right] \quad \text { and } \quad \gamma=\sqrt{2}
\]
where \(I\) is the identity matrix in \(\mathbb{R}^{2 \times 2}\)
- We start from the square domain \(\Omega_{1}=[-0.1 ; 0.1] \times[-0.1 ; 0.1]\), using the optimal coefficients as initial points for \(\Omega_{2}=[-1 ; 1] \times[-1 ; 1]\), and continuing to \(\Omega_{3}=[-5 ; 5] \times[-5 ; 5]\) and finally to \(\Omega_{4}=[-7 ; 7] \times[-7 ; 7]\).

\section*{Numerical results in 2D}
- The relative error, defined as:
\[
\text { Error }=\frac{\left\|\mathcal{E}_{\text {approx }}^{-}\left(x_{0}\right)-\mathcal{E}_{\text {integral }}^{-}\left(x_{0}\right)\right\|_{2}}{\left\|\mathcal{E}_{\text {integral }}^{-}\left(x_{0}\right)\right\|_{2}}
\]
at 4 different initial conditions \(x_{0}\) is summarized as follows:
\begin{tabular}{||c|c|c||}
\hline\(x_{0}=\left(x_{01}, x_{02}\right)\) & Poly Approximation & SOS Approximation \\
\hline \hline\((-7,-7)\) & \(1.4875 \times 10^{-1}\) & \(9.4801 \times 10^{-3}\) \\
\hline\((-7,7)\) & \(8.875 \times 10^{-1}\) & \(7.3976 \times 10^{-2}\) \\
\hline\((7,-7)\) & \(8.875 \times 10^{-1}\) & \(5.5123 \times 10^{-2}\) \\
\hline\((7,7)\) & \(2.4754 \times 10^{-1}\) & \(3.0498 \times 10^{-1}\) \\
\hline
\end{tabular}

\section*{Numerical results in 2D}
- We also observed that the SOS approximation is also behaving as a good control outside the optimization region. The following results illustrate the observation:
\begin{tabular}{||c|c|c||}
\hline\(x_{0}=\left(x_{01}, x_{02}\right)\) & Poly Approximation & SOS Approximation \\
\hline \hline\((-10,-10)\) & \(2.1308 \times 10^{-1}\) & \(3.145 \times 10^{-2}\) \\
\hline\((-10,10)\) & Divergence & \(5.8141 \times 10^{-2}\) \\
\hline\((10,-10)\) & Divergence & \(1.0187 \times 10^{-1}\) \\
\hline\((10,10)\) & \(6.757 \times 10^{-1}\) & \(3.0512 \times 10^{-1}\) \\
\hline
\end{tabular}

\section*{Summary}
- We developed a collocation approach on how to build polynomial SOS approximations of the past energy function, with a possibility of enlarging the domain with the windowing procedure.
- We have shown the effectiveness of the proposed approach on both the 1D and 2D settings.

\section*{Future work}
- Applying the proposed method on higher dimensional settings.
- Exploring more sampling strategies.
- Using more general SOS (bases different than monomials or polynomials in general).
- Explore the convergence theory of the proposed method.

\section*{Thank you}

Any questions?

\section*{References}
[1] H. Adjerid and J. Borggaard. Sum-of-squares approximations to energy functions (in preparation).
[2] J. M. Scherpen. \(H_{\infty}\) balancing for nonlinear systems. International Journal of Robust and Nonlinear Control, 6(7):645-668, 1996. [3] J. M. Scherpen and A. van der Schaft. Normalized coprime factorizations and balancing for unstable nonlinear systems. International Journal of Control, 60(6):1193-1222, 1994.
[4] B. Kramer et al. Nonlinear balanced truncation: Part 1-computing energy functions. arXiv:2209.07645 [math.OC]
[5] P. A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD thesis, California Institute of Technology, Pasadena, CA, 2000.
[6] D. Lasagna et al. Sum-of-squares approach to feedback control of laminar wake flows. J. Fluid Mech. (2016), vol. 809, pp. 628-663.```

