Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are
encouraged to visit:
http://www.elsevier.com/copyright

Model order reduction of parametrized nonlinear reaction-diffusion systems

Martin A. Grepl*
RWTH Aachen University, Numerical Mathematics, Templergraben 55, 52056 Aachen, Germany

ARTICLE INFO

Article history:

Received 4 February 2011
Received in revised form 15 February 2012
Accepted 28 March 2012
Available online xxx

Keywords:

Reaction-diffusion equation
Model order reduction
Reduced basis approximation
Empirical interpolation method
Nonlinear systems

Abstract

We present a model order reduction technique for parametrized nonlinear reaction-diffusion systems. In our approach we combine the reduced basis method - a computational framework for rapid evaluation of functional outputs associated with the solution of parametrized partial differential equations - with the empirical interpolation method - a tool to construct "affine" coefficient-function approximations of nonlinear parameter dependent functions. We develop an efficient offline-online computational procedure for the evaluation of the reduced basis approximation: in the offline stage, we generate the reduced basis space; in the online stage, given a new parameter value, we calculate the reduced basis output. The operation count for the online stage depends only on the dimension of the reduced order model and the parametric complexity of the problem. The method is thus ideally suited for the many-query or real-time contexts. We present numerical results for a non-isothermal reaction-diffusion model to confirm and test our approach.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear reaction-diffusion systems appear in a large number of real-world applications: ranging from Biology, to Ecology, to Physiology, to Chemistry (Smoller, 1994). Inherent to these equations and the specific application area are a large number of parameters - such as reaction rates or diffusion coefficients which, in general, have a very strong influence on the dynamic behaviour of the system. To analyze and understand the specific problem, many different parameter combinations have to be investigated. The solution of reaction-diffusion systems, however, is a very challenging task because the equations are time-dependent, often highly nonlinear, and coupled. Efficient solution techniques which can characterize many parameter combinations are therefore important. Furthermore, in many applications - such as chemical engineering - understanding, modeling, and simulation is often only the first step; the actual goal is the design, optimization, or real-time control of the problem of interest. Model order reduction techniques are vital in achieving these goals, see e.g. (Christofides, 2001a,b; Marquardt, 2001; Shvartsman et al., 2000) and (Balsa-Canto, Alonso, \& Banga, 2004; Shvartsman \& Kevrekidis, 1998).

[^0]In this paper we propose a model order reduction technique for nonlinear reaction-diffusion systems whose general formulation is given by
$\frac{\partial \mathbf{y}(x, t ; \mu)}{\partial t}=\nabla(\underline{D}(\mu) \nabla \mathbf{y}(x, t ; \mu))+\mathbf{g}(\mathbf{y}(x, t ; \mu) ; \mu)$,
where $x \in \Omega \subset R^{d}$ is the spatial domain, $\mu \in \mathcal{D}$ is the parameter vector, \mathbf{y} is the vector-valued field variable, e.g., containing temperatures and concentrations, $\underline{D}(\mu)$ is the diffusion matrix, and $\mathbf{g}(\mathbf{y} ; \mu)$ is a vector-valued function containing the (non)linear reaction terms. Our particular application is the self-ignition of a coal stockpile with Arrhenius type nonlinearity (Brooks, Balakotaiah, \& Luss, 1988). We note, however, that similar models are also used in combustion theory (Williams, 1985), biology (Britton, 1986), and in the description of porous catalysts (Aris, 1975a,b).

Many model-order reduction (MOR) techniques for linear and nonlinear time-dependent systems are proposed in the literature: the most well-known are proper orthogonal decomposition (POD or Karhunen-Loève decomposition) (Holmes, Lumley, \& Berkooz, 1996; Sirovich, 1987; Sirovich \& Kirby, 1987), balanced truncation (Moore, 1981), and various related hybrid (Hahn \& Edgar, 2002; Lall, Marsden, \& Glavaski, 1999, 2002; Rowley, 2005; Willcox \& Peraire, 2002) techniques. It is important to note, however, that most MOR techniques focus mainly on reduced-order modeling of dynamical systems in which time is considered the only "parameter." The development of reduced-order models for problems with a simultaneous dependence of the field variable on parameter and time - our focus here - is much less common (see (Bui, Damodaran, \& Willcox, 2003; Christensen, Brøns, \& Sørensen, 2000; Daniel, Ong, Low, Lee, \& White, 2002; Gunzburger, Peterson, \& Shadid, 2007) for a few

Nomenclature	
x	spatial variable
Ω	spatial domain
μ	parameter vector
D	admissible parameter domain
y	field variable
t	time
$\underline{\text { D }}$	diffusion matrix
-	time interval ($\bar{I} \equiv\left[0, t_{f}\right]$)
t_{f}	final time
K	number of timesteps
Δt	discrete time step size
\mathbb{K}	set of timesteps, $\mathbb{K} \equiv\{1, \ldots, K\}$
P	number of parameters
Y	approximation space
() ${ }^{\text {e }}$	superscript to denote "exact" (semi-discrete) quantities
f	linear form (forcing)
v	test function
a	bilinear form
m	bilinear form
u	control input
g	nonlinear function
ℓ	linear form (output functional)
s	output of interest
\mathcal{N}	finite element dimension
ϕ	finite element basis function
() ${ }^{k}$	superscript to denote timestep
Q_{a}	number of terms in affine decomposition of a
Θ_{a}^{q}	parameter dependent functions in affine decomposition of a
a^{q}	parameter independent bilinear forms in affine decomposition of a
(_)	vector quantities
\underline{M}	mass matrix
$\underline{\text { A }}$	stiffness matrix
\underline{G}	vector containing nonlinearity
\underline{F}	load vector
α	thermal diffusivity
Da	Damköhler number
g_{M}	EIM interpolant of nonlinear function g
φ	coefficients of EIM approximation
T_{M}^{g}	set of EIM interpolation points
ξ	POD mode, generating function for EIM
$\Xi_{\text {train }}$	parameter train sample
χ^{g}	EIM interpolation point
q	EIM basis function
$W_{M}^{\text {g }}$	EIM approximation space
\underline{B}^{M}	EIM nodal value matrix
W_{N}^{y}	reduced basis space
ζ	reduced basis function
N	reduced basis dimension
M	dimension of EIM approximation space
()N	subscript to denote reduced basis quantities
($)_{N, M}$	subscript to denote reduced basis quantities (including EIM)
T	normalized temperature for model problem
c	normalized concentration for model problem
$\stackrel{\gamma}{()_{T}}$	Arrhenius number subscript to denote temperature related quantities of model problem

For simplicity, we directly consider a time-discrete framework associated to the time interval $\left.I \equiv] 0, t_{f}\right]\left(\bar{I} \equiv\left[0, t_{f}\right]\right)$. We divide \bar{I} into K subintervals of equal length $\Delta t=\left(t_{f}\right) / K$ and define $t^{k} \equiv k \Delta t, 0 \leq k \leq K$; for notational convenience, we also introduce $\mathbb{K} \equiv\{1, \ldots, K\}$. We shall consider Euler-Backward for the time integration; we can also readily treat higher-order schemes such as Crank-Nicolson (Grepl, 2005).

The abstract formulation can be stated as follows: given a parameter $\mu \in \mathcal{D} \subset \mathbb{R}^{P}$, the field variable $y^{\mathrm{e}}\left(x, t^{k} ; \mu\right) \in Y^{\mathrm{e}}, \forall k \in \mathbb{K}$, satisfies the weak form of the μ-parametrized parabolic PDE

$$
\begin{align*}
& m\left(y^{\mathrm{e}}\left(t^{k} ; \mu\right), v\right)+\Delta \operatorname{ta}\left(y^{\mathrm{e}}\left(t^{k} ; \mu\right), v ; \mu\right)+\Delta t \int_{\Omega} g\left(y^{\mathrm{e}}\left(t^{k} ; \mu\right) ; x ; \mu\right) v \\
& \quad=m\left(y^{\mathrm{e}}\left(t^{k-1} ; \mu\right), v\right)+\Delta t f(v) u\left(t^{k}\right), \quad \forall v \in Y^{\mathrm{e}}, \quad \forall k \in \mathbb{K} \tag{2}
\end{align*}
$$

with initial condition (say) $y^{\mathrm{e}}\left(x, t^{0} ; \mu\right)=0$. Here, \mathcal{D} is the parameter domain in which our P-tuple (input) parameter μ resides; Y^{e} is an appropriate Hilbert space; and $\Omega \subset \mathbb{R}^{d}$ is our spatial domain, a point in which shall be denoted by x. Furthermore, $f(\cdot)$ and $a(\cdot, \cdot ; \mu)$, $m(\cdot, \cdot)$ are continuous bounded linear and bilinear forms, respectively; $u\left(t^{k}\right)$ denotes the "control input" at time $t=t^{k}$; and $g(w ; x ; \mu)$ is a nonlinear function continuous in its arguments. We assume here that $f(\cdot)$, and $m(\cdot, \cdot)$ do not depend on the parameter; parameter dependence, however, is readily admitted (Grepl \& Patera, 2005). We note that if an explicit scheme such as Euler-Forward is used, we then arrive at a linear system for $y^{\mathrm{e}}\left(t^{k} ; \mu\right)$ but now burdened with a conditional stability restriction on Δt. In that case, the discrete reduced basis system will also be inherently linear.

In general, we are not interested in the field variable - such as temperature - at all points in Ω per se, but rather at specific performance metrics or outputs - such as averaged temperatures or heat fluxes - of the system. These outputs are typically functionals of the field variable: given the solution $y^{\mathrm{e}}\left(x, t^{k} ; \mu\right) \in Y^{\mathrm{e}}, \forall k \in \mathbb{K}$, of (2), we evaluate the (here, single) output of interest from
$s^{\mathrm{e}}\left(t^{k} ; \mu\right)=\ell\left(y^{\mathrm{e}}\left(t^{k} ; \mu\right)\right), \quad \forall k \in \mathbb{K}$,
where $\ell(\cdot)$ is a linear bounded functional.
The superscript e denotes the "exact" - more precisely, semidiscrete - problem. In actual practice, of course, we do not have access to the exact solution; we thus replace the exact solution with a reference (or "truth") approximation, which resides in (say) a suitably fine piecewise-linear finite element approximation space $Y \subset Y^{\mathrm{e}}$ of very large dimension \mathcal{N}. We associated to Y a set of piecewise linear (over each element) basis functions $\phi_{i}(x), \quad 1 \leq i \leq \mathcal{N}$. Our "truth" finite element approximation $y^{k}(\mu) \equiv y\left(t^{k} ; \mu\right) \in Y$ to the semi-discrete problem (2) is then given by

$$
\begin{align*}
& m\left(y^{k}(\mu), v\right)+\Delta t a\left(y^{k}(\mu), v ; \mu\right)+\Delta t \int_{\Omega} g\left(y^{k}(\mu) ; x ; \mu\right) v \\
& \quad=m\left(y^{k-1}(\mu), v\right)+\Delta t f(v) u\left(t^{k}\right), \quad \forall v \in Y, \quad \forall k \in \mathbb{K} \tag{4}
\end{align*}
$$

with initial condition $y\left(t^{0} ; \mu\right)=0$; we then evaluate the output $s^{k}(\mu) \equiv s\left(t^{k} ; \mu\right) \in \mathbb{R}$ from
$s^{k}(\mu)=\ell\left(y^{k}(\mu)\right), \quad \forall k \in \mathbb{K}$.
Note that in the sequel we will drop the explicity dependence on the spatial variable x and use the notation $y^{k}(\mu)=y\left(x, t^{k} ; \mu\right)$ unless the x-dependence is essential. We shall assume - hence the appellation "truth" - that the discretization is sufficiently rich such that $y^{k}(\mu)$ and $y^{\mathrm{e}}\left(t^{k} ; \mu\right)$ and hence $s^{k}(\mu)$ and $s^{\mathrm{e}}\left(t^{k} ; \mu\right)$ are indistinguishable. The reduced-basis approximation shall be built upon our reference finite element approximation, and the reduced-basis error will thus be evaluated with respect to $y^{k}(\mu) \in Y$.

We shall further assume that the bilinear form a depends affinely on the parameter μ and can be expressed as
$a(w, v ; \mu)=\sum_{q=1}^{Q_{a}} \Theta_{a}^{q}(\mu) a^{q}(w, v), \quad \forall w, v \in Y, \quad \forall \mu \in \mathcal{D}$,
for some (preferably) small integer Q_{a}. Here, the function $\Theta_{a}^{q}(\mu)$: $\mathcal{D} \rightarrow \mathbb{R}$ depends on μ, but the continuous form a^{q} does not depend on μ. We note that the assumption of affine parameter dependence (6) holds for many problems with both property (i.e. physical) and geometry parametric variations (Rozza et al., 2008).

We also briefly recall the algebraic equations induced by (4) and (5). We expand $y^{k}(\mu)=\sum_{n=1}^{\mathcal{N}} \phi_{j}(x) y_{j}^{k}(\mu)$, then $\underline{y}^{k}(\mu)=$ $\left[y_{1}^{k}(\mu) \ldots y_{\mathcal{N}}^{k}(\mu)\right]^{T} \in \mathbb{R}^{\mathcal{N}}$ satisfies
$(\underline{M}+\Delta t \underline{A} \underline{(\mu)}) \underline{y}^{k}(\mu)+\Delta t \underline{G}\left(\underline{y^{k}}(\mu) ; \mu\right)=\underline{M} \underline{y}^{k-1}(\mu)$

$$
\begin{equation*}
+\Delta t \underline{F} u\left(t^{k}\right), \quad \forall k \in \mathbb{K} \tag{7}
\end{equation*}
$$

with initial condition $\underline{y}^{0}(\mu)=0$; we then evaluate the output from
$s^{k}(\mu)=\underline{L}^{T} \underline{y}^{k}(\mu), \quad \forall k \in \mathbb{K}$.
The elements of the mass and stiffness matrices $\underline{M} \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}$ and $\underline{A}(\mu) \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}$ are given by $\underline{M}_{i, j}=m\left(\phi_{j}, \phi_{i}\right), 1 \leq i, j \leq \mathcal{N}$ and $\underline{A}_{i, j}(\mu)=a\left(\phi_{j}, \phi_{i} ; \mu\right), \quad 1 \leq i, j \leq \overline{\mathcal{N}}, \quad$ respectively; the elements of the nonlinear term are given by $\underline{G}_{i}\left(\underline{y}^{k}(\mu) ; \mu\right)=$ $\int_{\Omega} g\left(y^{k}(\mu) ; x ; \mu\right) \phi_{i}, \quad 1 \leq i \leq \mathcal{N}$; and the elements of the load vector $\underline{F} \in \mathbb{R}^{\mathcal{N}}$ are given by $\underline{F}_{i}=f\left(\phi_{i}\right), \quad 1 \leq i \leq \mathcal{N}$.

Example 1 (A nonlinear reaction diffusion problem). We consider a single one-step reaction of a reacting mixture in the region $\Omega=[0$, 1]. The combustion model is given by the PDE (Adjerid \& Flaherty, 1986; Kapila, 1983)
$\frac{\partial T(x, t)}{\partial t}=\alpha \frac{\partial^{2} T(x, t)}{\partial x^{2}}+\operatorname{Da}(1-T(x, t)) e^{-\gamma /(T(x, t)+1)}$,
with initial condition $T(x, t=0)=0$ and boundary conditions $T(x=0$, $t)=T(x=1, t)=0$. Here, $T(x, t)$ is the temperature at position x and time t, α is the thermal diffusivity, Da is the Damköhler number, and γ is the Arrhenius number.

The governing Eq. (9) depends on three parameters; we may thus define the input parameter vector $\mu=\left[\mu_{1}, \mu_{2}, \mu_{3}\right] \equiv[\alpha$, Da, γ]. We next derive the weak formulation of (9) and discretize in time using Euler-Backward and in space using finite elements. The equation then assumes the form (4) with $m(w, v)=\int w v d \Omega$, $a(w, v ; \mu)=\alpha \int(\partial w / \partial x)(\partial v / \partial x) d \Omega, f(v)=0$, and the nonlinearity is given by $g(w ; \mu)=\operatorname{Da}(1-w) e^{-\gamma /(w+1)}$. We note that $a(w, v ; \mu)$ trivially satisfies the affine parameter dependence with $Q_{a}=1$: $\Theta_{a}^{1}(\mu)=\alpha$ and $a^{1}(w, v)=\int(\partial w / \partial x)(\partial v / \partial x) d \Omega$.

2.2. Empirical interpolation method

The empirical interpolation method (EIM), introduced in Barrault, Nguyen, Maday, and Patera (2004), serves to construct affine approximations of parameter dependent non-affine or nonlinear functions. The method is frequently applied in reduced basis approximations of parametrized partial differential equations (Grepl et al., 2007); an affine approximation of the operator allows an "offline-online" computational procedure and is thus crucial for efficiency.

2.2.1. Motivation

We begin by motivating the need for the EIM. To this end, we suppose that we are given a reduced basis space $W_{N}^{y}=\operatorname{span}\left\{\zeta_{n}, \quad 1 \leq n \leq N\right\}$, where the $\zeta_{n}, 1 \leq n \leq N$, are the basis
functions. If we were to follow the classical recipe, the reduced basis approximation would be obtained by a standard Galerkin projection: given $\mu \in \mathcal{D}$, the reduced basis approximation $y_{N}^{k}(\mu) \in W_{N}^{y}$ to $y^{k}(\mu) \in Y$ is the solution of

$$
\begin{align*}
& m\left(y_{N}^{k}(\mu), v\right)+\Delta t a\left(y_{N}^{k}(\mu), v ; \mu\right)+\Delta t \int_{\Omega} g\left(y_{N}^{k}(\mu) ; x ; \mu\right) v \\
& \quad=m\left(y_{N}^{k-1}(\mu), v\right)+\Delta t f(v) u\left(t^{k}\right), \quad \forall v \in W_{N}^{y}, \quad \forall k \in \mathbb{K} \tag{10}
\end{align*}
$$

with initial condition $y_{N}\left(t^{0} ; \mu\right)=0$. We note that, given a new parameter value μ, the terms involving the bilinear and linear forms m, a, and f can be efficiently evaluated in an offline-online computational procedure (Rozza et al., 2008). However, the nonlinear term $\int_{\Omega} g\left(y_{N}^{k}(\mu) ; x ; \mu\right) v$ must be evaluated online for every new parameter value; the operation count for the online stage will thus scale as $O(\mathcal{N})$, where \mathcal{N} is the dimension of the underlying finite element truth approximation. Despite the dimension reduction $N \ll \mathcal{N}$, the online cost to evaluate the reduced basis approximation will thus be comparable to the cost to evaluate the truth approximation. This is the reason why most model order reduction techniques for nonlinear problem do not result in computational savings compared to the underlying high-dimensional approximation (Rathinam \& Petzold, 2003).

The EIM allows us to completely decouple the evaluation of the reduced basis approximation from the truth approximation. We also note that other approaches to resolve this problem have been proposed previously, see e.g. (Astrid, 2004; Romijn et al., 2008). Recently, the EIM has also been applied in combination with the Proper Orthogonal Decomposition in Chaturantabut and Sorensen (2010); also see Lass and Volkwein (submitted for publication) for a comparison of the two approaches.

2.2.2. Function interpolation

The basic idea of the EIM is to approximate the nonlinear function $g\left(y^{k}(\mu) ; x ; \mu\right), \forall k \in \mathbb{K}$, by an affine combination of precomputed basis functions. To this end, we first define the EIM approximation space $W_{M}^{g}=\operatorname{span}\left\{q_{j}, \quad 1 \leq j \leq M\right\}$ of dimension M, where the q_{j} are - in essence - precomputed snapshots of the nonlinear parameter dependent function. Given W_{M}^{g}, we construct an approximation $g_{M}^{y^{k}}(x ; \mu) \in W_{M}^{g}, \quad \forall k \in \mathbb{K}$, to the nonlinear function $g\left(y^{k}(\mu) ; x ; \mu\right), \forall k \in \mathbb{K}$, as a linear combination of the EIM basis functions, i.e., we have
$g_{M}^{y^{k}}(x ; \mu)=\sum_{j=1}^{M} \varphi_{M j}^{k}(\mu) q_{j}(x)$.
The coefficients $\varphi_{M j}^{k}(\mu)$ are determined through the interpolation condition: the interpolant and the nonlinear function have to be identical at the EIM interpolation points $T_{M}^{g}=\left\{x_{1}^{g}, x_{2}^{g}, \ldots, x_{M}^{g}\right\}$, a set of judiciously selected points in the spatial domain. More specifically, we obtain the coefficients $\varphi_{M j}^{k}(\mu)$ by solving the linear system
$\sum_{j=1}^{M} \underline{B}_{i j}^{M} \varphi_{M j}^{k}(\mu)=g\left(y^{k}\left(x_{i}^{g} ; \mu\right) ; x_{i}^{g} ; \mu\right), \quad 1 \leq i \leq M, \quad \forall k \in \mathbb{K}$,
where the nodal value matrix is defined as $\underline{B}_{i, j}^{M}=q_{j}\left(x_{i}^{g}\right), \quad 1 \leq i, j \leq$ M. Note that the left hand side of (12) is identical to $g_{M}^{y^{k}}\left(x_{i}^{g} ; \mu\right)$.

It remains to construct the basis W_{M}^{g} and set of interpolation points T_{M}^{g}. This construction is based on a POD/Greedy selection process which is summarized in Algorithm 1 and explained in detail below. We present the procedure described in Grepl (2012); see (Maday, Nguyen, Patera, \& Pau, 2009) for the linear nonaffine case.

Before explaining the steps in Algorithm 1, we need to introduce a finite train sample $\Xi_{\text {train }} \subset \mathcal{D}$ of size $\left|\Xi_{\text {train }}\right|$ which shall serve as our computational surrogate for \mathcal{D}. We also require the function $\operatorname{POD}_{L^{2}(\Omega)}\left(\left\{w^{k}(\mu), 1 \leq k \leq K\right\}\right)$, which returns the largest POD mode, χ_{1}, with respect to the $(\cdot, \cdot)_{L^{2}(\Omega)}$ inner product. Here, $L^{2}(\Omega)$ is the space of square integrable functions over Ω. We use the method of snapshots to obtain χ_{1} (Sirovich, 1987): to this end, we solve the eigenvalue problem $C \psi^{i}=\lambda^{i} \psi^{i}$ for $\left(\psi^{1} \in\right.$ $\mathbb{R}^{K}, \lambda^{1} \in \mathbb{R}$) associated with the largest eigenvalue of C, where $C_{i j}=\left(w^{i}(\mu), w^{j}(\mu)\right)_{L^{2}(\Omega)}, \quad 1 \leq i, j \leq K$; we then obtain the first POD mode from $\chi_{1}=\sum_{k=1}^{K} \psi_{k}^{1} w^{k}(\mu)$.

The POD/Greedy-EIM procedure in Algorithm 1 proceeds by induction: we first choose randomly an initial parameter value $\mu_{1} \in \mathcal{D}$ and calculate the first POD mode, $\xi_{1}(x)$, of the time-history of the nonlinear function evaluated at $y^{k}\left(\mu_{1}\right)$ in step 2 . In steps 3 and 4 we choose the first interpolation point, x_{1}^{g}, to be the spatial point where $\xi_{1}(x)$ is maximal, the first basis function, $q_{1}(x)$, to be the normalized POD mode $\xi_{1}(x) / \xi_{1}\left(x_{1}^{g}\right)$, and the nodal value matrix, \underline{B}^{1}, is simply $q_{1}(x)$ evaluated at x_{1}^{g}. We thus obtain a one-dimensional EIM approximation to the nonlinear function.

Given the current EIM approximation, we perform a greedy search over $\Xi_{\text {train }}$ in step 6 to find the parameter value where the $L^{\infty}(\Omega)$ norm of the interpolation error over time is maximal, i.e., where the approximation is worst. We then calculate the largest POD mode, $\xi_{M+1}(x)$, of the time-history of the interpolation error at this parameter value in steps 7 and 8 . Note that we perform a POD on the interpolation error instead of the nonlinear function itself in order to consistently "add" new information at each step of the POD/Greedy procedure. Given $\xi_{M+1}(x)$, we evaluate the next interpolation point and basis function: in steps 9 and 10 we calculate the residual vector $r_{M+1}(x)$, in step 11 we set the next interpolation point, x_{M+1}^{g}, to be the spatial point where the residual is maximal, and in step 12 we set the next basis function, $q_{M+1}(x)$, to be the normalized residual. We then expand the EIM space in step 13 and update the nodal value matrix in step 14 . Finally, we increment M and go back to step 6 if $M \leq M_{\max }-1$. In general, we may also specify a desired error tolerance, $\epsilon_{\text {tol }, \min }$, and stop the procedure as soon as $\max _{\mu \in \Xi_{\text {train }}} \sum_{k=1}^{K}\left\|g\left(y^{k}(x ; \mu) ; x ; \mu\right)-g_{M}^{y^{k}}(x ; \mu)\right\|_{L^{\infty}(\Omega)} \leq \epsilon_{\text {tol }, \text { min }}$ is satisfied; $M_{\max }$ is then indirectly determined through the stopping criterion.

Alogorithm 1. POD/Greedy-EIM Algorithm.

```
1. specify \(\Xi_{\text {train }} \subset \mathcal{D}, M_{\text {max }}, \mu_{1} \in \mathcal{D}\) (arbitrary).
\(\xi_{1}(x)=\operatorname{POD}_{L^{2}(\Omega)}\left(\left\{g\left(y^{k}\left(x ; \mu_{1}\right) ; x ; \mu_{1}\right), 1 \leq k \leq K\right\}\right)\).
set \(M=1, x_{1}^{g}=\operatorname{argsup}\left|\xi_{1}(x)\right|\) and \(q_{1}(x)=\xi_{1}(x) / \xi_{1}\left(x_{1}^{g}\right)\)
set \(W_{1}^{g} \equiv \operatorname{span}\left\{q_{1}\right\}\) and \(\underline{B}_{1,1}^{1}=q_{1}\left(x_{1}^{g}\right)=1\).
while \(M \leq M_{\max }-1\) do
    \(\mu_{M+1}=\underset{\mu \in \Xi_{\text {train }}}{\arg } \sum_{k=1}^{K}\left\|g\left(y^{k}(x ; \mu) ; x ; \mu\right)-g_{M}^{y^{k}}(x ; \mu)\right\|_{L \infty(\Omega)}\),
        where \(g_{M}^{y^{k}}\) is calculated from (11) and (12);
    \(e_{M, \mathrm{EIM}}^{k}(\mu)=g\left(y^{k}\left(\mu_{M+1}\right) ; x ; \mu_{M+1}\right)-g_{M}^{y^{k}}\left(x ; \mu_{M+1}\right), \forall k \in \mathbb{K} ;\)
    \(\xi_{M+1}(x)=\operatorname{POD}_{L^{2}(\Omega)}\left(\left\{e_{M, \mathrm{EIM}}^{k}\left(\mu_{M+1}\right), 1 \leq k \leq K\right\}\right)\);
    solve for \(\sigma_{j}^{M}\) from \(\sum_{j=1}^{M} \sigma_{j}^{M} q_{j}\left(x_{i}^{g}\right)=\xi_{M+1}\left(x_{i}^{g}\right), \quad 1 \leq i \leq M\);
    set \(r_{M+1}(x) \equiv \xi_{M+1}(x)-\sum_{j=1}^{M} \sigma_{j}^{M} q_{j}(x)\);
    set \(x_{M+1}^{g} \equiv \operatorname{argsup}\left|r_{M+1}(x)\right|\);
    set \(q_{M+1}(x) \equiv r_{M+1}^{x \in \Omega}(x) / r_{M+1}\left(x_{M+1}^{g}\right)\);
    \(W_{M+1}^{g} \leftarrow W_{M}^{g} \cup \operatorname{span}\left\{q_{M+1}(x)\right\}+\)
\(\underline{B}_{i, j}^{M+1}=q_{j}\left(x_{i}^{g}\right), \quad 1 \leq i, j \leq M+1\)
    \(W_{M+1}^{g} \leftarrow W_{M}^{\mathrm{g}} \cup \operatorname{span}\left\{q_{M+1}(x)\right\} ;\)
\(\underline{B}_{i, j}^{M+1}=q_{j}\left(x_{i}^{\mathrm{g}}\right), \quad 1 \leq i, j \leq M+1 ;\)
    \(\stackrel{B_{i, j}}{M} \leftarrow M+1 ;\)
end
```

Note that by construction, the EIM space satisfies $W_{M}^{g}=$ $\operatorname{span}\left\{q_{m}(x), \quad 1 \leq m \leq M\right\}=\operatorname{span}\left\{\xi_{m}(x), \quad 1 \leq m \leq M\right\}$. Furthermore, the nodal value matrix $\underline{B}^{M}, 1 \leq M \leq M_{\text {max }}$, is lower triangular and hence computation of the EIM coefficients $\varphi_{M j}^{k}$ in (12) is an $\mathcal{O}\left(M^{2}\right)$
operation per timestep. It can be shown that the interpolation process is well-defined. For more details on the EIM including an a priori and a posteriori error analysis for the linear nonaffine case we refer the interested reader to Barrault et al. (2004), Eftang, Grepl, and Patera (2010), Grepl et al. (2007), Maday et al. (2009).

We note that we do require the truth solution for all μ in $\Xi_{\text {train }}$ in Algorithm 1 to generate the EIM interpolation points and space. The overall computational cost is thus very high and the procedure only viable if there is a clear demand for real-time response or a many query context.

2.3. Reduced basis method

In Section 2.2.1 we briefly introduced a straightforward reduced basis approximation to the nonlinear problem (4). We now return to this discussion and show that we can devise a very efficient offline-online computational strategy by combining the EIM with the reduced basis approximation.

2.3.1. Approximation

We suppose that we are given the nested reduced basis spaces
$W_{N}^{y}=\operatorname{span}\left\{\zeta_{n}, \quad 1 \leq n \leq N\right\}, \quad 1 \leq N \leq N_{\max }$,
where the $\zeta_{n}, 1 \leq n \leq N$, are mutually orthogonal basis functions. We comment on the adaptive procedure for constructing the basis functions in Section 2.3.3.

Given the nested EIM space $W_{M}^{g}=\operatorname{span}\left\{q_{1}, \ldots, q_{M}\right\}, \quad 1 \leq M \leq$ $M_{\max }$, and nested set of interpolation points $T_{M}^{g}=\left\{x_{1}^{g}, \ldots, x_{M}^{g}\right\}, \quad 1 \leq$ $M \leq M_{\max }$, our reduced basis approximation $y_{N, M}^{k}(\mu)$ to $y^{k}(\mu)$ is obtained by a standard Galerkin projection: given $\mu \in \mathcal{D}, y_{N, M}^{k}(\mu) \in$ W_{N}^{y} satisfies

$$
\begin{align*}
& m\left(y_{N, M}^{k}(\mu), v\right)+\Delta \operatorname{ta}\left(y_{N, M}^{k}(\mu), v ; \mu\right)+\Delta t \int_{\Omega} g_{M}^{y_{N, M}^{k}}(x ; \mu) v \\
& \quad=m\left(y_{N, M}^{k-1}(\mu), v\right)+\Delta t f(v) u\left(t^{k}\right), \quad \forall v \in W_{N}^{y}, \quad \forall k \in \mathbb{K} \tag{14}
\end{align*}
$$

with initial condition $y_{N, M}^{0}(\mu)=0$. We then evaluate the output approximation, $s_{N, M}^{k}(\mu) \in \mathbb{R}$, from
$s_{N, M}^{k}(\mu)=\ell\left(y_{N, M}^{k}(\mu)\right), \quad \forall k \in \mathbb{K}$.
Comparing (14) and (10) we observe that the nonlinearity $g\left(y_{N}^{k}(\mu) ; x ; \mu\right)$ is now replaced by its EIM approximation $g_{M}^{y_{N, M}^{k}}(x ; \mu)$. Here, $g_{M}^{y_{N, M}^{k}}(x ; \mu) \in W_{M}^{g}$ is given by
$g_{M}^{y_{N, M}^{k}}(x ; \mu)=\sum_{i=1}^{M} \tilde{\varphi}_{M i}^{k}(\mu) q_{i}(x)$,
where the coefficients $\tilde{\varphi}_{M i}^{k}(\mu), \quad 1 \leq i \leq M$, are obtained through the interpolation condition, i.e., the solution of the linear system
$\sum_{j=1}^{M} \underline{B}_{i j}^{M} \tilde{\varphi}_{M j}^{k}(\mu)=g\left(y_{N, M}^{k}\left(x_{i}^{g} ; \mu\right) ; x_{i}^{g} ; \mu\right), \quad 1 \leq i \leq M, \quad \forall k \in \mathbb{K}$.
Note that the space W_{M}^{g} is constructed based on $g\left(y^{k}(\mu) ; x ; \mu\right)$ and not $g\left(y_{N, M}^{k}(\mu) ; x ; \mu\right)$. However, as N and M increase the reduced basis solution $y_{N, M}^{k}(\mu)$ converges to the truth solution $y^{k}(\mu)$ very rapidly. We thus expect $g\left(y_{N, M}^{k}(\mu) ; x ; \mu\right)$ to be well approximated in W_{M}^{g}. We shall observe the (in fact, exponential) convergence when we discuss numerical results in Section 4.

We note that the need to incorporate the empirical interpolation method into the reduced basis approximation only exists for highorder polynomial or non-polynomial nonlinearities (Grepl et al.,
2007). If g is a low-order (or at most quadratically) polynomial nonlinearity in $y^{k}(\mu)$, we can expand the nonlinear terms into their power series and develop an efficient, i.e., online \mathcal{N}-independent, offline-online computational decomposition using the standard Galerkin procedure (Veroy \& Patera, 2005; Veroy, Prud'homme, \& Patera, 2003). We also note that for linear or nonlinear problems with a non-affine parameter dependence the EIM is always required to develop an efficient offline-online computational procedure for the nonaffine terms.

2.3.2. Computational procedure

The EIM allows us to develop an efficient offline-online computational procedure to solve (14). We omit the details here and refer the interested reader to Grepl et al. (2007), Grepl, (2012). The main idea is to first express $y_{N, M}^{k}(\mu)$ as
$y_{N, M}^{k}(\mu)=\sum_{n=1}^{N} y_{N, M n}^{k}(\mu) \zeta_{n}$
and choose as test functions $v=\zeta_{j}, \quad 1 \leq j \leq N$, in (14). We then invoke the affine representation (16) of $g_{M}^{y_{N, M}^{k}}$ and (17) to obtain a nonlinear algebraic system of dimension N which we solve at each timestep using a Newton iterative scheme.

During the offline stage we generate the reduced basis space and evaluate several parameter independent quantities - the offline operation count thus depends on \mathcal{N}, the dimension of the underlying "truth" finite element approximation space. The operation count in the online stage, however, is (to leading order) $O\left(M N^{2}+N^{3}\right)$ per Newton iteration per timestep and thus independent of \mathcal{N}. Since $N \ll \mathcal{N}$ we expect significant computational savings in the online stage relative to classical discretization and solution approaches. We will confirm these savings in Section 4.

2.3.3. Adaptive sampling procedure

Given W_{M}^{g}, T_{M}^{g}, and \underline{B}^{M}, we invoke a POD/Greedy sampling procedure - a combination of the proper orthogonal decomposition (POD) in time with a Greedy selection procedure in parameter space - to generate W_{N}^{y} (Grepl, 2012; Haasdonk \& Ohlberger, 2008). We shall use the "best" possible approximation $g_{M}^{y_{N, M}^{k}}(x ; \mu)$ of $g\left(y_{N, M}^{k} ; x ; \mu\right)$ during the sampling process so as to minimize the error induced by the empirical interpolation procedure, i.e., we set $M=M_{\text {max }}$. The POD/Greedy Algorithm is summarized in Algorithm 2. Here, $\operatorname{POD}_{X}\left(\left\{w^{k}(\mu), 1 \leq k \leq K\right\}\right)$ returns the largest POD mode with respect to the $(\cdot, \cdot)_{X}=a\left(\cdot, \cdot ; \mu_{\text {ref }}\right)$ inner product, where $\mu_{\text {ref }} \in \mathcal{D}$ is a reference parameter value; $\operatorname{proj}_{X, W_{N}}(w)$ denotes the X-orthogonal projection of $w \in X$ onto W_{N}^{y}; and the energy norm is defined as $\left\|\mid w^{k}\right\| \|^{2}=m\left(w^{k}, w^{k}\right)+\Delta t \sum_{k^{\prime}=1}^{k} a\left(w^{k^{\prime}}, w^{k^{\prime}} ; \mu\right)$.

Alogorithm 2. POD/Greedy Algorithm.

$$
\begin{aligned}
& \text { Specify } \Xi_{\text {train }} \subset \mathcal{D}, N_{\text {max }}, \mu_{1} \in \mathcal{D} \text { (arbitrary). } \\
& \text { Set } W_{0}^{y}=\{0\} \text { and } N=1 \text {. } \\
& \text { while } N \leq N_{\max }-1 \text { do } \\
& \quad e_{N, \text { proj }}^{k}\left(\mu_{N}\right)=y^{k}\left(\mu_{N}\right)-\operatorname{proj}_{X, W_{N-1}}^{y}\left(y^{k}\left(\mu_{N}\right)\right), \forall k \in \mathbb{K} \text {; } \\
& \quad W_{N}^{y} \leftarrow W_{N-1}^{y} \cup \operatorname{POD}_{X}\left(\left\{e_{N, \text { proj }}^{k}\left(\mu_{N}\right), \quad 1 \leq k \leq K\right\}\right) \text {; } \\
& \quad \mu_{N+1}=\arg \max _{\mu \in \Xi_{\text {train }}}\left\|\mid y^{K}(\mu)-y_{N, M}^{K}(\mu)\right\| /\|/\| y^{K}(\mu) \| ; \\
& \quad N \leftarrow N+1 \text {; } \\
& \text { end }
\end{aligned}
$$

In general, we may also specify a desired error tolerance, $\epsilon_{\text {tol }, \text { min }}$, and stop the procedure as soon as $\max _{\mu \in \Xi_{\text {train }}} \| y^{K}(\mu)-$ $y_{N, M}^{K}(\mu)\| \| /\left\|\mid y^{K}(\mu)\right\| \| \leq \epsilon_{\text {tol }, \min }$ is satisfied; $N_{\text {max }}$ is then indirectly determined through the stopping criterion.

3. Nonlinear reaction-diffusion systems

In this section we consider a specific problem belonging to the class of nonlinear reaction-diffusion systems (Smoller, 1994). Reaction-diffusion systems appear in a large number of real-world applications: ranging from Biology, where reaction-diffusion equations characterize the pattern formation in morphogenesis and mutations in genetics; to Ecology, where they govern predator-prey relation and the spreading of epidemics; to Physiology, where the conduction in nerves and carbon monoxide poisoning is described by reaction-diffusion equations; to Chemistry, probably the most notable application area of reaction-diffusion equations. Furthermore, inherent to these equations and the specific application area are a large number of parameters, which, in general, have a very strong influence on the dynamic behaviour of the system, e.g., such as reaction rates in chemistry. The reduced basis method is thus ideally suited for the treatment of parametrized nonlinear reaction-diffusion systems.

We now extend the methodology introduced in the last section to coupled systems of nonlinear equations. We introduced separate reduced basis spaces for each field variable. Furthermore, we employ the EIM to generate an affine approximation of the nonlinear coupling term, thus allowing an efficient offline-online procedure even for the coupled system of nonlinear equations.

3.1. Model problem

As a specific example, we consider a one-dimensional nonisothermal reaction-diffusion model for the self-ignition of a coal stockpile with Arrhenius type nonlinearity (Brooks, Balakotaiah, et al., 1988; Brooks, Bradshaw, \& Glasser, 1988; Brooks \& Glasser, 1986; Salinger, Aris, \& Derby, 1994; Schmal, Duyzer, \& van Heuven, 1985). In practice this problem arises if large piles of coal are stored, e.g., in harbors, over extended periods of time. As the oxygen in the air reacts with the coal, the pile starts to heat up and can eventually self-ignite if certain conditions - on porosity, oxygen concentration, and coal size - are met. We also note that similar models are used in combustion theory (see Example 1), biology, and in the description of porous catalysts.

The field variables are the temperature of the reactive medium (here, the coal) normalized by the ambient temperature, $T(x, t)=$ $\left(\bar{T}(x, t)-\bar{T}_{\infty}\right) / \bar{T}_{\infty}$, and the concentration of the reactant (here, the oxygen in the air) normalized by the concentration of oxygen in the ambient air, $c(x, t)=\left(\bar{c}(x, t)-\bar{c}_{\infty}\right) / \bar{c}_{\infty}$. The coupled set of governing equations are given by Brooks, Balakotaiah, et al. (1988)
$\frac{\partial T(x, t)}{\partial t}=\nabla^{2} T(x, t)+4.287 \times 70,000(c(x, t)+1) e^{-\gamma /(T(x, t)+1)}$,
$\frac{\partial c(x, t)}{\partial t}=0.233 \nabla^{2} c(x, t)-70,000(c(x, t)+1) e^{-\gamma /(T(x, t)+1)}$,
with initial conditions
$T(x, t=0)=T_{0}=0$,
$c(x, t=0)=c_{0}=\frac{1}{(3 x+1)^{2}}-1$.
The boundary conditions are
$\left.T(x, t)\right|_{x=0}=0,\left.\quad T(x, t)\right|_{x=1}=0$,
$\left.c(x, t)\right|_{x=0}=0,\left.\quad \frac{\partial c(x, t)}{\partial x}\right|_{x=1}=0$.

A sketch of the distribution of temperature and concentration for $t>0$ is shown in Fig. 1. Here, $x \in \Omega \subset \mathbb{R}^{1}$ is the spatial coordinate and $\Omega \equiv[0,1]$ is the spatial domain. Note that $x=0$ corresponds to

Fig. 1. Sketch of temperature distribution and concentration for the model problem for $t>0$ (note that both quantities are shifted by 1).
the top of the pile at which $T(x, t)$ and $c(x, t)$ are equal to the ambient temperature and concentration, respectively; and $x=1$ corresponds to the bottom of the pile at which $T(x, t)$ is equal to the ground (ambient) temperature, and the concentration gradient is zero. The one-dimensional model accounts only for the vertical variation in the state variable; the length and width of the coal pile are assumed to be much larger than its height. The outputs of interest, s_{1} and s_{2}, are the temperature and concentration at $x=0.2$ both shifted by one, respectively.

We only consider one parameter, the Arrhenius number γ, in this model problem. We assume that γ varies in the range $12 \leq \gamma \leq 12.6$ (Brooks, Balakotaiah, et al., 1988); we thus have $\mu \equiv \gamma \in \mathcal{D} \equiv[12,12.6] \subset \mathbb{R}^{P=1}$. Although the parametric variation is quite small, we will see that the system exhibits a very interesting dynamical behaviour in terms of complex oscillatory patterns for this parameter range.

3.2. Truth approximation

We next derive the weak form of the governing Eqs. (19) and (20) and discretize in time using Euler-Backward. We also introduce the linear finite element truth approximation subspaces $Y_{T} \equiv\{\nu \mid v \in$ $\left.H^{1}(\Omega), v=\left.0\right|_{x=0,1}\right\}$ and $Y_{c} \equiv\left\{v\left|v \in H^{1}(\Omega), v=0\right|_{x=0}\right\}$ both of dimen$\operatorname{sion} \mathcal{N}=501$, where $H^{1}(\Omega)$ is a suitable Hilbert space and $\Omega \equiv[0$, 1] is the spatial domain. We associated to Y_{T} and Y_{C} a set of piecewise linear (over each element) basis functions $\phi_{i}(x), \quad 1 \leq i \leq \mathcal{N}$ (note that we use the same spatial discretization for Y_{T} and Y_{C} and they thus share the same basis). We shall consider the time interval $\bar{I}=[0,6]$ and a timestep $\Delta t=1 \mathrm{E}-3$; we thus have $K=6000$. Our truth approximation is thus: given $\mu \in \mathcal{D}$, find $T^{k}(\mu) \in Y_{T}$ and $c^{k}(\mu) \in Y_{c}$ such that ${ }^{1}$

$$
\begin{align*}
& m\left(T^{k}(\mu), v_{T}\right)+\Delta \operatorname{ta}\left(T^{k}(\mu), v_{T}\right)-\Delta t \\
& \quad \times 4.287 \times 70,000 \int_{\Omega}\left(c^{k}(\mu)+1\right) e^{-\mu /\left(T^{k}(\mu)+1\right)} v_{T} \\
& \quad=m\left(T^{k-1}(\mu), v_{T}\right), \quad \forall v_{T} \in Y_{T}, \quad \forall k \in \mathbb{K} \tag{24}
\end{align*}
$$

$$
\begin{align*}
& m\left(c^{k}(\mu), v_{c}\right)+\Delta t \times 0.233 a\left(c^{k}(\mu), v_{c}\right)+\Delta t \\
& \quad \times 70,000 \int_{\Omega}\left(c^{k}(\mu)+1\right) e^{-\mu /\left(T^{k}(\mu)+1\right)} v_{c} \\
& =m\left(c^{k-1}(\mu), v_{c}\right), \quad \forall v_{c} \in Y_{c}, \quad \forall k \in \mathbb{K} \tag{25}
\end{align*}
$$

[^1]

Fig. 2. Outputs $s_{1}(t ; \mu)$ and $s_{2}(t ; \mu)$ for $\mu=12.0$ as a function of time.
with initial conditions $m\left(T^{0}(\mu), v_{T}\right)=m\left(T_{0}, v_{T}\right), \forall v_{T} \in$ $Y_{T}, m\left(c^{0}(\mu), v_{c}\right)=m\left(c_{0}, v_{c}\right), \forall v_{c} \in Y_{c}$. We then evaluate the outputs from
$s_{1}^{k}(\mu)=\ell\left(T^{k}(\mu)\right)+1, \quad \forall k \in \mathbb{K}$,
and
$s_{2}^{k}(\mu)=\ell\left(c^{k}(\mu)\right)+1, \quad \forall k \in \mathbb{K}$.
Here, $\ell(v)=\int_{\Omega} \delta(x-0.2) v$, where $\delta(x)$ is the Dirac delta function, and the bilinear forms are given by
$m(w, v)=\int_{\Omega} w v, \quad a(w, v)=\int_{\Omega} \frac{\partial w}{\partial x} \frac{\partial v}{\partial x}$.
We also define the nonlinearity g as
$g\left(c^{k}(\mu), T^{k}(\mu) ; \mu\right)=\left(c^{k}(\mu)+1\right) e^{-\mu /\left(T^{k}(\mu)+1\right)}$.
The algebraic equations induced by (24) and (25) directly follow from the discussion in Section 2.1 and are therefore omitted. Note, however, that we now obtain a coupled system of nonlinear equations which have to be solved at each timestep using a Newton iterative scheme.

3.2.1. Numerical results

We present results for the truth approximation. In Fig. 2, we plot the outputs s_{1} and s_{2} for $\mu=12.0$ over (discrete) time. The sharp peak in the temperature output s_{1} and corresponding drop in the concentration output s_{2} indicates the ignition of the system. After the ignition, the system goes into a stable steady-state solution. In Fig. 3 we show the corresponding output plots for $\mu=12.5$; we first note that the ignition occurs at a later point in time and that the maximum temperature reached is higher. For this parameter value the system does not return to a steady-state solution, but converges to a period 1 limit cycle. Finally, we present in Fig. 4 the output plots for $\mu=12.58$. Again, the time of ignition occurs later and the maximum temperature is higher than before. Furthermore, the system converges to a limit cycle with mixed mode oscillations. To clearly visualize the limit cycles, we show in Figs. 5 and 6 the phase plots for the solutions corresponding to the two parameter values $\mu=12.5$ and $\mu=12.58$ without the transient behaviour, respectively. We can clearly see the period 1 limit cycle for $\mu=12.5$; as μ is increased, a period doubling cascade occurs leading to the mixed mode oscillations for $\mu=12.58$.

We note that there is a certain critical parameter value $\mu_{\text {crit }}$: if $\mu<\mu_{\text {crit }}$ the system goes into a stable steady-state solution after the first ignition, whereas if $\mu \geq \mu_{\text {crit }}$ the system converges to a limit

Outputs, $\mu=12.5$

Fig. 3. Outputs $s_{1}(t ; \mu)$ and $s_{2}(t ; \mu)$ for $\mu=12.5$ as a function of time.

Fig. 4. Outputs $s_{1}(t ; \mu)$ and $s_{2}(t ; \mu)$ for $\mu=12.58$ as a function of time.

Fig. 5. Limit cycles in phase plane $\left(s_{1}(t ; \mu)\right.$ vs. $\left.s_{2}(t ; \mu)\right)$ for $\mu=12.5$ without transition from initial condition.

Fig. 6. Limit cycles in phase plane ($s_{1}(t ; \mu)$ vs. $s_{2}(t ; \mu)$) for $\mu=12.58$ without transition from initial condition.
cycle after the first ignition. We numerically identified this critical value to be approximately $\mu_{\text {crit }} \approx 12.24$.

The systems clearly exhibits a very complex dynamic behaviour with a strong dependence on the parameter μ.Approximating such a systems with a reduced order model over parameter and time is certainly a very challenging task.

3.3. Reduced basis approximation

We develop the reduced basis approximation for the coupled system of nonlinear Eqs. (24) and (25) by generalizing the approach described in Section 2.3.1. We first introduce a finite train sample $\Xi_{\text {train }} \subset \mathcal{D}$ and solve and store the solutions $T^{k}(\mu)$ and $c^{k}(\mu)$ to (24) and (25) for all $\mu \in \Xi_{\text {train }}$ and for all $k \in \mathbb{K}$, respectively. Given $g\left(c^{k}(\mu), T^{k}(\mu) ; \mu\right)$ in (29), we generate the nested EIM spaces $W_{M}^{g}=\operatorname{span}\left\{q_{1}, \ldots, q_{M}\right\}, \quad 1 \leq M \leq M_{\text {max }}$, and nested set of interpolation points $T_{M}^{g}=\left\{x_{1}^{g}, \ldots, x_{M}^{g}\right\}, \quad 1 \leq M \leq M_{\text {max }}$, according to the procedure described in Section 2.2.2. Note that the nonlinearity depends on both field variables and we thus have to generalize the definition of the interpolant (11) and of the EIM coefficients (12): the approximation $g_{M}^{c^{k}, T^{k}}(x ; \mu)$ to $g\left(c^{k}(\mu), T^{k}(\mu) ; \mu\right)$ is given by
$g_{M}^{c^{k}, T^{k}}(x ; \mu)=\sum_{m=1}^{M} \varphi_{M m}^{k}(\mu) q_{m}(x)$
where the coefficients $\varphi_{M m}^{k}(\mu)$ are determined from
$\sum_{j=1}^{M} \underline{B}_{i j}^{M} \varphi_{M j}^{k}(\mu)=g\left(c^{k}\left(x_{i}^{g} ; \mu\right), T^{k}\left(x_{i}^{g} ; \mu\right) ; \mu\right), \quad 1 \leq i \leq M$
and $\underline{B}_{i j}^{M}=q_{j}\left(x_{i}^{g}\right), 1 \leq i, j \leq M, 1 \leq M \leq M_{\max }$. Given W_{M}^{g} and T_{M}^{g}, we next define the associated nested reduced-basis spaces for the temperature
$W_{N_{T}}^{T}=\operatorname{span}\left\{\zeta_{T, m}, \quad 1 \leq n \leq N_{T}\right\}, \quad 1 \leq N_{T} \leq N_{T, \max }$,
and the concentration
$W_{N_{c}}^{c}=\operatorname{span}\left\{\zeta_{c, m}, \quad 1 \leq n \leq N_{c}\right\}, \quad 1 \leq N_{c} \leq N_{c, \max }$,
according to the adaptive procedure described in Section 2.3.3. We introduce separate spaces for temperature and concentration with possibly different dimensions N_{T} and N_{C}, respectively.

Our reduced-basis approximation is then: given $\mu \in \mathcal{D}$, $T_{N, M}^{k}(\mu) \in W_{N_{T}}^{T}$ and $c_{N, M}^{k}(\mu) \in W_{N_{c}}^{c}$ satisfy

$$
\begin{align*}
& m\left(T_{N, M}^{k}(\mu), v_{T}\right)+\Delta \operatorname{ta}\left(T_{N, M}^{k}(\mu), v_{T}\right)-\Delta t \times 4.287 \\
& \quad \times 70,000 \int_{\Omega} g_{M}^{c_{N, M}^{k}, T_{N, M}^{k}}(x ; \mu) v_{T} \\
& =m\left(T_{N, M}^{k-1}(\mu), v_{T}\right), \quad \forall v_{T} \in W_{N_{T}}^{T}, \quad \forall k \in \mathbb{K} \tag{34}
\end{align*}
$$

$m\left(c_{N, M}^{k}(\mu), v_{c}\right)+\Delta t \times 0.233 a\left(c_{N, M}^{k}(\mu), v_{c}\right)+\Delta t$
$\times 70,000 \int_{\Omega} g_{M}^{c_{N, M}^{k}, T_{N, M}^{k}}(x ; \mu) v_{c}$
$=m\left(c_{N, M}^{k-1}(\mu), v_{c}\right), \quad \forall v_{c} \in W_{N_{c}}^{c}, \quad \forall k \in \mathbb{K}$
with initial conditions determined from $m\left(T_{N, M}^{0}(\mu), v_{T}\right)=$ $m\left(T_{0}, v_{T}\right), \forall v_{T} \in W_{N_{T}}^{T}$, and $m\left(c_{N, M}^{0}(\mu), v_{c}\right)=m\left(c_{0}, v_{c}\right), \forall v_{c} \in W_{N_{c}}^{c}$; here, $g_{M}^{c_{N, M}^{k}, T_{N, M}^{K}}(x ; \mu)$ is given by
$g_{M}^{c_{N, M}^{k}, T_{N, M}^{k}}(x ; \mu)=\sum_{m=1}^{M} \tilde{\varphi}_{M m}^{k}(\mu) q_{m}(x)$
where the coefficients $\tilde{\varphi}_{M m}^{k}(\mu)$ are determined from
$\sum_{j=1}^{M} \underline{B}_{i j}^{M} \tilde{\varphi}_{M j}^{k}(\mu)=g\left(c_{N, M}^{k}\left(x_{i}^{g} ; \mu\right), T_{N, M}^{k}\left(x_{i}^{g} ; \mu\right) ; \mu\right), \quad 1 \leq i \leq M$,
and $\underline{B}_{i j}^{M}=q_{j}\left(x_{i}^{g}\right), 1 \leq i, j \leq M, 1 \leq M \leq M_{\text {max }}$. Finally, we evaluate the outputs from
$s_{1, N, M}^{k}(\mu)=\ell\left(T_{N, M}^{k}(\mu)\right)+1, \quad \forall k \in \mathbb{K}$,
and
$s_{2, N, M}^{k}(\mu)=\ell\left(c_{N, M}^{k}(\mu)\right)+1, \quad \forall k \in \mathbb{K}$.
The offline-online computational procedure directly follows from the scalar case briefly discussed in Section 2.3.2. We thus omit the details and only summarize the computational cost: the operation count in the online stage is $O\left(M N^{2}+N^{3}\right)$ per Newton step per timestep, where $N=N_{T}+N_{C}$. Again, the operation count in the online stage is thus independent of \mathcal{N}.

4. Numerical results

We now present numerical results for the model problem introduced in Section 3.1. We choose for $\Xi_{\text {train }} \subset \mathcal{D}$ a regular grid of 15 parameter points over \mathcal{D} and we take $\mu_{1}^{g}=12$. Next, we pursue the POD/Greedy-EIM procedure in Algorithm 1 to construct W_{M}^{g}, T_{M}^{g}, and $\underline{B}^{M}, 1 \leq M \leq M_{\max }$, with $M_{\max }=36$. We plot the convergence of the error $\varepsilon_{M, \max }^{g}=\max _{\mu \in \Xi_{\text {train }}} \sum_{k=1}^{K} \| g\left(c^{k}(\mu), T^{k}(\mu) ; \mu\right)-$ $g_{M}^{c^{k}, T^{k}}(x ; \mu) \|_{L^{\infty}(\Omega)}$ in Fig. 7.
We next turn to the reduced basis approximation and construct the reduced basis spaces $W_{N_{T}}^{T}$ and $W_{N_{c}}^{c}$ according to the POD/Greedy procedure in Algorithm 2 using the same train sample $\Xi_{\text {train. }}$. In Fig. 8(a) and (b) we plot, as a function of N_{T}, N_{c}, and M, the maximum relative errors $\epsilon_{N, M, \text { max, rel }}^{T}$ in the temperature and $\epsilon_{N, M, \text { max, rel }}^{c}$ in the concentration, respectively; here $\epsilon_{N, M, \text { max, rel }}^{T}=\max _{\mu \in \Xi_{\text {Test }}}\left\|T^{K}(\mu)-T_{N, M}^{K}(\mu)\right\| /\|/\| T^{K}\left(\mu_{T}\right) \|$, where $\mu_{T} \equiv$ $\arg \max _{\mu \in \Xi_{\text {Test }}}\left\|T^{K}(\mu)\right\| \|$ (similarly for $\epsilon_{N, M, \text { max, rel }}^{c}$) and $\Xi_{\text {Test }}$ is a test sample of size 25 (a regular grid in \mathcal{D}; note that the test and train

Fig. 7. Convergence results for EIM interpolation error.
samples are, of course, different). We observe that the reduced basis approximation converges very rapidly. We also note the "plateau" in the curves for M fixed and the "drops" in the N_{T}, $N_{c} \rightarrow \infty$ asymptotes as M increases: for fixed M the error due to the coefficient function approximation will ultimately dominate for large N_{T} and N_{c}; increasing M renders the coefficient function approximation more accurate, which in turn leads to a drop in the error. We further note that the separation points, or "knees," of the $N_{T}-M$-convergence curves (respectively $N_{c}-M$-convergence curves) reflect a balanced contribution of both error terms; neither N_{T} (resp. N_{C}) nor M limit the convergence of the reduced basis approximation.

We turn to the output estimate and present, in Fig. 9(a) and (b), as a function of N_{T}, N_{c}, the maximum relative output errors $\epsilon_{N, M, \text { max, rel }}^{s_{1}}$ and $\epsilon_{N, M, \text { max, rel }}^{s_{2}}$, respectively; here, $\epsilon_{N, M, \text { max, rel }}^{s}$ is the maximum over $\Xi_{\text {Test }}$ of $\max _{k \in \mathbb{K}}\left|s^{k}(\mu)-s_{N, M}^{k}(\mu)\right| / s_{\max }(\mu)$, where $s_{\max }(\mu) \equiv \max _{k \in \mathbb{K}}\left|s^{k}(\mu)\right|$. We observe also very rapid convergence of the reduced basis output approximation. The output error shows the same behaviour as the error in the energy norm: the M asymptotes level off at a lower and lower error as M increases. To obtain a maximum relative error in both outputs of less than 1%, we require approximately $M=30, N_{T}=13$, and $N_{c}=13$.

In Table 1 we present, as a function of $N=N_{T}=N_{C}$ and M, the average online computational times to calculate $s_{1, N, M}^{k}(\mu)$ and $s_{2, N, M}^{k}(\mu)$ for all $k \in \mathbb{K}$ and for all $\mu \in \Xi_{\text {Test }}$. The values are normalized with respect to the computational time for the direct calculation of the truth approximation output $s_{1}^{k}(\mu)$ and $s_{2}^{k}(\mu)$ for all $k \in \mathbb{K}$. The computational savings are $O(100)$ for all values of $N=N_{T}=N_{c}$ and M. For

Table 1
Online computational times to solve for $s_{1 / 2, N, M}^{k}(\mu)$ normalized with respect to the time to solve for $s_{1 / 2}^{k}(\mu)$ for $1 \leq k \leq K$.

N	M	$s_{1 / 2, N, M}^{k}(\mu), \forall k \in \mathbb{K}$	$s_{1 / 2}^{k}(\mu), \forall k \in \mathbb{K}$
4	12	$2.22 \mathrm{E}-03$	1
8	30	$2.74 \mathrm{E}-03$	1
12	30	$3.42 \mathrm{E}-03$	1
16	36	$3.96 \mathrm{E}-03$	1
20	36	$5.12 \mathrm{E}-03$	1

an accuracy of less than 1% in the output bound ($N_{T}=N_{C}=13, M=30$) the computational savings are approximately a factor of 300 .

In the one parameter case we could also obtain a very efficiently evaluable approximation of the outputs $s_{1,2}^{k}(\mu)$ by performing a direct interpolation of precomputed outputs at certain parameter values. We therefore compare the reduced basis output approximation with this output interpolation. To this end, we assume that we precomputed and stored the "truth" outputs $s_{1 / 2}^{k}(\mu), k \in \mathbb{K}$ for all $\mu \in \Xi_{\text {train }}$. Note that this step requires the same number of "truth" solves as the reduced basis offline stage. Given a new parameter value $\mu \in \mathcal{D}$, we then calculate the interpolated outputs, $s_{1 / 2, \text { int }}^{k}(\mu)$, by performing a linear interpolation at each timestep between the two precomputed solutions whose parameter values are closest to the new parameter value. In Figs. 10 and 11 we present the "truth" output, the reduced basis output, and the interpolated output as well as the errors as a function of time for the temperature and concentration output, respectively. A zoom at the time of ignition of these plots is shown in Figs. 12 and 13. We note that the reduced basis output approximation performs much better than the interpolated output. This is due to the fact that the ignition times change with the parameter and the interpolation thus cannot capture the correct dynamics. We also confirm the superior behaviour of the reduced basis output approximation compared to the interpolated output in Table 2, where we present the maximum relative output error $\epsilon_{\text {max, rel }}^{s}$ as defined previously and the maximum relative

Table 2
Comparison of maximum relative output errors for reduced basis approximation and direct interpolation of the output.

	Reduced basis	Interpolation
$\epsilon_{\max , \text { rel }}^{s_{1}}$	$1.39 \mathrm{E}-03$	$6.74 \mathrm{E}-01$
$\epsilon_{\max , \text { rel }}^{s_{2}}$	$1.16 \mathrm{E}-03$	$4.15 \mathrm{E}-01$
$\epsilon_{\max , \text { rel }, L^{2}(I)}^{s_{1}}$	$2.00 \mathrm{E}-04$	$4.08 \mathrm{E}-01$
$\epsilon_{\max , \text { rel }, L^{2}(I)}^{s_{2}}$	$5.38 \mathrm{E}-05$	$1.49 \mathrm{E}-01$

Fig. 8. Convergence of the reduced basis approximation: maximum relative error in the energy norm.

Fig. 9. Convergence of the reduced basis approximation: maximum relative output error.

Fig. 10. Comparison of reduced basis output $s_{1, N, M}(t ; \mu)$ and interpolated output $s_{1, i n t}(t ; \mu)$ for $\mu=12.5$ and $N_{T}=16, N_{c}=16$, and $M=36$.

Fig. 11. Comparison of reduced basis output $s_{2, N, M}(t ; \mu)$ and interpolated output $s_{2, \text { int }}(t ; \mu)$ for $\mu=12.5$ and $N_{T}=16, N_{c}=16$, and $M=36$.

Fig. 12. Comparison of reduced basis output $s_{1, N, M}(t ; \mu)$ and interpolated output $s_{1, i n t}(t ; \mu)$ for $\mu=12.5$ and $N_{T}=16, N_{c}=16$, and $M=36$, zoom at time of ignition.
$L^{2}(I)$-output error $\epsilon_{\text {max }, \text { rel }, L^{2}(I)}^{s}$, defined as the maximum over $\Xi_{\text {Test }}$ of $\sqrt{\sum_{k=1}^{K}\left(s^{k}(\mu)-s_{N, M / \mathrm{int}}^{k}(\mu)\right)^{2}} / \sqrt{\sum_{k=1}^{K} s^{k}(\mu)^{2}}$.

Finally, we present in Fig. 14 the truth temperature output $s_{1}^{k}(\mu)$, the reduced basis output approximation $s_{1, N, M}^{k}(\mu)$ and the relative

Fig. 13. Comparison of reduced basis output $s_{2, N, M}(t ; \mu)$ and interpolated output $s_{2, \text { int }}(t ; \mu)$ for $\mu=12.5$ and $N_{T}=16, N_{c}=16$, and $M=36$, zoom at time of ignition.

Fig. 14. Output $s_{1}(t ; \mu)$, output estimate $s_{1, N, M}(t ; \mu)$, and relative output error as a function of time for $\mu=12.6$ and $N_{T}=16, N_{c}=16$, and $M=36$.

Fig. 15. Output $s_{2}(t ; \mu)$, output estimate $s_{2, N, M}(t ; \mu)$, and relative output error as a function of time for $\mu=12.6$ and $N_{T}=16, N_{c}=16$, and $M=36$.
error $\left|s_{1}^{k}(\mu)-s_{1, N, M}^{k}(\mu)\right| / s_{1, \max }(\mu)$ as a function of (discrete) time for $\mu=12.6$; here, $s_{1, \max }(\mu)=\max _{k \in \mathbb{K}} k_{1}^{k}(\mu)$. The corresponding results for the concentration output are shown in Fig. 15. Note that $\mu=12.6$ is the most difficult parameter value in terms of dynamic behaviour due to the highest temperature during ignition and the following mixed mode oscillation. The reduced basis approximation reproduces the initial ignition as well as the mixed mode oscillation very well. The maximum relative error (shown on a log-scale) remains approximately on the order of 10^{-4} throughout the whole time interval of interest.

5. Conclusions

We have presented a model order reduction technique for parametrized nonlinear reaction-diffusion systems. To this end, we employed the reduced basis method, a model order reduction technique which proved very powerful for systems with simultaneous dependence on parameter and time. We presented numerical results for a nonlinear reaction-diffusion system modelling the self-ignition of a coal stockpile. The reduced basis approximation converged very fast - despite the complex dynamic behaviour and
strong dependence on the parameter - resulting in a significant dimension reduction. The reduced basis approximation accurately captured the dynamic behaviour and thus also performed clearly superior compared to a direct interpolation of the output.

Our second focus was the development of an efficient offline-online computational procedure even in the presence of strong nonlinearities. To this end, we employed the empirical interpolation method to construct an affine coefficient-function approximation of the nonlinear term. The EIM allows a complete decoupling of the offline stage - where the reduced basis spaces are generated - and the online stage - where, given a new parameter value, we solve the reduced basis approximation and evaluate the output. The online stage depends only on N and M and the parametric complexity of the problem. We observed a significant $O\left(10^{2}\right)$ reduction in online computational time for the solution of the reduced model compared to the solution of the full model.

We thus believe that if there is a high premium on real-time performance or a many-query context - for example in the design, optimization, control, and characterization contexts - the reduced basis approach presented here can be very gainfully employed.

Acknowledgements

I would like to thank Professor Anthony T. Patera of MIT for many fruitful discussions and the anonymous reviewer for helpful comments. This work was supported by the Excellence Initiative of the German Federal and State Governments.

References

Adjerid, S., \& Flaherty, J. E. (1986). A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations. SIAM Journal on Numerical Analysis, 23, 778-796.
Aris, R. (1975a). The mathematical theory of diffusion and reaction in permeable catalysts, Vol. 1. Clarendon Press.
Aris, R. (1975b). The mathematical theory of diffusion and reaction in permeable catalysts, Vol. 2. Clarendon Press.
Astrid, P. (2004). Fast reduced order modeling technique for large scale LTV systems. In Proceedings of the 2004 American control conference, volume 2 Boston, MA, (pp. 762-767).
Balsa-Canto, E., Alonso, A., \& Banga, J. (2004). Reduced-order models for nonlinear distributed process systems and their application in dynamic optimization. Industrial \mathcal{G} Engineering Chemistry Research, 43, 3353-3363.
Barrault, M., Nguyen, N. C., Maday, Y., \& Patera, A. T. (2004). An "empirical interpolation" method: Application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus de l'Académie des Sciences - Series I, 339, 667-672.
Britton, N. (1986). Reaction-diffusion equations and their applications to biology. Academic Press.
Brooks, K., \& Glasser, D. (1986). A simplified model of spontaneous combustion in coal stockpiles. Fuel, 65, 1035-1041.
Brooks, K., Bradshaw, S., \& Glasser, D. (1988). Spontaneous combustion of coal stockpiles - An unusual chemical reaction engineering problem. Chemical Engineering Science, 43, 2139-2145.
Brooks, K., Balakotaiah, V., \& Luss, D. (1988). Effect of natural convection on spontaneous combustion of coal stockpiles. AIChE Journal, 34, 353-365.
Bui, T., Damodaran, M., \& Willcox, K. (2003). Proper orthogonal decomposition extensions for parametric applications in transonic aerodynamics (AIAA paper 2003-4213). In Proceedings of the 15th AIAA computational fluid dynamics conference.
Chaturantabut, S., \& Sorensen, D. C. (2010). Nonlinear model reduction via discrete empirical interpolation. SIAM Journal on Scientific Computing, 32, 2737-2764.
Christensen, E., Brøns, M., \& Sørensen, J. (2000). Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameterdependent nonturbulent flows. SIAM Journal on Scientific Computing, 21, 1419-1434.
Christofides, P. (2001a). Control of nonlinear distributed process systems: Recent developments and challenges. AIChE Journal, 47, 514-518.
Christofides, P. (2001b). Nonlinear and robust control of PDE systems. Birkhäuser.
Daniel, L., Ong, C. S., Low, S. C., Lee, K. H., \& White, J. (2002). Geometrically parameterized interconnect performance models for interconnect synthesis. In Proceedings of the 2002 international symposium on physical design (pp. 202-207).
Eftang, J., Grepl, M., \& Patera, A. (2010). A posteriori error bounds for the empirical interpolation method. Comptes Rendus de l'Académie des Sciences - Series I, 348, 575-579.

Grepl, M., \& Patera, A. (2005). A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis, 39, 157-181.
Grepl, M., Maday, Y., Nguyen, N., \& Patera, A. (2007). Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Mathematical Modelling and Numerical Analysis, 41, 575-605.
Grepl, M. A. (2005). Reduced-basis approximations and a posteriori error estimation for parabolic partial differential equations. Ph.D. thesis. Massachusetts Institute of Technology.
Grepl, M. (2012). Certified reduced basis methods for nonaffine linear time-varying and nonlinear parabolic partial differential equations. Mathematical Models and Methods in Applied Sciences, 22(3).
Gunzburger, M. D., Peterson, J. S., \& Shadid, J. N. (2007). Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data. Computer Methods in Applied Mechanics and Engineering, 196, 1030-1047.
Haasdonk, B., \& Ohlberger, M. (2008). Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: Mathematical Modelling and Numerical Analysis, 42, 277-302.
Hahn, J., \& Edgar, T. (2002). An improved method for nonlinear model reduction using balancing of empirical gramians. Computers \mathcal{E} Chemical Engineering, 26, 1379-1397.
Holmes, P., Lumley, J., \& Berkooz, G. (1996). Turbulence, coherent structures, dynamical systems and symmetry. Cambridge University Press.
Kapila, A. (1983).Asymptotic treatment of chemically reacting systems. New York, NY: Elsevier Science Pub. Co. Inc.
Knezevic, D., Nguyen, N., \& Patera, A. (2011). Reduced basis approximation and a posteriori error estimation for the parametrized unsteady Boussinesq equations. Mathematical Models and Methods in Applied Sciences, 21, 1415-1442.
Lall, S., Marsden, J., \& Glavaski, S. (1999). Empirical model reduction of controlled nonlinear systems. In Proceedings of the 14th IFAC world congress Beijing, China.
Lall, S., Marsden, J. E., \& Glavaski, S. (2002). A subspace approach to balanced truncation for model reduction of nonlinear control systems. International Journal of Robust and Nonlinear Control, 12, 519-535.
Lass, O., \& Volkwein, S. Pod galerkin schemes for nonlinear elliptic-parabolic systems, submitted for publication.
Maday, Y., Nguyen, N., Patera, A., \& Pau, S. (2009). A general multipurpose interpolation procedure: The magic points. Communications on Pure and Applied Analysis, 8, 383-404.
Marquardt, W. (2001). Nonlinear model reduction for optimization based control of transient chemical processes. In Proceedings of the 6th international conference on chemical process control, volume 98 of AIChE symposium h series 326 (pp. 12-42).
Moore, B. (1981). Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Transactions on Automatic Control, 26, 17-32.

Nguyen, N. C., \& Peraire, J. (2008). An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. International Journal for Numerical Methods in Engineering, 76, 27-55.
Prud'homme, C., Rovas, D., Veroy, K., Maday, Y., Patera, A. T., \& Turinici, G. (2002). Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. Journal of Fluids Engineering, 124, 70-80.
Rathinam, M., \& Petzold, L. (2003). A new look at proper orthogonal decomposition. SIAM Journal on Numerical Analysis, 41, 1893-1925.
Romijn, R., Özkan, L., Weiland, S., Ludlage, J., \& Marquardt, W. (2008). A grey-box modeling approach for the reduction of nonlinear systems. Journal of Process Control, 18, 906-914.
Rovas, D., Machiels, L., \& Maday, Y. (2005). Reduced basis output bounds methods for parabolic problems. IMA Journal of Applied Mathematics.
Rowley, C. (2005). Model reduction for fluids using balanced proper orthogonal decomposition. International Journal of Bifurcation and Chaos, 15, 997-1013.
Rozza, G., Huynh, D., \& Patera, A. (2008). Reduced basis approximation and a posteriori error estimation of affinely parametrized elliptic coercive partial differential equations. Archives of Computational Methods in Engineering, 15, 229-275.
Salinger, A., Aris, R., \& Derby, J. (1994). Modeling the spontaneous ignition of coal stockpiles. AIChE Journal, 40, 991-1004.
Schmal, D., Duyzer, J., \& van Heuven, J. (1985). A model for the spontaneous heating of coal. Fuel, 64, 963-972.
Shvartsman, S., \& Kevrekidis, I. (1998). Nonlinear model reduction for control of distributed systems: A computer-assisted study. AIChE Journal, 44, 1579-1595.
Shvartsman, S. Y., Theodoropoulos, C., Rico-Martãnez, R., Kevrekidis, I. G., Titi, E. S., \& Mountziaris, T. J. (2000). Order reduction for nonlinear dynamic models of distributed reacting systems. Journal of Process Control, 10, 177-184.
Sirovich, L., \& Kirby, M. (1987). Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A, 4, 519-524.
Sirovich, L. (1987). Turbulence and the dynamics of coherent structures, part 1: Coherent structures. Quarterly of Applied Mathematics, 45, 561-571.
Smoller, J. (1994). Shock waves and reaction-diffusion equations. Springer.
Veroy, K., \& Patera, A. T. (2005). Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations; rigorous reduced-basis a posteriori error bounds. International Journal for Numerical Methods in Fluids, 47, 773-788.
Veroy, K., Prud'homme, C., \& Patera, A. T. (2003). Reduced-basis approximation of the viscous Burgers equation: Rigorous a posteriori error bounds. Comptes Rendus de l'Académie des Sciences - Series I, 337, 619-624.
Willcox, K., \& Peraire, J. (2002). Balanced model reduction via the proper orthogonal decomposition. AIAA Journal, 40, 2323-2330.
Williams, F. (1985). Combustion theory. San Francisco: Benjamin-Cummings.

[^0]: * Tel.: +49 241 8096470; fax: +49 24180696470

 E-mail address: grepl@igpm.rwth-aachen.de

[^1]: ${ }^{1}$ Note that we use our usual notation here: $T^{k}(\mu)=T\left(x, t^{k} ; \mu\right)$ and $c^{k}(\mu)=c(x$, $\left.t^{k} ; \mu\right)$.

