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We present reduced basis approximations and associated a posteriori error bounds
for parabolic partial differential equations involving (i) a nonaffine dependence on the
parameter and (ii) a nonlinear dependence on the field variable. The method employs
the Empirical Interpolation Method in order to construct “affine” coefficient-function
approximations of the “nonaffine” (or nonlinear) parametrized functions. We consider
linear time-invariant as well as linear time-varying nonaffine functions and introduce a
new sampling approach to generate the function approximation space for the latter case.
Our a posteriori error bounds take both error contributions explicitly into account —

the error introduced by the reduced basis approximation and the error induced by the
coefficient function interpolation. We show that these bounds are rigorous upper bounds
for the approximation error under certain conditions on the function interpolation, thus
addressing the demand for certainty of the approximation. As regards efficiency, we
develop an offline–online computational procedure for the calculation of the reduced
basis approximation and associated error bound. The method is thus ideally suited for
the many-query or real-time contexts. Numerical results are presented to confirm and
test our approach.
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1. Introduction

The role of numerical simulation in engineering and science has become increasingly
important. System or component behavior is often modeled using a set of partial
differential equations and associated boundary conditions, the analytical solution
to which is generally unavailable. In practice, a discretization procedure such as the
finite element method (FEM) is used.
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However, as the physical problems become more complex and the mathematical
models more involved, current computational methods prove increasingly inade-
quate, especially in contexts requiring numerous solutions of parametrized partial
differential equations for many different values of the parameter. Even for modest-
complexity models, the computational cost to solve these problems is prohibitive.

For example, the design, optimization, control, and characterization of engi-
neering components or systems often require repeated, reliable, and real-time pre-
diction of performance metrics, or outputs, se, such as heat fluxes or flowrates.a

These outputs are typically functionals of field variables, ye — such as tempera-
tures or velocities — associated with a parametrized partial differential equation;
the parameters, or inputs, µ, serve to identify a particular configuration of the
component — such as boundary conditions, material properties, and geometry. The
relevant system behavior is thus described by an implicit input–output relationship,
se(µ), evaluation of which demands solution of the underlying partial differential
equation (PDE).

Our focus here is on parabolic PDEs. For simplicity, we will directly consider a
time-discrete framework associated to the time interval I ≡ ]0, tf ] (Ī ≡ [0, tf ]). We
divide Ī into K subintervals of equal length ∆t = tf

K and define tk ≡ k∆t, 0 ≤ k ≤
K ≡ tf

∆t , and I ≡ {t0, . . . , tK}; for notational convenience, we also introduce K ≡
{1, . . . ,K}. We shall consider Euler–Backward for the time integration although
higher-order schemes such as Crank–Nicolson can also be readily treated.17 We refer
to Ref. 41 for a reduced basis approach for parabolic problems using arbitrary-order
Discontinuous-Galerkin temporal schemes. The abstract formulation can be stated
as follows: given any µ ∈ D ⊂ R

P , we evaluate the output se,k(µ) ≡ se(tk;µ) =
�(ye,k(µ)), ∀ k ∈ K, where ye,k(µ) ≡ ye(tk;µ) ∈ Xe satisfies

m(ye,k(µ), v) + ∆ta(ye,k(µ), v;µ) = m(ye,k−1(µ), v) + ∆tf (v;µ)u(tk),

∀ v ∈ Xe, ∀ k ∈ K, (1.1)

with initial condition (say) ye(t0;µ) = ye
0(µ) = 0. Here, D is the parameter domain

in which our P -tuple (input) parameter µ resides, Xe is an appropriate Hilbert
space, and Ω ⊂ R

d is our spatial domain, a point in which shall be denoted x.
Furthermore, a(·, ·;µ) and m(·, ·) are Xe-continuous and Y e-continuous (Xe ⊂ Y e)
bounded bilinear forms, respectively; f(·;µ), �(·) are Y e-continuous bounded linear
functionals; and u(tk) is the “control input” at time t = tk. We assume here that
�(·) and m(·, ·) do not depend on the parameter; parameter dependence, however,
is readily admitted.19

Since the exact solution is usually unavailable, numerical solution techniques
must be employed to solve (1.1). Classical approaches such as the finite element
method typically cannot satisfy the requirements of real-time certified prediction

aHere superscript “e” shall refer to “exact”. We shall later introduce a “truth approximation”
which will bear no superscript.
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of the outputs of interest. In the finite element method, the infinite-dimensional
solution space is replaced by a finite-dimensional “truth” approximation space X ⊂
Xe of size N : for any µ ∈ D, we evaluate the output

sk(µ) = �(yk(µ)), ∀ k ∈ K, (1.2)

where yk(µ) ∈ X satisfies

m(yk(µ), v) + ∆ta(yk(µ), v;µ) = m(yk−1(µ), v) + ∆tf(v;µ)u(tk),

∀ v ∈ X, ∀ k ∈ K, (1.3)

with initial condition y(µ, t0) = y0(µ) = 0. We shall assume — hence the appellation
“truth” — that the approximation space is sufficiently rich such that the FEM
approximation yk(µ) (respectively, sk(µ)) is indistinguishable from the analytic, or
exact, solution ye,k(µ) (respectively, se,k(µ)).

Unfortunately, for any reasonable error tolerance, the dimension N needed
to satisfy this condition — even with the application of appropriate (parameter-
dependent) adaptive mesh refinement strategies — is typically extremely large,
and in particular much too large to satisfy the condition of real-time response or
the need for numerous solutions. Our goal is the development of numerical meth-
ods that permit the efficient and reliable evaluation of this PDE-induced input–
output relationship in real-time or in the limit of many queries — that is, in the
design, optimization, control, and characterization contexts. To achieve this goal
we pursue the reduced basis method. The reduced basis method was first intro-
duced in the late 1970s for the nonlinear analysis of structures1,33 and subsequently
abstracted and analyzed5,15,35,40; see Ref. 42 for a recent review of contributions to
the methodology.

The core requirement for the development of efficient offline–online computa-
tional strategies, i.e. online N -independence, is the affine parameter dependence —
e.g. the bilinear form a(w, v;µ) can be expressed as

a(w, v;µ) =
Q∑

q=1

Θq(µ)aq(w, v), (1.4)

where the Θq(µ) : D → R are parameter-dependent functions and the aq(w, v) are
parameter-independent bilinear forms. In the recent past, reduced basis approxima-
tions and associated a posteriori error estimation for linear and at most quadrat-
ically nonlinear elliptic and parabolic PDEs honoring this requirement have been
successfully developed.19,20,23,30,32,36,46,48,49

In Ref. 18 we extended these results and developed efficient offline–online strate-
gies for reduced basis approximations of nonaffine (and certain classes of nonlinear)
elliptic and parabolic PDEs. Our approach is based on the Empirical Interpolation
Method (EIM)4 — a technique that recovers the efficient offline–online decomposi-
tion even in the presence of nonaffine parameter dependence. We can thus develop
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an “onlineN -independent” computational decomposition even for nonaffine param-
eter dependence, i.e. where for general g(x;µ) (here x ∈ Ω and µ ∈ D) the bilinear
form satisfies

a(w, v;µ) ≡
∫

Ω

∇w · ∇v +
∫

Ω

g(x;µ)wv. (1.5)

A posteriori error bounds for nonaffine linear and certain classes of nonaffine non-
linear elliptic problems have been proposed in Refs. 31 and 7, respectively. In this
paper, we shall consider the extension of these techniques and develop a posteriori
error bounds (i) for nonaffine linear time-varying parabolic problems, and (ii) for
problems in which g is a nonaffine nonlinear function of the parameter µ (possi-
bly including time), spatial coordinate x, and field variable y — we hence treat
certain classes of nonlinear problems. We recall that the computational cost to gen-
erate the collateral reduced basis space for the function approximation is very high
in the parabolic case if the function g is time-varying either through an explicit
dependence on time or an implicit dependence via the field variable y(tk;µ).18

We therefore propose a novel more efficient approach to generate the collateral
reduced basis space which is based on a POD (in time)/Greedy (in parameter space)
search.20

A large number of model order reduction (MOR) techniques2,8,9,29,34,39,44,50

have been developed to treat (nonlinear) time-dependent problems. One approach is
linearization50 and polynomial approximation9,34: however, due to a lack of efficient
representations of nonlinear terms and fast exponential growth (with the degree
of the nonlinear approximation order) of computational complexity, these meth-
ods are quite expensive and do not address strong nonlinearities efficiently. Other
approaches for highly nonlinear systems (such as piecewise-linearization) have also
been proposed39,43 but at the expense of high computational cost and little control
over model accuracy. Furthermore, although a priori error bounds to quantify the
error due to model reduction have been derived in the linear case, a posteriori error
bounds have not yet been adequately considered even for the linear case, let alone
the nonlinear case, for most MOR approaches. Finally, it is important to note that
most MOR techniques focus mainly on reduced order modeling of dynamical sys-
tems in which time is considered the only “parameter”; the development of reduced
order models for problems with a simultaneous dependence of the field variable on
parameter and time — our focus here — is much less common.6,10

This paper is organized as follows: In Sec. 2 we first present a short review of the
Empirical Interpolation Method and then extend these ideas to treat nonaffine time-
varying functions. The abstract problem formulation, reduced basis approximation,
associated a posteriori error estimation, and computational considerations for linear
time-varying parabolic problems with nonaffine parameter dependence are discussed
in Sec. 3. In Sec. 4, we extend these results to monotonic nonlinear parabolic PDEs.
Numerical results are used throughout to test and confirm our theoretical results.
We offer concluding remarks in Sec. 5.
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2. Empirical Interpolation Method

The Empirical Interpolation Method, introduced in Ref. 4, serves to construct
“affine” coefficient-function approximations of “nonaffine” parametrized functions.
The method is frequently applied in reduced basis approximations of parametrized
partial differential equations with nonaffine parameter dependence4,18; the affine
approximation of the equations is crucial for computational efficiency. Here, we
briefly summarize the results for the interpolation procedure and the estimator
for the interpolation error and subsequently extend these ideas to treat nonaffine
time-varying functions.

2.1. Time-invariant parametrized functions

2.1.1. Coefficient-function approximation

We are given a function g : Ω × D → R such that, for all µ ∈ D, g(·;µ) ∈ L∞(Ω).
Here, D ⊂ R

P is the parameter domain, Ω ⊂ R
2 is the spatial domain — a

point in which shall be denoted by x = (x(1), x(2)) — and L∞(Ω) ≡ {v|ess supv∈Ω

|v(x)| <∞}.
We first define the nested sample sets Sg

M ≡ {µg
1 ∈ D, . . . , µg

M ∈ D}, associated
reduced basis spaces W g

M = span{ξm ≡ g(x;µg
m), 1 ≤ m ≤ M}, and nested sets of

interpolation points T g
M = {x1, . . . , xM}, 1 ≤M ≤Mmax. We present here a gener-

alization for the construction of the EIM which allows a simultaneous definition of
the generating functions W g

M and associated interpolation points T g
M .28 The con-

struction is based on a greedy algorithm48 and is required for our POD/Greedy-EIM
algorithm which we will introduce in Sec. 2.2.1.

We first choose µg
1 ∈ D, compute ξ1 ≡ g(x;µg

1), define W g
1 ≡ span{ξ1}, and

set x1 = arg ess supx∈Ω |ξ1(x)|, q1 = ξ1(x)/ξ1(x1), and B1
11 = 1. We then pro-

ceed by induction to generate Sg
M , W g

M , and T g
M : for 1 ≤ M ≤ Mmax − 1, we

determine µg
M+1 ≡ arg maxµ∈Ξg

train
‖g(·;µ) − gM (·;µ)‖L∞(Ω), compute ξM+1 ≡

g(x;µg
M+1), and define W g

M+1 ≡ span{ξm}M+1
m=1 . To generate the interpolation

points we solve the linear system
∑M

j=1 σ
M
j qj(xi) = ξM+1(xi), 1 ≤ i ≤ M and

we set rM+1(x) = ξM+1(x) −
∑M

j=1 σ
M
j qj(x), xM+1 = arg ess supx∈Ω |rM+1(x)|,

and qM+1(x) = rM+1(x)/rM+1(xM+1). Here, Ξg
train ⊂ D is a finite but suitably

large train sample which shall serve as our D surrogate, and gM (·;µ) ∈ W g
M is the

EIM interpolant of g(·;µ) over the set T g
M for any µ ∈ D. Specifically

gM (x;µ) ≡
M∑

m=1

ϕMm(µ)qm, (2.1)

where
M∑

j=1

BM
ij ϕMj(µ) = g(xi;µ), 1 ≤ i ≤M, (2.2)

and the matrix BM ∈ R
M×M is defined such that BM

ij = qj(xi), 1 ≤ i, j ≤ M .
We note that the determination of the coefficients ϕMm(µ) requires only O(M2)
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computational cost since BM is lower triangular with unity diagonal and that
{qm}Mm=1 is a basis for W g

M .4,18

Finally, we define a “Lebesgue constant”37 ΛM ≡ supx∈Ω

∑M
m=1 |VM

m (x)|, where
V M

m (x) ∈ W g
M are the characteristic functions of W g

M satisfying V M
m (xn) ≡ δmn,

1 ≤ m,n ≤ M ; here, δmn is the Kronecker delta symbol. We recall that (i) the set
of all characteristic functions {V M

m }Mm=1 is a basis for W g
M , and (ii) the Lebesgue

constant ΛM satisfies ΛM ≤ 2M − 1.4,18 In applications, the actual asymptotic
behavior of ΛM is much lower, as we shall observe subsequently.

2.1.2. A posteriori error estimation

Given an approximation gM (x;µ) for M ≤ Mmax − 1, we define EM (x;µ) ≡
ε̂M (µ)qM+1(x), where ε̂M (µ) ≡ |g(xM+1;µ) − gM (xM+1;µ)|. We also define the
interpolation error as

εM (µ) ≡ ‖g(·;µ)− gM (·;µ)‖L∞(Ω). (2.3)

In general, εM (µ) ≥ ε̂M (µ), since εM (µ) ≥ |g(x;µ) − gM (x;µ)| for all x ∈ Ω, and
thus also for x = xM+1. However, we can prove (see Refs. 4, 18 and 28)

Proposition 2.1. If g(·;µ) ∈ W g
M+1, then (i) g(x;µ) − gM (x;µ) = ±EM (x;µ)

(either EM (x;µ) or −EM (x;µ)), and (ii) ‖g(·;µ)− gM (·;µ)‖L∞(Ω) = ε̂M (µ).

Of course, in general g(·;µ) �∈ W g
M+1, and hence our estimator ε̂M (µ) is indeed

a lower bound. However, if εM (µ)→ 0 very fast, we expect that the effectivity,

ηM (µ) ≡ ε̂M (µ)
εM (µ)

, (2.4)

shall be close to unity. Furthermore, the estimator is very inexpensive — one addi-
tional evaluation of g(·;µ) at a single point in Ω.

Finally, we note that we can readily improve the rigor of our bound by relax-
ing the condition g(·;µ) ∈ W g

M+1. In fact, since the space W g
M is hierarchical,

i.e. W g
1 ⊂ W g

2 ⊂ · · · ⊂ W g
Mmax

, the assumption g(·;µ) ∈ W g
M is more likely to

hold as we increase the dimension M of the approximation space. Thus, given an
approximation gM (x;µ) for M ≤ Mmax − k, we can show that if g(·;µ) ∈ W g

M+k,
then ε̃M (µ) = 2k−1 maxi∈{1,...,k} |g(xM+i;µ)− gM (xM+i;µ)| is an upper bound for
the interpolation error εM (µ).18 This relaxation of the assumption on g(x;µ) only
comes at a modest additional cost — we need to evaluate g(·;µ) at k additional
points in Ω.

2.1.3. Numerical results

We consider the function g(·;µ) = G(·;µ), where

G(x;µ) ≡ 1√
(x(1) − µ1)2 + (x(2) − µ2)2

, (2.5)
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for x ∈ Ω = ]0, 1[2∈ R
2 and µ ∈ D ≡ [−1,−0.01]2. From a physical point of view,

G(x;µ) describes the gravity potential of a unit mass located at the position (µ1, µ2)
in the spatial domain.

We introduce a triangulation of Ω with N = 2601 vertices over which we realize
G(·;µ) as a piecewise linear function. We choose for Ξtrain ⊂ D a deterministic grid
of 40 × 40 parameter points over D and we take µg

1 = (−0.01,−0.01). Next, we
pursue the empirical interpolation procedure described in Sec. 2.1.1 to construct
Sg

M , W g
M , T g

M , and BM , 1 ≤M ≤Mmax, for Mmax = 57.
We now introduce a parameter test sample ΞTest of size QTest = 225, and define

the maximum error εM,max = maxµ∈ΞTest εM (µ), the maximum error estimator
ε̂M,max = maxµ∈ΞTest ε̂M (µ), the average effectivity η̄M = Q−1

Test

∑
µ∈ΞTest

ηM (µ),
where ηM (µ) is the effectivity defined in (2.4), and κM is the condition number
of BM . We present in Table 1 εM,max, ε̂M,max, η̄M , ΛM , and κM as a function
of M . We observe that εM,max and the bound ε̂M,max converge rapidly with M

and that the error estimator effectivity is less than but reasonably close to unity.
We also note that the Lebesgue constant grows very slowly and that BM is quite
well-conditioned for our choice of basis.

2.2. Time-varying parametrized functions

2.2.1. Coefficient-function approximation

We extend the previous results and consider parametrized nonaffine time-varying
functions gt : Ω× I × D → R. We assume that gt is smooth in time; for simplicity
here, we assume that for all µ ∈ D, gt(·, ·;µ) ∈ C∞(I, L∞(Ω)). Note that we use the
subscript t to signify the dependence on time. We consider the time-discretization
introduced in Sec. 1 and — analogous to the notation used for the field variable
yk(µ) — write gk

t (x;µ) = gt(x, tk;µ).
We first consider the construction of the nested sample sets Sgt

M , associated
reduced basis spaces W gt

M , and nested sets of interpolation points T gt

M . To this end,
we propose a new POD/Greedy-EIM procedure which combines the greedy selection
procedure in parameter space, described in Sec. 2.1.1 for nonaffine time-invariant
functions, with the Proper Orthogonal Decomposition (POD) in time.

Table 1. Numerical results for empirical interpolation of
G(x; µ): εM,max, ε̂M,max, η̄M , ΛM , and κM as a function of M .

M εM,max ε̂M,max η̄M ΛM κM

8 2.05E−01 1.62E−01 0.17 1.98 3.73
16 8.54E−03 8.54E−03 0.85 2.26 6.01
24 6.53E−04 6.49E−04 0.50 3.95 8.66
32 1.29E−04 1.28E−05 0.73 5.21 12.6
40 1.37E−05 1.35E−06 0.43 5.18 16.6
48 4.76E−06 1.78E−07 0.19 10.2 20.0
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Let PODY ({gk
t (·;µ), 1 ≤ k ≤ K}, R) return the R largest POD modes, {χi, 1 ≤

i ≤ R}, with respect to the (·, ·)Y inner product. We recall that the POD modes,
χi, are mutually Y -orthogonal such that PR = span{χi, 1 ≤ i ≤ R} satisfies the
optimality property

PR = arg inf
YR⊂span{gk

t (·;µ),1≤k≤K}

(
1
K

K∑
k=1

inf
w∈YR

‖gk
t (·;µ)− w‖2Y

)
, (2.6)

where YR denotes a linear space of dimension R. Here, we are only interested in
the largest POD mode which we obtain using the method of snapshots.44 To this
end, we solve the eigenvalue problem Cψi = λiψi for (ψ1 ∈ R

K , λ1 ∈ R) associated
with the largest eigenvalue of C, where Cij = (gi

t(·;µ), gj
t (·;µ))Y , 1 ≤ i, j ≤ K. We

then obtain the first POD mode from χ1 =
∑K

k=1 ψ
1
kg

k
t (·;µ).

Before summarizing the POD/Greedy-EIM procedure, we define the EIM inter-
polant in the time-varying case as

gk
t,M (x;µ) ≡

M∑
m=1

ϕk
Mm(µ)qm, ∀ k ∈ K, (2.7)

where

M∑
j=1

BM
ij ϕ

k
Mj(µ) = gk

t (xi;µ), 1 ≤ i ≤M, ∀ k ∈ K. (2.8)

We note that the computational cost to determine the time-varying coefficients
ϕk

Mm(µ), 1 ≤ m ≤ M, for all timesteps is O(KM 2). The POD/Greedy-EIM proce-
dure is summarized in Algorithm 1.

2.2.2. A posteriori error estimation

The a posteriori error estimation procedure for the time-varying case directly fol-
lows from the time-invariant case of Sec. 2.1.2. We first define the time-varying
interpolation error as

εk
t,M (µ) ≡ ‖gk

t (x;µ) − gk
t,M (x;µ)‖L∞(Ω), ∀ k ∈ K, (2.9)

and the estimator ε̂k
t,M (µ) ≡ |gk

t (xM+1;µ)−gk
t,M (xM+1;µ)|, ∀ k ∈ K. The estimator

for the interpolation error at each timestep follows from Proposition 2.1 and is
stated in

Corollary 2.1. If gk
t (·;µ) ∈ W gt

M+1 for all k ∈ K, then (i) gk
t (x;µ) − gk

t,M (x;µ) =
±ε̂k

t,M (µ)qM+1(x), ∀ k ∈ K, and (ii) ‖gk
t (·;µ)−gk

t,M(·;µ)‖L∞(Ω) = ε̂k
t,M (µ), ∀ k ∈ K.

We note that the condition gk
t (·;µ) ∈ W gt

M+1 has to hold for all timesteps and is
thus more restrictive than in the time-invariant case. In general, ε̂k

t,M (µ) is a lower
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Algorithm 1. POD/Greedy-EIM Algorithm

specify Ξg
train ⊂ D, Mmax, µ

gt

1 ∈ D (arbitrary).

ξ1 ≡ PODY ({gk
t (·;µgt

1 ), 1 ≤ k ≤ K}, 1) .

set M = 1, Sg1
1 = {µgt

1 }, W gt

1 ≡ span{ξ1}.
set x1 = arg ess supx∈Ω |ξ1(x)|, q1 = ξ1(x)/ξ1(x1), and B1

11 = 1.

while M ≤Mmax − 1 do

µgt

M+1 = arg maxµ∈Ξtrain ∆t
∑K

k=1 ‖gk
t (·;µ)− gk

t,M (·;µ)‖L∞(Ω),

where gk
t,M is calculated from (2.7) and (2.8);

ek
M,EIM(µ) = gk

t (x;µgt

M+1)− gk
t,M (x;µgt

M+1), 1 ≤ k ≤ K;

ξM+1 = PODY ({ek
M,EIM(µgt

M+1), 1 ≤ k ≤ K}, 1);

W gt

M+1 ←W gt

M ⊕ span{ξM+1};
Sgt

M+1 ← Sgt

M ∪ µgt

M+1;

solve for σM
j from

∑M
j=1 σ

M
j qj(xi) = ξM+1(xi), 1 ≤ i ≤M ;

set rM+1(x) = ξM+1(x)−
∑M

j=1 σ
M
j qj(x);

set xM+1 = arg ess supx∈Ω |rM+1(x)|;
set qM+1(x) = rM+1(x)/rM+1(xM+1);

update BM+1
ij = qj(xi), 1 ≤ i, j ≤M + 1;

M ←M + 1;

end

bound for the interpolation error at each timestep. Finally, we may also define the
effectivity

ηk
t,M (µ) ≡ ε̂k

t,M (µ)
εk

t,M (µ)
, ∀ k ∈ K. (2.10)

Again, our estimator is very inexpensive — at each individual timestep we have to
perform only one additional evaluation of gk

t (·;µ) at a single point in Ω.

2.2.3. Numerical results

We consider the nonaffine time-varying function gk
t (·;µ) = Gk

t (·;µ), where

Gk
t (x;µ) ≡ 1√

(x(1) − (µ1 − tk/2))2 + (x(2) − (µ2 − tk/2))2
, (2.11)

for x ∈ Ω = ]0, 1[2 ∈ R
2, tk ∈ I, and µ ∈ D ≡ [−1,−0.01]2. Compared to the

stationary problem (2.5), Gt(x;µ) describes the gravity potential of a unit mass

1150015-9



February 8, 2012 8:55 WSPC/103-M3AS 1150015

M. A. Grepl

which is now moving in the spatial domain, i.e. the mass is initially located at the
position (µ1, µ2) and then moving with velocity (−1/2,−1/2) as time proceeds.

We use the triangulation of Ω and Ξtrain from Sec. 2.1.3 and take µgt

1 =
(−0.01,−0.01). Next, we employ Algorithm 1 to construct Sgt

M , W gt

M , T gt

M , and
BM , 1 ≤ M ≤ Mmax, for Mmax = 49. We define the maximum error εt,M,max =
maxµ∈ΞTest maxk∈K ε

k
t,M (µ), maximum error bound ε̂t,M,max = maxµ∈ΞTest maxk∈K

ε̂k
t,M (µ), and the average effectivity η̄t,M = (KQTest)−1

∑
µ∈ΞTest

∑
k∈K

ηk
t,M (µ).

Here, we use the parameter test sample ΞTest of size QTest = 225 from Sec. 2.1.3.
We present in Table 2 εt,M,max, ε̂t,M,max, η̄t,M , the Lebesgue constant ΛM ,

and the condition number of BM , κM , as a function of M . Similar to the time-
invariant case, the maximum error and bound converge rapidly withM and the error
estimator effectivity is less than but still reasonably close to unity. However, εt,M,max

and ε̂t,M,max are always larger than the corresponding time-invariant quantities in
Table 1 for the same value of M . This is to be expected since time acts like an
additional, albeit special, parameter. In fact, for the numerical example considered
here, the time dependence effectively increases the admissible parameter domain D
of the time-invariant problem. Finally, we note that the Lebesgue constant grows
very slowly and that BM remains well-conditioned also for the time-varying case.

3. Nonaffine Linear Time-Varying Parabolic Equations

In this section we consider reduced basis approximations and associated a posteriori
error estimation procedures for linear parabolic PDEs with nonaffine parameter
dependence. We derive the theoretical results for linear time-varying (LTV) prob-
lems and occasionally comment on the simplifications that arise for linear time-
invariant (LTI) problems. Numerical results are presented for both the LTI and
LTV problem.

3.1. Problem statement

3.1.1. Abstract formulation

We first recall the Hilbert spaces Xe ≡ H1
0 (Ω) — or, more generally, H1

0 (Ω) ⊂
Xe ⊂ H1(Ω) — and Y e ≡ L2(Ω), where H1(Ω) ≡ {v|v ∈ L2(Ω),∇v ∈ (L2(Ω))d},
H1

0 (Ω) ≡ {v|v ∈ H1(Ω), v|∂Ω = 0}, and L2(Ω) is the space of square integrable

Table 2. Numerical results for empirical interpolation of Gk
t (x; µ),

1 ≤ k ≤ K: εt,M,max, ε̂t,M,max, η̄t,M , ΛM , and κM as a function of M .

M εt,M,max ε̂t,M,max η̄t,M ΛM κM

8 4.79E−01 4.79E−01 0.58 3.67 6.26
16 2.76E−02 2.39E−02 0.56 5.11 13.0
24 3.09E−03 3.09E−03 0.77 6.47 18.8
32 1.99E−04 1.15E−04 0.60 11.4 27.7
40 9.13E−05 9.13E−05 0.34 8.84 45.8
48 1.11E−05 5.16E−06 0.11 9.05 54.4
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functions over Ω.38 Here Ω is a bounded domain in R
d with Lipschitz continuous

boundary ∂Ω. The inner product and norm associated with Xe(Y e) are given by
(·, ·)Xe ((·, ·)Y e) and ‖ · ‖Xe = (·, ·)1/2

Xe (‖ · ‖Y e = (·, ·)1/2
Y e ), respectively; for example,

(w, v)Xe ≡ ∫Ω∇w ·∇v+
∫
Ωwv, ∀w, v ∈ Xe, and (w, v)Y e ≡ ∫Ωwv, ∀w, v ∈ Y e. The

truth approximation subspace X ⊂ Xe(⊂Y e) shall inherit this inner product and
norm: (·; ·)X ≡ (·; ·)eX and ‖ · ‖X ≡ ‖ · ‖eX ; we further define Y ≡ Y e.

We directly consider the truth approximation statement defined in (1.3) with
the output given by (1.2), where the bilinear form a is given by

ak
t (w, v;µ) = a0(w, v) + a1(w, v, gk

t (x;µ)), ∀ k ∈ K, (3.1)

and

f(v; gk
t (x;µ)) =

∫
Ω

vgk
t (x;µ), ∀ k ∈ K. (3.2)

Here, a0(·, ·) is a continuous (and, for simplicity, parameter-independent) bilinear
form and a1 : X × X × L∞(Ω) is a trilinear form. We shall use the subscript “t”
notation to signify the dependence of the bilinear form ak

t on time. We obtain the
LTI problem simply by replacing gk

t (x;µ) with the nonaffine time-invariant function
g(x;µ) in (3.1) and (3.2).

We shall further assume that ak
t (·, ·;µ), ∀ k ∈ K, and m(·, ·) are continuous

ak
t (w, v;µ) ≤ γa(µ)‖w‖X‖v‖X ≤ γ0

a‖w‖X‖v‖X , ∀w, v ∈ X, ∀µ ∈ D, (3.3)

m(w, v) ≤ γ0
m‖w‖Y ‖v‖Y , ∀w, v ∈ X ; (3.4)

coercive,

0 < α0
a ≤ αa(µ) ≡ inf

w∈X

ak
t (w,w;µ)
‖w‖2X

, ∀µ ∈ D, (3.5)

0 < α0
m ≡ inf

v∈X

m(v, v)
‖v‖2Y

; (3.6)

and symmetric, ak
t (v, w;µ) = ak

t (w, v;µ), ∀w, v ∈ X , ∀µ ∈ D, and m(v, w) =
m(w, v), ∀w, v ∈ X , ∀µ ∈ D. (We (plausibly) suppose that γ0

a, γ0
m, α0

a, α0
m may be

chosen independent of N .) We also assume that the trilinear form a1 satisfies

a1(w, v, z) ≤ γ0
a1
‖w‖X‖v‖X‖z‖L∞(Ω), ∀w, v ∈ X, ∀ z ∈ L∞(Ω). (3.7)

Next, we require that the linear forms f(·; gk
t (x;µ)) : X → R, ∀ k ∈ K, and �(·) :

X → R be bounded with respect to ‖ · ‖Y . It follows that a solution to (1.3) exists
and is unique16,45; also see Ref. 38 for the LTI case.

1150015-11



February 8, 2012 8:55 WSPC/103-M3AS 1150015

M. A. Grepl

3.1.2. Model problem

As a numerical test case for the LTI and LTV problem we consider the following
nonaffine diffusion problem defined on the unit square, Ω = ]0, 1[2∈ R

2: Given µ ≡
(µ1, µ2) ∈ D ≡ [−1,−0.01]2 ⊂ R

P=2, we evaluate yk(µ) ∈ X from (1.3), where X ⊂
Xe ≡ H1

0 (Ω) is a linear finite element truth approximation subspace of dimension
N = 2601,

m(w, v) ≡
∫

Ω

wv, a0(w, v) ≡
∫

Ω

∇w · ∇v,

a1(w, v, z) ≡
∫

Ω

zwv, f(v; z) ≡
∫

Ω

zv,

(3.8)

and z is given by G(x;µ) defined in (2.5) for the LTI problem and by Gk
t (x;µ)

defined in (2.11) for the LTV problem. The output can be written in the form (1.2),
sk(µ) = �(yk(µ)), ∀ k ∈ K, where �(v) ≡ |Ω|−1

∫
Ω
v — clearly a very smooth

functional. We shall consider the time interval Ī = [0, 2] and a timestep ∆t =
0.01; we thus have K = 200. We also presume the periodic control input u(tk) =
sin(2πtk), tk ∈ I.

We first present results for the LTI problem (note that this problem is similar to
the one used in Ref. 18). Two snapshots of the solution yk(µ) at time tk = 25∆t are
shown in Figs. 1(a) and 1(b) for µ = (−1,−1) and µ = (−0.01,−0.01), respectively.
The solution oscillates in time and the peak is offset towards x = (0, 0) for µ near
the “corner” (−0.01,−0.01). In Fig. 2 we plot the output sk(µ) as a function of
time for these two parameter values.

We next turn to the LTV problem and present the output sk(µ) for µ =
(−0.01,−0.01) also in Fig. 2 (dashed line). The LTV output shows a transi-
tion in time from the LTI output for µ = (−0.01,−0.01) to the LTI output for

0 0.2 0.4 0.6 0.8 1
0

0.5

1
0

0.01

0.02

0.03

x
(1)

µ = (−1,−1), tk = 25 ∆ t

x
(2)

yk
(µ

)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
0

0.02

0.04

0.06

0.08

x
(1)

µ = (−0.01,−0.01), tk = 25 ∆ t

x
(2)

yk
(µ

)

(a) (b)

Fig. 1. Solution yk(µ) of LTI problem at tk = 25∆t for (a) µ = (−1,−1) and (b) µ =
(−0.01,−0.01).
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0 0.5 1 1.5 2

–0.04

–0.02

0

0.02

0.04

0.06

0.08

time t 

s(
t;µ

)

LTI,µ = (–0.01,–0.01)
LTI,µ = (–1,–1)
LTV,µ = (–0.01,–0.01) 

Fig. 2. Output sk(µ) of the LTI problem for µ = (−0.01,−0.01) and µ = (−1,−1), and output
of the LTV problem for µ = (−0.01,−0.01).

µ = (−1,−1). This behavior is plausible by comparing the definitions of the non-
affine functions G(x;µ) and Gk

t (x;µ).

3.2. Reduced basis approximation

3.2.1. Formulation

We assume that we are given the nested Lagrangian35 reduced basis spaces

W y
N = span{ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, (3.9)

where the ζn, 1 ≤ n ≤ N , are mutually (·, ·)X -orthogonal basis functions. We com-
ment on the POD/Greedy algorithm for constructing the basis functions in Sec. 3.4.

Our reduced basis approximation yk
N,M (µ) to yk(µ) is then: given µ ∈ D,

yk
N,M(µ) ∈W y

N , ∀ k ∈ K, satisfies

m(yk
N,M(µ), v) + ∆t(a0(yk

N,M (µ), v) + a1(yk
N,M (µ), v; gk

t,M (x;µ)))

= m(yk−1
N,M (µ), v) + ∆tf (v; gk

t,M (x;µ))u(tk), ∀ v ∈W y
N , (3.10)

with initial condition y0
N,M (µ) = 0. We then evaluate the output estimate,

sk
N,M (µ), ∀ k ∈ K, from

sk
N,M(µ) ≡ �(yk

N,M(µ)). (3.11)

Note that we directly replaced gk
t (x;µ) in (3.1) by its affine approximation

gk
t,M (x;µ) defined in (2.7).
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We now express yk
N,M(µ) =

∑N
n=1 y

k
N,Mn(µ)ζn, choose as test functions v = ζj ,

1 ≤ j ≤ N , and invoke (2.7) to obtain

N∑
i=1

{
m(ζi, ζj) + ∆t

(
a0(ζi, ζj) +

M∑
m=1

ϕk
Mm(µ)a1(ζi, ζj , qm)

)}
yk

N,Mi(µ)

=
N∑

i=1

m(ζi, ζj)yk−1
N,Mi(µ) + ∆t

M∑
m=1

ϕk
Mm(µ)f(ζj ; qm)u(tk), 1 ≤ j ≤ N, (3.12)

where ϕk
Mm(µ), 1 ≤ m ≤ M , 1 ≤ k ≤ K, is determined from (2.8). We note that

(3.12) is well-posed if M is large enough such that the interpolation error satisfies
εk

t,M (µ) ≤ αa(µ)/γ0
a1
, ∀ k ∈ K. This condition on the interpolation error directly

follows from (3.5) and (3.7). We can thus recover online N -independence even for
nonaffine problems: the quantities m(ζi, ζj), a0(ζi, ζj), a1(ζi, ζj , qm), and f(ζi; qm)
are all parameter-independent and can thus be pre-computed offline, as discussed
in the next section.

3.2.2. Computational procedure

We summarize here the offline–online procedure.3,22,27,36 We first express
yk

N,M (µ) as

yk
N,M(µ) =

N∑
n=1

yk
N,Mn(µ)ζn, (3.13)

and choose as test functions v = ζj , 1 ≤ j ≤ N in (3.10). It then follows from (3.12)
that yk

N,M
(µ) = [yk

N,M1(µ) yk
N,M2(µ) · · · yk

N,MN(µ)]T ∈ R
N satisfies

(MN + ∆tAk
N (µ))yk

N,M
(µ) = MN yk−1

N,M
(µ) + ∆tF k

N (µ)u(tk), ∀ k ∈ K, (3.14)

with initial condition yN,Mn(µ, t0) = 0, 1 ≤ n ≤ N . Given yk
N,M

(µ), ∀ k ∈ K, we
finally evaluate the output estimate from

sk
N,M (µ) = LT

Ny
k
N,M

(µ), ∀ k ∈ K. (3.15)

Here, MN ∈ R
N×N is a parameter-independent SPD matrix with entries

MNi,j = m(ζj , ζi), 1 ≤ i, j ≤ N. (3.16)

Furthermore, we obtain from (2.7) and (3.1) that Ak
N (µ) ∈ R

N×N and F k
N (µ) ∈ R

N

can be expressed as

Ak
N (µ) = A0,N +

M∑
m=1

ϕk
Mm(µ)Am

1,N , (3.17)

F k
N (µ) =

M∑
m=1

ϕk
Mm(µ)Fm

N , (3.18)
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where ϕk
Mm(µ), 1 ≤ m ≤ M, is calculated from (2.8) at each timestep, and the

parameter-independent quantities A0,N ∈ R
N×N , Am

1,N ∈ R
N×N , and Fm

N ∈ R
N are

given by

A0,Ni,j = a0(ζj , ζi), 1 ≤ i, j ≤ N,
Am

1,Ni,j = a1(ζj , ζi, qm), 1 ≤ i, j ≤ N, 1 ≤ m ≤M,

Fm
Nj = f(ζj ; qm), 1 ≤ j ≤ N, 1 ≤ m ≤M,

(3.19)

respectively. Finally, LN ∈ R
N is the output vector with entries LNi = �(ζi),

1 ≤ i ≤ N . We note that these quantities must be computed in a stable fashion
which is consistent with the finite element quadrature points (see Ref. 17, p. 132).

The offline–online decomposition is now clear. In the offline stage — performed
only once — we first construct the nested approximation spaces W gt

M and sets of
interpolation points T gt

M , 1 ≤ M ≤Mmax. We then solve for the ζn, 1 ≤ n ≤ Nmax

and compute and store the µ-independent quantities in (3.16), (3.19) and LN .
The computational cost — without taking into account the construction of W gt

M

and T gt

M — is therefore O(KN max) solutions of the underlying N -dimensional
“truth” finite element approximation and O(MmaxN

2
max) N -inner products; the

storage requirements are also O(MmaxN
2
max). In the online stage — performed

many times, for each new parameter value µ — we compute ϕk
Mm(µ), 1 ≤ m ≤M,

from (2.8) at cost O(M2) per timestep by multiplying the pre-computed inverse of
BM with the vector gk

t (xm;µ), 1 ≤ m ≤ M . We then assemble the reduced basis
matrix (3.17) and vector (3.18); this requires O(MN 2) operations per timestep. We
then solve (3.14) for yk

N,M
(µ); since the reduced basis matrices are in general full,

the operation count is O(N3) per timestep. The total cost to evaluate yk
N,M

(µ),

∀ k ∈ K, is thus O(K(M2 + MN 2 + N3)). Finally, given yk
N,M

(µ) we evaluate the

output estimate sk
N,M(µ), ∀ k ∈ K, from (3.15) at a cost of O(KN ).

Concerning the LTI problem, we note that the overall cost to evaluate yk
N,M

(µ),

∀ k ∈ K, in the online stage reduces to O(M2 + MN 2 + N3 + KN 2). We need to
evaluate the time-independent coefficients ϕMm(µ), 1 ≤ m ≤ M, from (2.2) and
subsequently assemble the reduced basis matrices only once, we may then use LU
decomposition for the time stepping.

Hence, as required in the many-query or real-time contexts, the online com-
plexity is independent of N , the dimension of the underlying “truth” finite element
approximation space. Since N , M � N , we expect significant computational sav-
ings in the online stage relative to classical discretization and solution approaches.

3.3. A posteriori error estimation

We will now develop a posteriori error estimators which will help us to (i) assess
the error introduced by our reduced basis approximation (relative to the “truth”
finite element approximation); and (ii) devise an efficient procedure for generating
the reduced basis space W y

N . We recall that a posteriori error estimates have been
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developed for reduced basis approximations of linear affine parabolic problems using
a finite element truth discretization in Ref. 19. Subsequently, extensions to finite
volume discretizations including bounds for the error in the L2(Ω)-norm have also
been considered.20

3.3.1. Preliminaries

To begin, we specify the inner products (v, w)X ≡ a0(v, w), ∀ v, w ∈ X and
(v, w)Y ≡ m(v, w), ∀ v, w ∈ X . We next assume that we are given a positive lower
bound for the coercivity constant αa(µ): α̂a(µ) : D → R+ satisfies

αa(µ) ≥ α̂a(µ) ≥ α̂0
a > 0, ∀µ ∈ D. (3.20)

We note that if gk
t (x;µ) > 0, ∀ k ∈ K, we may readily use α̂a(µ) = 1 as a lower

bound. In general, however, we may need to develop a lower bound, α̂a1,M (µ) for
the coercivity constant of the perturbed weak form a1(·, ·; gk

t,M (x;µ)) using the
Successive Constraint Method (SCM).21 In this case we directly obtain from (3.1),
(3.5) and (3.7) the additional requirement that the interpolation error has to sat-
isfy εk

t,M (µ) < (1 + α̂a1,M (µ))/γ0
a1

. In some instances, simpler recipes may also
suffice.36,49

We next introduce the dual norm of the residual

εk
N,M(µ) ≡ sup

v∈X

Rk(v;µ)
‖v‖X , ∀ k ∈ K, (3.21)

where

Rk(v;µ) ≡ f(v; gk
t,M (x;µ))u(tk)− a0(yk

N,M(µ), v) − a1(yk
N,M (µ), v, gk

t,M (x;µ))

− 1
∆t

m(yk
N,M (µ)− yk−1

N,M(µ), v), ∀ v ∈ X, ∀ k ∈ K. (3.22)

We also introduce the dual norm

Φna,k
M (µ) ≡ sup

v∈X

f(v; qM+1)u(tk)− a1(yk
N,M (µ), v, qM+1)

‖v‖X , ∀ k ∈ K, (3.23)

which reflects the contribution of the nonaffine terms. Finally, we define the
“spatio-temporal” energy norm, �vk(µ)�2 ≡ m(vk(µ), vk(µ)) +

∑k
k′=1 a

k′
t (vk′

(µ),
vk′

(µ);µ)∆t, ∀ k ∈ K.

3.3.2. Error bound formulation

We obtain the following result for the error bound.

Proposition 3.1. Suppose that gk
t (x;µ) ∈ W gt

M+1 for 1 ≤ k ≤ K. The error,
ek(µ) ≡ yk(µ) − yk

N,M(µ), is then bounded by

�ek(µ)� ≤ ∆y,k
N,M (µ), ∀µ ∈ D, ∀ k ∈ K, (3.24)

1150015-16



February 8, 2012 8:55 WSPC/103-M3AS 1150015

Certified Reduced Basis Methods

where the error bound ∆y,k
N,M (µ) ≡ ∆y

N,M (tk;µ) is defined as

∆y,k
N,M (µ) ≡

(
2∆t
α̂a(µ)

k∑
k′=1

εk′
N,M (µ)

2
+

2∆t
α̂a(µ)

k∑
k′=1

(ε̂k′
t,M (µ)Φna,k′

M (µ))2
) 1

2

. (3.25)

Proof. The proof is an extension of the result in Ref. 19. We thus focus on the
new bits — the nonaffine parameter dependence. Following the steps in Ref. 19, we
obtain

m(ek(µ), ek(µ))−m(ek−1(µ), ek−1(µ)) + ∆tak
t (ek(µ), ek(µ);µ)

≤ ∆tεk
N,M(µ)‖ek(µ)‖X + ∆t

(
f(ek(µ); gk

t (x;µ)− gk
t,M (x;µ))u(tk)

− a1(yk
N,M(µ), ek(µ), gk

t (x;µ) − gk
t,M (x;µ))

)
. (3.26)

Using Young’s inequality, the first term on the right-hand side can be bound by

2εk
N(µ)‖ek(µ)‖X ≤ 2

α̂a(µ)
εk

N,M(µ)
2
+
α̂a(µ)

2
‖ek(µ)‖2X . (3.27)

From our assumption, gk
t (x;µ) ∈ W gt

M+1 for 1 ≤ k ≤ K, Corollary 2.1, and (3.23)
it directly follows that

f(ek(µ); gk
t (x;µ) − gk

t,M (x;µ))u(tk)− a1(yk
N,M (µ), ek(µ), gk

t (x;µ)− gk
t,M (x;µ))

≤ ε̂k
t,M (µ) sup

v∈X

f(v; qM+1)u(tk)− a1(yk
N,M(µ), v, qM+1)

‖v‖X ‖ek(µ)‖X

≤ ε̂k
t,M (µ)Φna,k

M (µ)‖ek(µ)‖X , (3.28)

and again from Young’s inequality that

2ε̂k
t,M (µ)Φna,k

M (µ)‖ek(µ)‖X ≤ 2
α̂a(µ)

(ε̂k
t,M (µ)Φna,k

M (µ))2 +
α̂a(µ)

2
‖ek(µ)‖2X . (3.29)

The desired results then directly follow from (3.26)–(3.29), invoking (3.5) and (3.20),
and finally summing from k′ = 1 to k with e(µ, t0) = 0.

We note from (3.25) that our error bound comprises the affine as well as the
nonaffine error contributions. We may thus choose N and M such that both con-
tributions balance, i.e. neither N nor M should be chosen unnecessarily high. We
also recall that our (crucial) assumption gk

t (x;µ) ∈ W gt

M+1, 1 ≤ k ≤ K, cannot be
confirmed in actual practice — in fact, we generally have gk

t (x;µ) /∈ W gt

M+1 and
hence our error bound (3.25) is not completely rigorous, since ε̂k

t,M (µ) ≤ εk
t,M (µ).

We comment on both of these issues again in detail in Sec. 3.5 when discussing
numerical results.

Finally, we note that the bound for the LTI case slightly simplifies due to the
fact that the error estimator ε̂M (µ) is independent of time and can thus be pulled
out of the summation.
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We can now define the (simple) output bound in

Proposition 3.2. Suppose that gk
t (x;µ) ∈ W gt

M+1 for 1 ≤ k ≤ K. The error in the
output of interest is then bounded by

|sk(µ)− sk
N,M(µ)| ≤ ∆s,k

N,M (µ), ∀ k ∈ K, ∀µ ∈ D, (3.30)

where the output bound ∆s,k
N,M (µ) is defined as

∆s,k
N,M (µ) ≡ sup

v∈X

�(v)
‖v‖Y ∆y,k

N,M(µ). (3.31)

Proof. From (1.2) and (3.11) we obtain

|sk(µ)− sk
N,M (µ)| = |�(yk(µ))− �(yk

N,M(µ))|

= |�(ek(µ))| ≤ sup
v∈X

�(v)
‖v‖Y ‖e

k(µ)‖Y .

The result immediately follows since ‖ek(µ)‖Y ≤ ∆y,k
N,M (µ), 1 ≤ k ≤ K.

3.3.3. Computational procedure

We now turn to the development of offline–online computational procedures for
the calculation of ∆y,k

N,M (µ) and ∆s,k
N,M (µ). The necessary computations for the

offline and online stage are detailed in Appendix A. Here, we only summarize the
computational costs involved.

In the offline stage we first compute the quantities F , A0,1, and M from (A.4)
and (A.5) and then evaluate the necessary inner products. These operations require
(to leading order) O(MmaxNmax) expensive “truth” finite element solutions, and
O(M2

maxN
2
max) N -inner products. In the online stage — given a new parameter

value µ and associated reduced basis solution yk
N,M

(µ), 1 ≤ k ≤ K — the compu-

tational cost to evaluate ∆y,k
N,M (µ) and ∆s,k

N,M (µ), 1 ≤ k ≤ K, is O(KM 2N2). Thus,
all online calculations needed are independent of N .

Concerning the LTI problem, we note that we can slightly lessen the computa-
tional cost by performing the M -dependent sums once before evaluating the dual
norm at each timestep; the computational cost is thus O(M2N2 + KN 2).

3.4. Sampling procedure

The sampling procedure is a two-stage process. We first construct the sample set
Sgt

M , associated spaceW gt

M , and set of interpolation points T gt

M for the nonaffine func-
tion as described in Sec. 2. We then invoke a POD/Greedy sampling procedure — a
combination of the Proper Orthogonal Decomposition (POD) in time with a Greedy
selection procedure in parameter space20,24 — to generate W y

N . We first recall the
function PODX({yk(µ), 1 ≤ k ≤ K}, R) which returns the R largest POD modes,
{χi, 1 ≤ i ≤ R}, now with respect to the X inner product.
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The POD/Greedy procedure proceeds as follows: we first choose a µ∗ ∈ D and
set Sy

0 = {0}, W y
0 = {0}, N = 0. Then, for 1 ≤ N ≤ Nmax, we first compute

the projection error ek
N,proj(µ) = yk(µ∗)− projX,W y

N−1
(yk(µ∗)), 1 ≤ k ≤ K, where

projX,WN
(w) denotes the X-orthogonal projection of w ∈ X onto WN , and we

expand the parameter sample Sy
N ← Sy

N−1 ∪ {µ∗} and the reduced basis space
W y

N ← W y
N−1 ∪PODX({ek

N,proj(µ
∗), 1 ≤ k ≤ K}, 1), and set N ← N +1. Finally,

we choose the next parameter value from µ∗ ← argmaxµ∈Ξtrain ∆y,K
N,Mmax

(µ)/ �

yK
N (µ)�, i.e. we perform a greedy search over Ξtrain for the largest relative a pos-

teriori error bound at the final time. Here, Ξtrain ⊂ D is a finite but suitably large
train sample. In general, we may also specify a desired error tolerance, εtol,min,
and stop the procedure as soon as maxµ∈Ξtrain ∆y,K

N,Mmax
(µ)/ � yK

N (µ)� ≤ εtol,min is
satisfied; Nmax is then indirectly determined through the stopping criterion.

During the POD/Greedy sampling procedure we shall use the “best” possible
approximation gk

t,M (x;µ) of gk
t (x;µ) so as to minimize the error induced by the

empirical interpolation procedure, i.e. we set M = Mmax.
For the model problem introduced in Sec. 3.1.2 the control input u(tk) was

assumed to be known. In many instances, however, the control input may not be
known a priori — a typical example is the application of reduced order models
in a control setting. If the problem is linear time-invariant, we can appeal to the
LTI property and generate the reduced basis space based on an impulse input in
such cases.19 Unfortunately, this approach will not work for LTV problems and
nonlinear problems, i.e. a reduced basis space trained on an impulse response will,
in general, not yield good approximation properties for arbitrary control inputs
u(tk). One possible approach proposed in the literature is to train the reduced
order model on a “generalized” impulse input, see Ref. 25. The idea here is to use
a collection of “representative” control inputs, e.g. impulse and step functions of
different magnitude shifted in time, in order to capture a richer dynamic behavior
of the system. These ideas are, of course, heuristic and the treatment of unknown
control inputs in the model reduction context is an open problem. However, our
a posteriori error bound serves as a measure of fidelity especially in the online stage
and we can thus detect an unacceptable deviation from the truth approximation in
real-time.

3.5. Numerical results

We next present results for the model problem introduced in Sec. 3.1.2. We first
consider the LTI problem and subsequently the LTV problem.

3.5.1. The time-invariant case

We construct the reduced basis space W y
N according to the POD/Greedy sampling

procedure in Sec. 3.4. To this end, we sample on Ξtrain with M = Mmax and obtain
Nmax = 45 for εtol,min = 1E−6. We note from the definition of the X-inner product
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Fig. 3. LTI problem: convergence of the maximum relative error, εy
N,M,max,rel.

and the fact that G(x;µ) > 0, ∀µ ∈ D, that we can simply use α̂a(µ) = 1 as a
lower bound for the coercivity constant.

In Fig. 3 we plot, as a function of N and M , the maximum relative error
in the energy norm εyN,M,max,rel = maxµ∈ΞTest�e

K(µ)�/�yK(µy)�, where µy ≡
arg maxµ∈ΞTest�y

K(µ)�. We observe that the reduced basis approximation con-
verges very rapidly. We also note the “plateau” in the curves for M fixed and the
“drops” in the N →∞ asymptotes as M increases: for fixed M the error due to the
coefficient function approximation, gM (x;µ)− g(x;µ), will ultimately dominate for
large N ; increasing M renders the coefficient function approximation more accu-
rate, which in turn leads to a drop in the error. We further note that the separation
points, or “knees”, of the N -M -convergence curves reflect a balanced contribution
of both error terms. At these points neither N nor M limit the convergence of the
reduced basis approximation.

In Table 3 we present, as a function of N and M , εyN,M,max,rel, the maximum rel-
ative error bound ∆y

N,M,max,rel, and the average effectivity η̄y
N,M ; here, ∆y

N,M,max,rel

is the maximum over ΞTest of ∆y,K
N,M (µ)/�yK(µy)� and η̄y

N,M is the average over
ΞTest × I of ∆y,k

N,M (µ)/�yk(µ)− yk
N,M (µ)�. Note that the tabulated (N,M) values

correspond roughly to the “knees” of the N -M -convergence curves. We observe very
rapid convergence of the reduced basis approximation and error bound.

Table 3. LTI problem: convergence rates and effectivities as a function of N and M .

N M εy
N,M,max,rel ∆y

N,M,max,rel η̄y
N,M εs

N,M,max,rel ∆s
N,M,max,rel η̄s

N,M

5 16 1.22E−02 1.74E−02 1.42 3.30E−03 1.01E−01 29.1
15 24 3.32E−04 4.75E−04 1.09 1.57E−04 2.77E−03 27.5
25 32 2.91E−05 4.30E−05 1.44 1.88E−05 2.50E−04 85.4
35 40 3.78E−06 3.50E−06 1.11 3.22E−06 2.04E−05 137
45 48 5.66E−07 8.17E−07 1.39 8.14E−08 4.76E−06 553
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The effectivity serves as a measure of rigor and sharpness of the error bound:
we would like η̄y

N,M ≥ 1, i.e. ∆y,k
N,M (µ) be a true upper bound for the error in the

energy-norm, and ideally we have η̄y
N,M ≈ 1 so as to obtain a sharp bound for the

error. We recall, however, that in actual practice we cannot confirm the assumption
g(x;µ) ∈W g

M+1 from Proposition 3.1 and thus η̄y
N,M ≥ 1 may not hold. Specifically,

if we choose (N,M) such that the function interpolation limits the convergence we
do obtain effectivities less than 1, e.g. for (N,M) = (25, 24) (instead of (25, 32) in
Table 3) we obtain η̄y

N,M = 0.83. A judicious choice for N and M is thus important
for rigor and safety.

We next turn to the output estimate and present, in Table 3, the maximum rel-
ative output error εsN,M,max,rel, the maximum relative output bound ∆s

N,M,max,rel,
and the average output effectivity η̄s. Here, εsN,M,max,rel is the maximum over
ΞTest of |s(µ, tks(µ)) − sN,M(µ, tks(µ))|/|s(µ, tks (µ))|, ∆s

N,M,max,rel is the maximum
over ΞTest of ∆s

N,M(µ, tks(µ))/|s(µ, tks (µ))|, and η̄s is the average over ΞTest of
∆s

N,M (µ, tη(µ))/|s(µ, tη(µ)) − sN,M(µ, tη(µ))|, where tks(µ) ≡ argmaxtk∈I |s(µ, tk)|
and tη(µ) ≡ argmaxtk∈I |s(µ, tk)− sN,M(µ, tk)|. Again, we observe very rapid con-
vergence of the reduced basis output approximation and output bound — for only
N = 15 and M = 24 the output error bound is already less than 0.3%. The output
effectivities are still acceptable for smaller values of (N,M), but deteriorate for
larger values.

In Table 4 we present, as a function of N and M , the online computational
times to calculate sk

N,M(µ) and ∆s,k
N,M(µ) for 1 ≤ k ≤ K. The values are normal-

ized with respect to the computational time for the direct calculation of the truth
approximation output sk(µ) = �(yk(µ)), 1 ≤ k ≤ K. The computational savings for
an accuracy of less than 0.3% (N = 15, M = 24) in the output bound is approxi-
mately a factor of 30. We note that the time to calculate ∆s,k

N,M(µ) exceeds that of
calculating sk

N (µ) — this is due to the higher computational cost, O(M2N2+KN 2),
to evaluate ∆y,k

N,M (µ). Thus, although our previous observation suggests to choose
M large so that the error contribution due to the nonaffine function approximation
is small, we should choose M as small as possible to retain the computational effi-
ciency of our method. We emphasize that the reduced basis entry does not include
the extensive offline computations — and is thus only meaningful in the real-time
or many-query contexts.

Table 4. LTI problem: online computational times (normalized with
respect to the time to solve for sk(µ), 1 ≤ k ≤ K).

N M sk
N,M (µ), ∀ k ∈ K ∆s,k

N,M (µ), ∀k ∈ K sk(µ), ∀ k ∈ K

5 16 2.70E−03 1.84E−02 1
15 24 3.18E−03 3.01E−02 1
25 32 3.96E−03 4.57E−02 1
35 40 4.71E−03 7.16E−02 1
45 48 5.52E−03 1.02E−01 1
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3.5.2. The time-varying case

We next consider the LTV problem and first recall the results for the nonaffine
time-varying function approximation in Sec. 2.2.3. We perform the POD/Greedy
sampling procedure from Sec. 3.4 to generate the reduced basis space. To this end,
we sample on Ξtrain with M = Mmax and obtain Nmax = 39 for εtol,min = 1E−6.
We may again use α̂a(µ) = 1 as a lower bound for the coercivity constant. Note
that the quantities presented here are defined analogous to the quantities presented
for the LTI problem.

In Fig. 4 we plot, as a function of N and M , the maximum relative error in
the energy norm εyN,M,max,rel. We observe that the reduced basis approximation
converges very rapidly and the curves show the same behavior as in the LTI case.
A balanced contribution of both error terms is important to not limit the conver-
gence of the approximation and thus to guarantee computational efficiency.

In Table 5 we present, as a function of N and M , εyN,M,max,rel, the maximum rel-
ative error bound ∆y

N,M,max,rel, the average effectivity η̄y
N,M , the maximum relative

output error εsN,M,max,rel, the maximum relative output bound ∆s
N,M,max,rel, and

the average output effectivity η̄s. Again, the tabulated (N,M) values correspond
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Fig. 4. LTV problem: convergence of the maximum relative error εy
N,M,max,rel.

Table 5. LTV problem: convergence rates and effectivities as a function of N and M .

N M εy
N,M,max,rel ∆y

N,M,max,rel η̄y
N,M εs

N,M,max,rel ∆s
N,M,max,rel η̄s

N,M

5 8 9.72E−03 6.27E−02 0.64 1.17E−02 2.46E−02 1.64
10 16 9.13E−04 1.29E−03 1.44 2.68E−04 5.05E−03 34.8
15 24 9.75E−05 1.28E−04 1.32 6.48E−05 5.03E−04 16.7
25 32 1.13E−05 1.54E−05 1.19 6.99E−06 6.03E−05 7.28
35 40 1.13E−06 1.64E−06 1.44 1.38E−07 6.44E−06 64.0
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Table 6. LTV problem: online computational times (normalized
with respect to the time to solve for sk(µ), 1 ≤ k ≤ K).

N M sk
N,M (µ), ∀ k ∈ K ∆s,k

N,M (µ), ∀k ∈ K sk(µ), ∀ k ∈ K

5 8 1.35E−04 2.18E−03 1
10 16 1.92E−04 8.18E−03 1
15 24 2.86E−04 1.99E−02 1
25 32 4.48E−04 3.85E−02 1
35 40 7.07E−04 6.52E−02 1

roughly to the “knees” of the N -M -convergence curves. We observe very rapid con-
vergence of the reduced basis (output) approximation and (output) error bound.
We obtain an average effectivity of less than one for (N,M) = (5, 8), showing that
our assumption in Corollary 2.1 is not satisfied in general. However, for all other
values of N and M tabulated our a posteriori error bounds do provide an upper
bound for the true error. Furthermore, our bounds for the error in the energy norm
and the output are very sharp for all values of (N,M).

Finally, we present the online computational times to calculate sk
N,M(µ) and

∆s,k
N,M (µ) for 1 ≤ k ≤ K in Table 6. The values are normalized with respect

to the computational time for the direct calculation of the truth approximation
output sk(µ) = �(yk(µ)), 1 ≤ k ≤ K. The computational savings for an accuracy
of approximately 0.5% (N = 10, M = 16) in the output bound is approximately
a factor of 120. As we already observed in the LTI case, the time to calculate
∆s,k

N,M (µ) exceeds that of calculating sk
N (µ) due to the higher computational cost

for the bound calculation. Even though the computational cost to evaluate the error
bound in the LTV case is higher than in the LTI case (see Sec. 3.3.3), the savings
with respect to the truth approximation are still larger here. The reason is that
solving the truth approximation requires a matrix assembly of the nonaffine terms
at every timestep.

4. Nonlinear Parabolic Equations

In this section we extend the previous results to nonaffine nonlinear parabolic prob-
lems. We first introduce the abstract statement and reduced basis approximation,
we then develop the a posteriori error bounds and subsequently introduce a new
procedure — based on the POD/Greedy-EIM algorithm of Sec. 2.2.1 — to define
the generating functions for the nonlinear term. Finally, we discuss numerical results
obtained for a model problem.

4.1. Problem statement

4.1.1. Abstract formulation

We consider a time-discrete framework associated to the time interval I ≡ ]0, tf ] as
introduced in Sec. 1: Ī is divided into K subintervals of equal length ∆t = tf

K and
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tk is defined by tk ≡ k∆t, 0 ≤ k ≤ K ≡ tf

∆t ; furthermore, I ≡ {t0, . . . , tk} and
K ≡ {1, . . . ,K}. The “truth” approximation is then: given a parameter µ ∈ D, we
evaluate the output of interest

sk(µ) = �(yk(µ)), ∀ k ∈ K, (4.1)

where the field variable yk(µ) ∈ X, 1 ≤ k ≤ K, satisfies the weak form of the
nonlinear parabolic partial differential equation

m(yk(µ), v) + ∆taL(yk(µ), v) + ∆t
∫

Ω

g(yk(µ);x;µ)v

= m(yk−1(µ), v) + ∆tf(v)u(tk), ∀ v ∈ X, (4.2)

with initial condition (say) y(µ, t0) = 0. Here, µ and D are the input and input
domain and u(tk) denotes the control input. The function g(w;x;µ) : R×Ω×D →
R is a nonlinear nonaffine function continuous in its arguments, increasing in its
first argument, and satisfies, for all y ∈ R, yg(y;x;µ) ≥ 0 for any x ∈ Ω and
µ ∈ D. We note that the field variable, yk(µ), is of course also a function of the
spatial coordinate x. In the sequel we will use the notation y(x, tk;µ) to signify this
dependence whenever it is crucial.

We shall make the following assumptions. We assume that aL(·, ·) and m(·, ·)
are continuous

aL(w, v) ≤ γ0
a‖w‖X‖v‖X , ∀w, v ∈ X, (4.3)

m(w, v) ≤ γ0
m‖w‖Y ‖v‖Y , ∀w, v ∈ X ; (4.4)

coercive,

0 < α0
a ≡ inf

w∈X

aL(w,w)
‖w‖2X

, (4.5)

0 < α0
m ≡ inf

v∈X

m(v, v)
‖v‖2Y

; (4.6)

and symmetric, aL(v, w) = aL(w, v), ∀w, v ∈ X , and m(v, w) = m(w, v), ∀w, v ∈
X . (We (plausibly) suppose that γ0

a, γ
0
m, α

0
a, α

0
m may be chosen independent of N .)

We also require that the linear forms f(·) : X → R and �(·) :X → R be bounded
with respect to ‖ · ‖Y . The problem is thus well-posed.26

Since the focus of this section is the treatment of the nonlinearity g(w;x;µ) we
assume that the bilinear and linear formsm, aL and b, � are parameter-independent;
a parameter dependence of either form is readily admitted. Note also that our results
presented here directly carry over to the case where g is also an explicit function of
(discrete) time tk.

4.1.2. Model problem

We turn to a numerical example first introduced in Ref. 18. We consider the follow-
ing nonlinear diffusion problem defined on the unit square, Ω = ]0, 1[2 ∈ R

2: Given
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µ = (µ1, µ2) ∈ D ≡ [0.01, 10]2, we evaluate yk(µ) ∈ X from (4.2), where
X ⊂ Xe ≡ H1

0 (Ω) is a linear finite element truth approximation subspace of dimen-
sion N = 2601,

m(w, v) ≡
∫

Ω

wv, aL(w, v) ≡
∫

Ω

∇w · ∇v,

f(v) ≡ 100
∫

Ω

v sin(2πx1) cos(2πx2),
(4.7)

and the nonlinearity is given by

g(yk(µ);µ) = µ1
eµ2yk(µ) − 1

µ2
. (4.8)

The output sk(µ) is evaluated from (4.1) with �(v) =
∫
Ω
v. We presume the periodic

control input u(tk) = sin(2πtk), tk ∈ I. We shall consider the time interval Ī = [0, 2]
and a timestep ∆t = 0.01; we thus have K = 200.

We note that µ2 represent the strength of the nonlinearity whereas µ1 represents
the strength of the sink term in (4.8); as µ2 → 0 we have g(w;µ) → µ1w. The
solution thus tends to the solution for the linear problem as µ2 tends to zero. Two
snapshots of the solution yk(µ) at time tk = 25∆t are shown for µ = (0.01, 0.01) and
µ = (10, 10) in Figs. 5(a) and 5(b), respectively. We observe that the solution has
two negative peaks and two positive peaks with similar height for µ = (0.01, 0.01)
(which oscillate back and forth in time). As µ2 increases, the height of the negative
peaks remains largely unchanged, while the positive peaks get rectified as shown in
Fig. 5(b). The exponential nonlinearity has a damping effect on the positive part
of yk(µ), but has (almost) no effect on the negative part. Note that the solution
for µ = (10, 10), of course, also oscillates in time — with the positive peaks always
being smaller than the negative peaks.
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Fig. 5. Solution yk(µ) at tk = 25∆t for (a) µ = (−1,−1) and (b) µ = (−0.01,−0.01).
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4.2. Reduced basis approximation

4.2.1. Formulation

We assume that we are given the nested collateral reduced basis space W g
M =

span{ξn, 1 ≤ n ≤ M} = span{q1, . . . , qM}, 1 ≤ M ≤ Mmax, and nested set of
interpolation points T g

M = {x1, . . . , xM}, 1 ≤M ≤Mmax. We will propose a proce-
dure to construct W g

M and T g
M in Sec. 4.4. Then, for given wk(µ) ∈ X and M , we

approximate g(wk(µ);x;µ) by gwk

M (x;µ) =
∑M

m=1 ϕ
k
Mm(µ)qm(x), where

M∑
j=1

BM
ij ϕ

k
Mj(µ) = g(w(xi, t

k;µ);xi;µ), 1 ≤ i ≤M ; (4.9)

note that ϕk
M (µ) ≡ ϕM (tk;µ) also depends on the (discrete) time tk. We also

introduce the nested Lagrangian reduced basis spaces W y
N = span{ζn, 1 ≤ n ≤

N}, 1 ≤ N ≤ Nmax, where the ζn, 1 ≤ n ≤ N , are mutually (·, ·)X -orthogonal basis
functions. We construct W y

N according to the POD/Greedy procedure outlined in
Sec. 3.4 with M = Mmax.

Our reduced basis approximation yk
N,M (µ) to yk(µ) is then obtained by a stan-

dard Galerkin projection: given µ ∈ D, yk
N,M(µ) ∈W y

N satisfies

m(yk
N,M (µ), v) + ∆taL(yk

N,M (µ), v) + ∆t
∫

Ω

g
yk

N,M

M (x;µ)v

= m(yk−1
N,M(µ), v) + ∆tf (v)u(tk), ∀ v ∈W y

N , ∀ k ∈ K, (4.10)

with initial condition yN,M(µ, t0) = 0. We evaluate the output approximation
from

sk
N,M (µ) = �(yk

N,M(µ)), ∀ k ∈ K. (4.11)

We note that the need to incorporate the empirical interpolation method into
the reduced basis approximation only exists for high-order polynomial or non-
polynomial nonlinearities.18 If g is a low-order (or at most quadratically) polynomial
nonlinearity in yk(µ), we can expand the nonlinear terms into their power series
and develop an efficient, i.e. online N -independent, offline–online computational
decomposition using the standard Galerkin procedure.46,47

4.2.2. Computational procedure

In this section we develop the offline–online computational decomposition to recover
online N -independence even in the nonlinear case. We first express yk

N,M(µ) as

yk
N,M(µ) =

N∑
n=1

yk
N,Mn(µ)ζn, (4.12)

and choose as test functions v = ζj , 1 ≤ j ≤ N , in (4.10).
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It then follows from the affine representation of g
yk

N,M

M that yk
N,M

(µ) =
[yk

N,M1(µ) yk
N,M2(µ) · · · yk

N,MN(µ)]T ∈ R
N , 1 ≤ k ≤ K, satisfies

(MN + ∆tAN )yk
N,M

(µ) + ∆tCN,Mϕk
M (µ) = MNy

k−1
N,M

(µ) + ∆tBNu(tk), (4.13)

with initial condition yN,Mn(t0;µ) = 0, 1 ≤ n ≤ N . Here, the coefficients ϕk
M (µ) =

[ϕk
M1(µ) ϕk

M2(µ) · · ·ϕk
MM (µ)]T ∈ R

M are determined from (4.9) with wk = yk
N,M ;

MN ∈ R
N×N , AN ∈ R

N×N , and CN,M ∈ R
N×M , are parameter-independent matri-

ces with entries MNi,j = m(ζj , ζi), 1 ≤ i, j ≤ N , ANj,i = a(ζj , ζi), 1 ≤ i, j ≤ N ,
and CN,M

i,j =
∫
Ω qjζi, 1 ≤ i ≤ N, 1 ≤ j ≤ M , respectively; and FN ∈ R

N is a
parameter-independent vector with entries FNi = f(ζi), 1 ≤ i ≤ N .

We can now substitute ϕk
Mm(µ) from (4.9) into (4.13) to obtain the nonlinear

algebraic system

(MN + ∆tAN )yk
N,M

(µ) + ∆tDN,Mg(ZN,Myk
N,M

(µ);xM ;µ)

= MNy
k−1
N,M

(µ) + ∆tBNu(tk), ∀ k ∈ K, (4.14)

whereDN,M = CN,M (BM )−1 ∈ R
N×M , ZN,M ∈ R

M×N is a parameter-independent
matrix with entries ZN,M

i,j = ζj(xi), 1 ≤ i ≤M, 1 ≤ j ≤ N , and xM = [xi . . . xM ]T ∈
R

M is the set of interpolation points. We now solve for yk
N,M

(µ) at each timestep

using a Newton iterative schemeb: given the solution for the previous timestep,
yk−1

N,M
(µ), and a current iterate ȳk

N,M
(µ), we find an increment δy

N,M
such that

(MN + ∆tAN + ∆tĒN )δy
N,M

= MNy
k−1
N,M

(µ) + ∆tBN (µ)u(tk)− (MN + ∆tAN )ȳk
N,M

(µ)

−∆tDN,Mg(ZN,M ȳk
N,M

(µ);xM ;µ), (4.15)

where ĒN ∈ R
N×N must be calculated at every Newtoniteration from

ĒN
i,j =

M∑
m=1

DN,M
i,m g1

(
N∑

n=1

ȳk
N,Mn(µ)ζn(xm);xm;µ

)
ζj(xm), 1 ≤ i, j ≤ N, (4.16)

where g1 is the partial derivative of g with respect to the first argument. Finally,
we evaluate the output estimate from

sk
N,M (µ) = LT

Ny
k
N,M

(µ), ∀ k ∈ K, (4.17)

where LN ∈ R
N is the output vector with entries LNi = �(ζi), 1 ≤ i ≤ N .

bWe note that (4.14) is not necessarily well-posed and that we currently do not have an a priori
criterion to check for well-posedness before the Newton iteration.

1150015-27



February 8, 2012 8:55 WSPC/103-M3AS 1150015

M. A. Grepl

The offline–online decomposition is now clear. In the offline stage — performed
only once — we first construct the nested approximation spaces W g

M and sets of
interpolation points T g

M , 1 ≤ M ≤ Mmax. We then solve for the ζn, 1 ≤ n ≤ Nmax

and compute and store the µ-independent quantities MN , AN , BM , DN,M , BN

and ZN,M . In the online stage — performed many times, for each new parameter
value µ — we solve (4.15) for yk

N,M
(µ) and evaluate the output estimate sk

N,M(µ)
from (4.17). The operation count is dominated by the Newton update at each
timestep: we first assemble ĒN from (4.16) at costO(MN 2) — note that we perform
the sum in the parenthesis of (4.16) first before performing the outer sum — and
then invert the left-hand side of (4.15) at cost O(N3). The operation count in the
online stage is thus O(MN 2 + N3) per Newton iteration per timestep. We thus
recover N -independence in the online stage.

4.3. A posteriori error estimation

4.3.1. Preliminaries

We now turn to the development of our a posteriori error estimator; by construction,
the error estimator is rather similar to the nonaffine parabolic case in Sec. 3. To
begin, we recall that the bilinear form aL is assumed to be parameter-independent
here. We can thus use the coercivity constant αa and have no need for the lower
bound α̂a(µ) required earlier. We next introduce the dual norm of the residual

εk
N,M(µ) ≡ sup

v∈X

Rk(v;µ)
‖v‖X , ∀ k ∈ K, (4.18)

where

Rk(v;µ) ≡ f(v)u(tk)− 1
∆t

m(yk
N,M (µ)− yk−1

N,M(µ), v)

− aL(yk
N,M (µ), v)−

∫
Ω

g
yk

N,M

M (x;µ)v, ∀ v ∈ X, ∀ k ∈ K, (4.19)

is the residual associated to the nonlinear parabolic problem. We also require the
dual norm

ϑq
M ≡ sup

v∈X

∫
Ω qM+1v

‖v‖X (4.20)

and the error bound ε̂k
M (µ) for the nonlinear function approximation given by

ε̂k
M (µ) ≡ |g(yk

N,M(xM+1;µ);xM+1;µ)− gyk
N,M

M (xM+1;µ)|. (4.21)

Finally, we define the “spatio-temporal” energy norm �vk(µ)�2 ≡ m(vk(µ),
vk(µ)) +

∑k
k′=1 a

L(vk′
(µ), vk′

(µ))∆t, ∀ v ∈ X, ∀ k ∈ K.
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4.3.2. Error bound formulation

We obtain the following result for the error in the energy norm.

Proposition 4.1. Suppose that g(yk
N,M(µ);x;µ) ∈ W g

M+1, 1 ≤ k ≤ K. The error,
ek(µ) ≡ yk(µ)− yk

N,M (µ), is then bounded by

�ek(µ)� ≤ ∆y,k
N,M (µ), ∀µ ∈ D, ∀ k ∈ K, (4.22)

where the error bound ∆y,k
N,M (µ) is defined as

∆y,k
N,M (µ) ≡

(
2∆t
αa

k∑
k′=1

εk′
N,M(µ)

2
+

2∆t
αa

ϑq
M

2
k∑

k′=1

ε̂k′
M (µ)

2

) 1
2

. (4.23)

Proof. We immediately derive from (4.2) and (4.19) that ek(µ) =
yk(µ)− yk

N,M (µ), 1 ≤ k ≤ K, satisfies

m(ek(µ), v) + ∆taL(ek(µ), v) + ∆t
∫

Ω

(g(yk(µ);x;µ)− g(yk
N,M (µ);x;µ))v

= m(ek−1(µ), v) + ∆tR(v;µ, tk)

+ ∆t
∫

Ω

(
g

yk
N,M

M (x;µ)− g(yk
N,M(µ);x;µ)

)
v, ∀ v ∈ X, (4.24)

where e(t0;µ) = 0 since y(t0;µ) = yN,M(t0;µ) = 0 by assumption. We now choose
v = ek(µ) in (4.24), immediately note from the monotonicity of g that∫

Ω

(g(yk(µ);x;µ) − g(yk
N,M(µ);x;µ))ek(µ) ≥ 0; (4.25)

invoke (4.18) and the Cauchy–Schwarz inequality for the cross term
m(ek−1(µ), ek(µ)) to obtain, for 1 ≤ k ≤ K,

m(ek(µ), ek(µ)) + ∆taL(ek(µ), ek(µ))

≤ m 1
2 (ek−1(µ), ek−1(µ))m

1
2 (ek(µ), ek(µ)) + ∆tεk

N,M (µ)‖ek(µ)‖X

+ ∆t
∫

Ω

(
g

yk
N,M

M (x;µ)− g(yk
N,M (µ);x;µ)

)
ek(µ). (4.26)

We now recall Young’s inequality (for c ∈ R, d ∈ R, ρ ∈ R+)

2|c||d| ≤ 1
ρ2
c2 + ρ2d2, (4.27)

which we apply twice: first, choosing c = m
1
2 (ek(µ), ek(µ)), d = m

1
2 (ek−1(µ),

ek−1(µ)), and ρ = 1, we obtain

2m
1
2 (ek(µ), ek(µ))m

1
2 (ek−1(µ), ek−1(µ))

≤ m(ek−1(µ), ek−1(µ)) +m(ek(µ), ek(µ)); (4.28)
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and second, choosing c = εk
N,M (µ), d = ‖ek(µ)‖X , and ρ = (αa/2)

1
2 we have

2εk
N,M(µ)‖ek(µ)‖X ≤ 2

αa
εk

N,M(µ)
2
+
αa

2
‖ek(µ)‖2X . (4.29)

We now note from our assumption g(yk
N,M(µ);x;µ) ∈ W g

M+1 and Proposition 2.1
that

g
yk

N,M

M (x;µ)− g(yk
N,M (µ);x;µ) = ε̂k

M (µ)qM+1(x); (4.30)

it thus follows that

2
∫

Ω

(
g

yk
N,M

M (x;µ) − g(yk
N,M(µ);x;µ)

)
ek(µ)

≤ 2 sup
v∈X



∫
Ω

(
g

yk
N,M

M (x;µ)− g(yk
N,M(µ);x;µ)

)
v

‖v‖X


 ‖e

k(µ)‖X

≤ 2ε̂k
M (µ) sup

v∈X

{∫
Ω qM+1v

‖v‖X

}
‖ek(µ)‖X

≤ 2ε̂k
M (µ)ϑq

M ‖ek(µ)‖X

≤ 2
αa
ε̂k

M (µ)
2
ϑq

M
2 +

αa

2
‖ek(µ)‖2X , (4.31)

where we applied (4.27) with c = ε̂k
M (µ)ϑq

M , d = ‖ek(µ)‖X , and ρ = (αa/2)
1
2 in the

last step. Finally, from (4.26), (4.28), (4.29), (4.31), invoking (4.5) and summing
from 1 to k we obtain the bound

m(ek(µ), ek(µ)) + ∆t
k∑

k′=1

a(ek′
(µ), ek′

(µ))

≤ 2∆t
αa

k∑
k′=1

(
εk′

N,M (µ)2 + ϑq
M

2
ε̂k′

M (µ)
2
)

(4.32)

which is the result stated in Proposition 4.1.

We can now define the (simple) output bound

Proposition 4.2. Suppose that g(yk
N,M(µ);x;µ) ∈ W g

M+1, 1 ≤ k ≤ K. The error
in the output is then bounded by

|sk(µ)− sk
N,M(µ)| ≤ ∆s,k

N,M (µ), ∀ k ∈ K, ∀µ ∈ D, (4.33)

where the output bound is defined as

∆s,k
N,M(µ) ≡ sup

v∈X

�(v)
‖v‖Y ∆y,k

N,M (µ), ∀ k ∈ K, ∀µ ∈ D. (4.34)

Proof. The result directly follows from (4.1), (4.11), and the fact that the error
satisfies ‖ek(µ))‖Y ≤ ∆y,k

N,M(µ), 1 ≤ k ≤ K, for all µ ∈ D.
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We note from (4.23) that our error bound comprises two terms: the contribution
from the linear (affine) terms and from the nonlinear (nonaffine) function approx-
imation. Similar to the linear nonaffine case, we may thus choose N and M such
that both contributions balance, i.e. neither N nor M should be chosen unneces-
sarily high. However, our choice should also take the rigor of the error bound into
account.

The rigor is related to the condition that g(yk
N,M (µ);x;µ) ∈W g

M+1, 1 ≤ k ≤ K,
which is very unlikely to hold in the nonlinear case: first, becauseW g

M is constructed
based on g(yk(µ);x;µ) and not g(yk

N,M(µ);x;µ), and second, particularly because
of the time-dependence of g(yk

N,M(µ);x;µ). A judicious choice of N and M can
control the trade-off between safety and efficiency — we opt for safety by choosing
N and M such that the rigorous part εk

N,M(µ) dominates over the non-rigorous
part, ϑq

M ε̂k
M (µ); we opt for efficiency by choosing N and M such that both terms

balance.

4.3.3. Computational procedure

The offline–online decomposition for the calculation of ∆y,k
N,M (µ) (and ∆s,k

N,M (µ))
follows directly from the corresponding procedure for nonaffine problems discussed
in Sec. 3.3.3. We will therefore omit the details and only summarize the com-
putational costs involved in the online stage. In the online stage — given a new
parameter value µ and associated reduced basis solution yk

N,M
(µ), 1 ≤ k ≤ K — the

computational cost to evaluate ∆y,k
N,M (µ) (and hence ∆s,k

N,M(µ)) is O(K(N +M)2)
and thus independent of N .

4.4. Sampling procedure

We first consider the construction of W g
M and T g

M . We recall that our previous
approach of constructing the collateral reduced basis space W g

M in the nonlinear
case is computationally very expensive.18 The reason is twofold: first, we need to
calculate and store the “truth” solution yk(µ) at all times tk ∈ I on the training
sample Ξg

train in parameter space. And second, construction of W g
M requires the

solution of a linear programc for all parameter-time pairs, (tk;µ) ∈ Ξ̃g
train ≡ I ×

Ξg
train, since the function g is time-varying, as is inherently the case in the nonlinear

context.
Our new approach is straightforward: we simply apply the POD/Greedy-

EIM procedure introduced in Sec. 2.2.1 to the nonlinear (time-varying) function
g(yk(µ);x;µ). Although we cannot avoid the first problem related to our previous
construction, i.e. calculation and storage of yk(µ) on Ξg

train, we do to a great extent

cThe construction of W g
M in Ref. 18 is based on a Greedy selection process: we choose the next

parameter value µ∗ — and hence generating function ξ ≡ g(yk(µ∗); x; µ) — as the one that
maximizes the best approximation error in the L∞(Ω)-norm over the train sample.
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alleviate the second problem. Furthermore, we believe that our new approach is
more coherent — as compared to the construction of W y

N — and more robust.
GivenW g

M , T g
M , and BM , we can then constructW y

N following the POD/Greedy
procedure outlined in Sec. 3.4. We shall again use the “best” possible approximation

g
yk

N,M

M (x;µ) of g(yk
N,M ;x;µ) so as to minimize the error induced by the empirical

interpolation procedure, i.e. we set M = Mmax.

4.5. Numerical results

We now present numerical results for the model problem introduced in Sec. 4.1.2.
We choose for Ξtrain ⊂ D a deterministic grid of 12 × 12 parameter points over
D and we take µg

1 = (10, 10). Next, we pursue the POD/Greedy-EIM procedure
described in Sec. 4.4 to construct Sg

M , W g
M , T g

M , and BM , 1 ≤ M ≤ Mmax, for
Mmax = 191. We plot the parameter sample Sg

M in Fig. 6(a). We observe that the
parameter sample is spread throughout D but strongly biased towards larger values
of µ2 corresponding to a more dominant nonlinearity.

We next turn to the reduced basis approximation and construct the reduced
basis space W y

N according to the POD/Greedy sampling procedure in Sec. 3.4.
To this end, we sample on Ξtrain with M = Mmax and obtain Nmax = 55 for
εtol,min = 1E−6. We plot the parameter sample Sy

N in Fig. 6(b). We observe again
that the parameter sample is biased towards larger values of µ2 and that most
samples are located on the “boundaries” of the parameter domain D.

In Figs. 7(a) and 7(b) we plot, as a function of N and M , the maximum rel-
ative error in the energy norm εyN,M,max,rel and maximum relative error bound
∆y

N,M,max,rel over a test sample Ξtest of size 225, respectively (see Sec. 3.5 for the
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Fig. 6. Parameter samples (a) Sg
M and (b) Sy

N . The diameter of the circles scale with the fre-
quency of the corresponding parameter in the sample.
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Fig. 7. Convergence of the reduced basis approximation for the nonlinear model problem: (a)
εy
N,M,max,rel and (b) ∆y

N,M,max,rel.

definition of these quantities). We observe very rapid convergence of the reduced
basis approximation. Furthermore, the errors behave similarly as in the nonaffine
example: the error levels off at smaller and smaller values as we increase M ;
increasing M effectively brings the error curves down. We also observe that increas-
ing M above 80 has no (visible) effect on the convergence of the error, whereas the
error bound still shows a considerable decrease up to M = 160. In order to obtain
sharp error bounds we thus have to choose M conservatively.

In Table 7 we present, as a function of N and M , εyN,M,max,rel, ∆y
N,M,max,rel, and

η̄y
N,M ; and for the output εsN,M,max,rel, ∆s

N,M,max,rel, η̄
s (see Sec. 3.5 for the definition

of these quantities). Note that the choice of (N,M) is based on the convergence
of the error bound in Fig. 7(b). We observe very rapid convergence of the reduced
basis (output) approximation and (output) error bound. The effectivities, η̄y

N,M ,
are greater but close to 1 throughout, we thus obtain sharp upper bounds for the
true error. Due to our conservative choice of M the error contribution due to the
function approximation is much smaller than the reduced basis contribution and
we therefore do not obtain effectivities smaller than 1. The output effectivities
are considerably larger but still acceptable, thanks to the fast convergence of the
reduced basis approximation — for only N = 20 and M = 100 the relative output
error bound is less than 1%.

In Table 8 we present, as a function of N and M , the online computational
times to calculate sk

N,M(µ) and ∆sk
N,M(µ) for 1 ≤ k ≤ K. The values are normal-

ized with respect to the computational time for the direct calculation of the truth
approximation output sk(µ) = �(yk(µ)), 1 ≤ k ≤ K. The computational savings
are considerable despite the output effectivities of O(100): for an accuracy of less
than 1% in the output bound (N = 20, M = 100) the reduction in online time is
approximately a factor of 3600. We note that in the nonlinear case — as opposed to
the nonaffine LTI and LTV case — the computational time to evaluate the output
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Table 7. Convergence rate and effectivities as a function of N and M for the nonlinear problem.

N M εy
N,M,max,rel ∆y

N,M,max,rel η̄y
N,M εs

N,M,max,rel ∆s
N,M,max,rel η̄s

N,M

1 40 3.83E−01 1.15E + 00 2.44 9.99E−01 2.49E + 01 14.1
5 60 1.32E−02 4.59E−02 2.43 5.35E−03 1.00E + 00 130

10 80 9.90E−04 3.41E−03 2.10 2.57E−04 7.42E−02 146
20 100 9.40E−05 4.16E−04 2.77 1.43E−05 9.06E−03 436
30 120 1.30E−05 7.34E−05 2.48 5.34E−06 1.60E−03 307
40 140 3.36E−06 8.75E−06 1.64 2.85E−06 1.90E−04 205

Table 8. Online computational times (normalized with respect to the time
to solve for sk(µ), 1 ≤ k ≤ K) for the nonlinear problem.

N M sN,M (µ, tk), ∀k ∈ K ∆s
N,M (µ, tk), ∀ k ∈ K s(µ, tk), ∀ k ∈ K

1 40 5.42E−05 9.29E−05 1
5 60 9.67E−05 8.58E−05 1

10 80 1.19E−04 9.37E−05 1
20 100 1.71E−04 1.05E−04 1
30 120 2.42E−04 1.18E−04 1
40 140 3.15E−04 1.35E−04 1

bound is of the same order of magnitude as the computational time to evaluate the
output approximation. This is directly related to the online computational cost:
the cost to evaluate the error bound in the nonaffine LTV case is O(KM 2N2) (and
O(M2N2 + KN 2) in the LTI case), whereas the cost to evaluate the error bound in
the nonlinear case is only O(K(N +M)2).

5. Conclusions

We have presented a posteriori error bounds for reduced basis approximations of
nonaffine and certain classes of nonlinear parabolic partial differential equations.
We employed the Empirical Interpolation Method to construct affine coefficient-
function approximations of the nonaffine and nonlinear parametrized functions, thus
permitting an efficient offline–online computational procedure for the calculation
of the reduced basis approximation and the associated error bounds. The error
bounds take both error contributions — the error introduced by the reduced basis
approximation and the error induced by the coefficient function interpolation —
explicitly into account and are rigorous upper bounds under certain conditions on
the function approximation. The POD/Greedy sampling procedure is commonly
used to generate the reduced basis space for time-dependent problems. Here, we
extended these ideas to the Empirical Interpolation Method and introduced a new
sampling approach to construct the collateral reduced basis space for time-varying
and nonlinear functions. The new sampling approach is more efficient than our
previous approach and thus also allows to consider higher parameter dimensions.

We presented numerical results that showed the very fast convergence of the
reduced basis approximations and associated error bounds. We note that there
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exists an optimal, i.e. most online-efficient, choice ofN versusM where neither error
contribution limits the convergence of the reduced basis approximation. Although
our results showed that we can obtain upper bounds for the error with a judicious
choice of N and M , our error bounds are, unfortunately, provably rigorous only
under a very restrictive condition on the function interpolation. In the nonaffine
case we can lift this restriction by replacing our current bound for the interpolation
error with a new rigorous bound proposed in a recent note.11 In the nonlinear case,
however, the new bound is not applicable and the restriction remains. Rigorous
bounds for nonlinear problems are the topic of current research.

Our results also showed that the computational savings to calculate the output
estimate and bound in the online stage compared to direct calculation of the truth
output are considerable — especially in the nonlinear case where we obtained a
speed-up of O(103). We recall that the online computational cost to evaluate the
error bounds is O(KM 2N2) for the LTV problem and O(K(M2 + N2)) for the
nonlinear problem considered in this paper. Moderate values of M and/or N are
thus crucial for the computational efficiency of the proposed method. Recently, hp
techniques have been proposed for reduced basis approximations12,13 and also for
the EIM.14 These ideas help limit the online cost by reducing the size of N and
M required to achieve a desired accuracy at the expense of a higher offline cost.
Combining the hp reduced basis and EIM ideas into a unified approach would result
in a further significant speed-up and is currently under investigation.

Appendix A. Computational Procedure: A Posteriori Error Bounds

We summarize the development of offline–online computational procedures for the
calculation of ∆y,k

N,M (µ). We first note from standard duality arguments that

εk
N,M (µ) ≡ sup

v∈X

Rk(v;µ)
‖v‖X

= ‖êk(µ)‖X , (A.1)

where êk(µ) ∈ X is given by (êk(µ), v)X = Rk(v;µ), ∀ v ∈ X, ∀ k ∈ K; effectively a
Poisson problem for each tk ∈ I. From (3.22), (3.1) and (2.7) it thus follows that
êk(µ) satisfies

(êk(µ), v)X =
M∑

m=1

ϕk
Mm(µ)f(v; qm)u(tk)

−
N∑

n=1

{
1

∆t
(yk

N,Mn(µ)− yk−1
N,Mn(µ))m(ζn, v) + yk

N,Mn(µ)a0(ζn, v)

+
M∑

m=1

ϕk
Mm(µ)yk

N,Mn(µ)a1(ζn, v, qm)

}
, ∀ v ∈ X. (A.2)
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It is clear from linear superposition that we can express êk(µ) as

êk(µ) =
M∑

m=1

ϕk
Mm(µ)u(tk)Fm

−
N∑

n=1

{
1

∆t
(yk

N,Mn(µ)− yk−1
N,Mn(µ))Mn

+

(
A0

n +
M∑

m=1

ϕk
Mm(µ)A1

m,n

)
yk

N,Mn(µ)

}
, (A.3)

where we calculate Fm ∈ X , A0
n ∈ X , A1

m,n ∈ X , and Mn ∈ X from

(Fm, v)X = f(v; qm), ∀ v ∈ X, 1 ≤ m ≤Mmax,

(A0
n, v)X = a0(ζn, v), ∀ v ∈ X, 1 ≤ n ≤ Nmax,

(A1
m,n, v)X = a1(ζn, v, qm), ∀ v ∈ X, 1 ≤ n ≤ Nmax, 1 ≤ m ≤Mmax,

(Mn, v)X = m(ζn, v), ∀ v ∈ X, 1 ≤ n ≤ Nmax;

(A.4)

note F ,A0,1, andM are parameter-independent. Given these quantities, the offline–
online decomposition of (A.1) directly follows from the affine case.19

The evaluation of Φna,k
M (µ) is similar; to this end, we first calculate FM+1 ∈ X

and A1
M+1,n ∈ X from

(FM+1, v)X = f(v; qM+1), ∀ v ∈ X,
(A1

M+1,n, v)X = a1(ζn, v; qM+1), ∀ v ∈ X, 1 ≤ n ≤ Nmax.
(A.5)

It then follows from (3.23) and standard duality arguments that

Φna,k
M (µ)

2
= u(tk)

2
Λff

M+1M+1

+
N∑

n=1

yk
N,Mn(µ)

{
u(tk)Λa1f

nM+1M+1 +
N∑

n′=1

yk
N,Mn′(µ)Λa1a1

nn′M+1M+1

}
,

where the parameter-independent quantities Λ are defined as

Λff
M+1M+1 = (FM+1,FM+1)X ;

Λa1f
nM+1M+1 = −2(FM+1,A1

M+1,n)X , 1 ≤ n ≤ Nmax;

Λa1a1
nn′M+1M+1 = (A1

M+1,n,A1
M+1,n′)X , 1 ≤ n, n′ ≤ Nmax.

(A.6)

The offline–online decomposition is now clear. In the offline stage we first com-
pute the quantities F , A0,1, and M from (A.4) and (A.5) and subsequently per-
form the necessary inner products for the evaluation of ‖êk(µ)‖X ; this requires
(to leading order) O(MmaxNmax) expensive “truth” finite element solutions, and
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O(M2
maxN

2
max) N -inner products. In the online stage — given a new parameter

value µ and associated reduced basis solution yk
N,M

(µ), ∀ k ∈ K — the computa-

tional cost to evaluate ∆y,k
N,M (µ) and ∆s,k

N,M (µ), ∀ k ∈ K, is O(KM 2N2). Thus, all
online calculations needed are independent of N .
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