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a  b  s  t  r  a  c  t

We  present  a  model  order  reduction  technique  for  parametrized  nonlinear  reaction–diffusion  systems.  In
our  approach  we  combine  the  reduced  basis  method  – a computational  framework  for  rapid  evaluation
of  functional  outputs  associated  with  the solution  of  parametrized  partial  differential  equations  – with
the  empirical  interpolation  method  –  a tool  to  construct  “affine”  coefficient-function  approximations  of
nonlinear  parameter  dependent  functions.  We  develop  an  efficient  offline–online  computational  proce-
dure  for  the  evaluation  of  the  reduced  basis  approximation:  in the  offline  stage,  we  generate  the  reduced
basis  space;  in  the  online  stage,  given  a new  parameter  value,  we  calculate  the  reduced  basis  output.  The
operation  count  for the  online  stage  depends  only  on  the  dimension  of the  reduced  order  model  and  the
parametric  complexity  of  the  problem.  The  method  is thus  ideally  suited  for the many-query  or  real-time
contexts.  We  present  numerical  results  for a non-isothermal  reaction–diffusion  model  to confirm  and
test  our  approach.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear reaction–diffusion systems appear in a large num-
ber of real-world applications: ranging from Biology, to Ecology,
to Physiology, to Chemistry (Smoller, 1994). Inherent to these
equations and the specific application area are a large number
of parameters – such as reaction rates or diffusion coefficients –
which, in general, have a very strong influence on the dynamic
behaviour of the system. To analyze and understand the specific
problem, many different parameter combinations have to be inves-
tigated. The solution of reaction–diffusion systems, however, is a
very challenging task because the equations are time-dependent,
often highly nonlinear, and coupled. Efficient solution techniques
which can characterize many parameter combinations are there-
fore important. Furthermore, in many applications – such as
chemical engineering – understanding, modeling, and simulation
is often only the first step; the actual goal is the design, optimiza-
tion, or real-time control of the problem of interest. Model order
reduction techniques are vital in achieving these goals, see e.g.
(Christofides, 2001a,b; Marquardt, 2001; Shvartsman et al., 2000)
and (Balsa-Canto, Alonso, & Banga, 2004; Shvartsman & Kevrekidis,
1998).

∗ Tel.: +49 241 8096470; fax: +49 241 80696470.
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In this paper we propose a model order reduction technique for
nonlinear reaction–diffusion systems whose general formulation is
given by

∂y(x, t; �)
∂t

= ∇ (D(�)∇y(x, t; �))+ g(y(x, t; �); �), (1)

where x ∈ ˝ ⊂ Rd is the spatial domain, � ∈ D  is the parameter
vector, y is the vector-valued field variable, e.g., containing tem-
peratures and concentrations, D(�) is the diffusion matrix, and
g(y ; �) is a vector-valued function containing the (non)linear reac-
tion terms. Our particular application is the self-ignition of a coal
stockpile with Arrhenius type nonlinearity (Brooks, Balakotaiah, &
Luss, 1988). We  note, however, that similar models are also used in
combustion theory (Williams, 1985), biology (Britton, 1986), and
in the description of porous catalysts (Aris, 1975a,b).

Many model-order reduction (MOR) techniques for linear and
nonlinear time-dependent systems are proposed in the literature:
the most well-known are proper orthogonal decomposition (POD
or Karhunen–Loève decomposition) (Holmes, Lumley, & Berkooz,
1996; Sirovich, 1987; Sirovich & Kirby, 1987), balanced truncation
(Moore, 1981), and various related hybrid (Hahn & Edgar, 2002; Lall,
Marsden, & Glavaski, 1999, 2002; Rowley, 2005; Willcox & Peraire,
2002) techniques. It is important to note, however, that most MOR
techniques focus mainly on reduced-order modeling of dynami-
cal systems in which time is considered the only “parameter.” The
development of reduced-order models for problems with a simulta-
neous dependence of the field variable on parameter and time – our
focus here – is much less common (see (Bui, Damodaran, & Willcox,
2003; Christensen, Brøns, & Sørensen, 2000; Daniel, Ong, Low, Lee,
& White, 2002; Gunzburger, Peterson, & Shadid, 2007) for a few
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Nomenclature

x spatial variable
 ̋ spatial domain

� parameter vector
D  admissible parameter domain
y field variable
t time
D diffusion matrix
I  time interval (I ≡ [0,  tf ])
tf final time
K number of timesteps
�t discrete time step size
K set of timesteps, K ≡ {1, . . . , K}
P number of parameters
Y approximation space
()e superscript to denote “exact” (semi-discrete) quan-

tities
f linear form (forcing)
v test function
a bilinear form
m bilinear form
u control input
g nonlinear function
� linear form (output functional)
s output of interest
N  finite element dimension
� finite element basis function
()k superscript to denote timestep
Qa number of terms in affine decomposition of a
�qa parameter dependent functions in affine decompo-

sition of a
aq parameter independent bilinear forms in affine

decomposition of a
(  ) vector quantities
M mass matrix
A stiffness matrix
G vector containing nonlinearity
F load vector

 ̨ thermal diffusivity
Da Damköhler number
gM EIM interpolant of nonlinear function g
ϕ coefficients of EIM approximation
TgM set of EIM interpolation points
	 POD mode, generating function for EIM

train parameter train sample
xg EIM interpolation point
q EIM basis function
Wg
M EIM approximation space

BM EIM nodal value matrix
Wy
N reduced basis space

� reduced basis function
N reduced basis dimension
M dimension of EIM approximation space
()N subscript to denote reduced basis quantities
()N,M subscript to denote reduced basis quantities

(including EIM)
T normalized temperature for model problem
c normalized concentration for model problem
� Arrhenius number
()T subscript to denote temperature related quantities

of model problem

()c subscript to denote concentration related quantities
of model problem


Test parameter test sample

exceptions). Furthermore, it is well known that most MOR  tech-
niques for nonlinear systems do not result in computational savings
compared to the underlying high-dimensional model despite the
often significant dimension reduction (Rathinam & Petzold, 2003).
This is due to the fact that the computational cost to evaluate the
nonlinearity in the reduced order model, i.e., assembly and sub-
sequent projection, still depends on the dimension of the original
high-dimensional model. In most cases this cost outweighs the cost
of solving the nonlinear system of equations. Two approaches to
resolve this issue have been proposed previously in Astrid (2004)
and Romijn, Özkan, Weiland, Ludlage, and Marquardt (2008).

Our goal is the development of a model order reduction
technique for coupled nonlinear reaction–diffusion systems that
permits (i) the simultaneous dependence of the field variable
(and output) on both time and parameters, and (ii) an efficient
offline–online computational procedure which results in signif-
icant computational savings when solving the reduced system.
To achieve these goals we  pursue the reduced basis method
(Prud’homme et al., 2002); see (Rozza, Huynh, & Patera, 2008) for
a recent review of contributions to the methodology. The reduced
basis method is a model order reduction technique that has proven
to admit efficient and reliable reduced-order approximations for a
large class of parametrized partial differential equations. For lin-
ear time-dependent problems we refer the interested reader to,
e.g., (Grepl & Patera, 2005; Haasdonk & Ohlberger, 2008; Rovas,
Machiels, & Maday, 2005), and for nonlinear problems to, e.g.,
(Grepl, Maday, Nguyen, & Patera, 2007; Knezevic, Nguyen, & Patera,
2011; Nguyen & Peraire, 2008; Veroy & Patera, 2005). More specif-
ically, reduced basis approximation of reaction–diffusion systems
were first considered in Grepl (2005).

This paper is organized as follows: In Section 2 we  provide a
review of the reduced basis method for parametrized nonlinear
parabolic problems. In Section 3 we extend the methodology to
treat nonlinear reaction–diffusion systems. As a specific example,
we consider a model for the self-ignition of a coal stockpile with
Arrhenius type nonlinearity. Numerical results showing the per-
formance of our model order reduction technique are presented in
Section 4. We  offer concluding remarks in Section 5.

2. Methodology

We  present a review of the reduced basis method for scalar
parametrized nonlinear parabolic problems. The presentation of
this section is as follows: first, we  introduce an abstract problem
statement; we then introduce the empirical interpolation method
for constructing a coefficient-function approximation of the non-
linear term; finally, we  develop the reduced basis approximation
for nonlinear parabolic problems and discuss computational com-
plexity.

2.1. Problem formulation

Our focus here is on nonlinear parabolic partial differen-
tial equations (PDEs) with parametric dependence. The reduced
basis approximation is based on the weak formulation of the
governing equation. We  therefore state the general abstract formu-
lation and subsequently present a concrete example: a nonlinear
reaction–diffusion equation with Arrhenius type nonlinearity.
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For simplicity, we directly consider a time-discrete frame-
work associated to the time interval I ≡]0, tf] (I ≡ [0,  tf ]). We
divide I into K subintervals of equal length �t = (tf)/K and define
tk≡ k�t, 0 ≤ k ≤ K; for notational convenience, we also introduce
K ≡ {1, . . . , K}. We  shall consider Euler-Backward for the time inte-
gration; we can also readily treat higher-order schemes such as
Crank–Nicolson (Grepl, 2005).

The abstract formulation can be stated as follows: given a
parameter � ∈ D  ⊂ R

P , the field variable ye(x, tk ; �) ∈ Ye, ∀k ∈ K,
satisfies the weak form of the �-parametrized parabolic PDE

m(ye(tk; �), v) + �ta(ye(tk; �), v; �) + �t

∫
˝

g(ye(tk; �); x; �)v

= m(ye(tk−1; �), v) + �tf  (v)u(tk), ∀v ∈ Ye, ∀k ∈ K,  (2)

with initial condition (say) ye(x, t0 ; �) = 0. Here, D  is the parame-
ter domain in which our P-tuple (input) parameter � resides; Ye is
an appropriate Hilbert space; and  ̋ ⊂ R

d is our spatial domain, a
point in which shall be denoted by x. Furthermore, f(·) and a(· , · ; �),
m(· , ·) are continuous bounded linear and bilinear forms, respec-
tively; u(tk) denotes the “control input” at time t = tk; and g(w; x; �)
is a nonlinear function continuous in its arguments. We  assume
here that f(·), and m(· , ·) do not depend on the parameter; parameter
dependence, however, is readily admitted (Grepl & Patera, 2005).
We note that if an explicit scheme such as Euler-Forward is used, we
then arrive at a linear system for ye(tk ; �) but now burdened with
a conditional stability restriction on �t.  In that case, the discrete
reduced basis system will also be inherently linear.

In general, we are not interested in the field variable – such
as temperature – at all points in  ̋ per se, but rather at specific
performance metrics or outputs – such as averaged temperatures or
heat fluxes – of the system. These outputs are typically functionals
of the field variable: given the solution ye(x, tk ; �) ∈ Ye, ∀k ∈ K,  of
(2), we evaluate the (here, single) output of interest from

se(tk; �) = �(ye(tk; �)), ∀k ∈ K, (3)

where �(·) is a linear bounded functional.
The superscript e denotes the “exact” – more precisely, semi-

discrete – problem. In actual practice, of course, we do not have
access to the exact solution; we thus replace the exact solution
with a reference (or “truth”) approximation, which resides in (say)
a suitably fine piecewise-linear finite element approximation space
Y ⊂ Ye of very large dimension N. We  associated to Y a set of piece-
wise linear (over each element) basis functions �i(x), 1 ≤ i ≤ N.
Our “truth” finite element approximation yk(�) ≡ y(tk ; �) ∈ Y to the
semi-discrete problem (2) is then given by

m(yk(�), v) + �ta(yk(�), v; �) + �t

∫
˝

g(yk(�); x; �)v

= m(yk−1(�), v) + �tf  (v)u(tk), ∀v ∈ Y, ∀k ∈ K,  (4)

with initial condition y(t0 ; �) = 0; we then evaluate the output
sk(�) ≡ s(tk; �) ∈ R  from

sk(�) = �(yk(�)), ∀k ∈ K.  (5)

Note that in the sequel we will drop the explicity dependence on the
spatial variable x and use the notation yk(�) = y(x, tk ; �) unless the
x-dependence is essential. We  shall assume – hence the appellation
“truth” – that the discretization is sufficiently rich such that yk(�)
and ye(tk ; �) and hence sk(�) and se(tk ; �) are indistinguishable.
The reduced-basis approximation shall be built upon our reference
finite element approximation, and the reduced-basis error will thus
be evaluated with respect to yk(�) ∈ Y.

We  shall further assume that the bilinear form a depends
affinely on the parameter � and can be expressed as

a(w, v; �) =
Qa∑
q=1

�qa(�)aq(w, v), ∀w, v ∈ Y, ∀� ∈ D, (6)

for some (preferably) small integer Qa. Here, the function �qa(�) :
D  → R  depends on �, but the continuous form aq does not depend
on �. We  note that the assumption of affine parameter dependence
(6) holds for many problems with both property (i.e. physical) and
geometry parametric variations (Rozza et al., 2008).

We also briefly recall the algebraic equations induced by
(4) and (5).  We  expand yk(�) =

∑N
n=1�j(x)y

k
j
(�), then yk(�) =

[yk1(�) . . . ykN(�)]T ∈ R
N satisfies

(M + �tA(�))yk(�) + �tG(yk(�); �) = Myk−1(�)

+�tFu(tk), ∀k ∈ K,  (7)

with initial condition y0(�) = 0; we then evaluate the output from

sk(�) = LTyk(�), ∀k ∈ K. (8)

The elements of the mass and stiffness matrices M ∈ R
N×N

and A(�) ∈ R
N×N are given by Mi,j = m(�j, �i), 1 ≤ i, j ≤ N

and Ai,j(�) = a(�j, �i; �), 1 ≤ i, j ≤ N, respectively; the ele-
ments of the nonlinear term are given by Gi(y

k(�); �) =∫
˝
g(yk(�); x; �)�i, 1 ≤ i ≤ N; and the elements of the load

vector F ∈ R
N are given by Fi = f (�i), 1 ≤ i ≤ N.

Example 1 (A nonlinear reaction diffusion problem). We  consider a
single one-step reaction of a reacting mixture in the region  ̋ = [0,
1]. The combustion model is given by the PDE (Adjerid & Flaherty,
1986; Kapila, 1983)

∂T(x, t)
∂t

= ˛
∂2
T(x, t)
∂x2

+ Da(1 − T(x, t))e−�/(T(x,t)+1), (9)

with initial condition T(x, t = 0) = 0 and boundary conditions T(x = 0,
t) = T(x = 1, t) = 0. Here, T(x, t) is the temperature at position x and
time t,  ̨ is the thermal diffusivity, Da is the Damköhler number,
and � is the Arrhenius number.

The governing Eq. (9) depends on three parameters; we may
thus define the input parameter vector � = [�1, �2, �3] ≡ [˛, Da,
�]. We next derive the weak formulation of (9) and discretize
in time using Euler-Backward and in space using finite elements.
The equation then assumes the form (4) with m(w, v) =

∫
wvd˝,

a(w, v; �) = ˛
∫

(∂w/∂x)(∂v/∂x)d˝, f (v) = 0, and the nonlinearity
is given by g(w; �) = Da(1 − w)e−�/(w+1). We  note that a(w, v; �)
trivially satisfies the affine parameter dependence with Qa = 1:
�1
a(�) =  ̨ and a1(w, v) =

∫
(∂w/∂x)(∂v/∂x)d˝.

2.2. Empirical interpolation method

The empirical interpolation method (EIM), introduced in
Barrault, Nguyen, Maday, and Patera (2004),  serves to construct
affine approximations of parameter dependent non-affine or non-
linear functions. The method is frequently applied in reduced
basis approximations of parametrized partial differential equations
(Grepl et al., 2007); an affine approximation of the operator allows
an “offline–online” computational procedure and is thus crucial for
efficiency.

2.2.1. Motivation
We  begin by motivating the need for the EIM. To this

end, we suppose that we  are given a reduced basis space
Wy
N = span{�n, 1 ≤ n ≤ N}, where the �n, 1 ≤ n ≤ N, are the basis
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functions. If we were to follow the classical recipe, the reduced basis
approximation would be obtained by a standard Galerkin projec-
tion: given � ∈ D, the reduced basis approximation ykN(�) ∈ Wy

N to
yk(�) ∈ Y is the solution of

m(ykN(�), v) + �ta(ykN(�), v; �) + �t

∫
˝

g(ykN(�); x; �)v

= m(yk−1
N (�), v) + �tf  (v)u(tk), ∀v ∈ Wy

N, ∀k ∈ K,  (10)

with initial condition yN(t0 ; �) = 0. We  note that, given a new
parameter value �, the terms involving the bilinear and linear
forms m,  a, and f can be efficiently evaluated in an offline–online
computational procedure (Rozza et al., 2008). However, the non-
linear term

∫
˝
g(ykN(�); x; �)v must be evaluated online for every

new parameter value; the operation count for the online stage
will thus scale as O(N), where N  is the dimension of the under-
lying finite element truth approximation. Despite the dimension
reduction N 
 N, the online cost to evaluate the reduced basis
approximation will thus be comparable to the cost to evaluate
the truth approximation. This is the reason why most model order
reduction techniques for nonlinear problem do not result in com-
putational savings compared to the underlying high-dimensional
approximation (Rathinam & Petzold, 2003).

The EIM allows us to completely decouple the evaluation of the
reduced basis approximation from the truth approximation. We
also note that other approaches to resolve this problem have been
proposed previously, see e.g. (Astrid, 2004; Romijn et al., 2008).
Recently, the EIM has also been applied in combination with the
Proper Orthogonal Decomposition in Chaturantabut and Sorensen
(2010); also see Lass and Volkwein (submitted for publication) for
a comparison of the two approaches.

2.2.2. Function interpolation
The basic idea of the EIM is to approximate the nonlinear

function g(yk(�); x; �), ∀k ∈ K,  by an affine combination of pre-
computed basis functions. To this end, we first define the EIM
approximation space Wg

M = span{qj, 1 ≤ j ≤ M}  of dimension M,
where the qj are – in essence – precomputed snapshots of the non-
linear parameter dependent function. Given Wg

M , we construct an

approximation gy
k

M (x; �) ∈ Wg
M, ∀k ∈ K,  to the nonlinear function

g(yk(�); x; �), ∀k ∈ K,  as a linear combination of the EIM basis
functions, i.e., we have

gy
k

M (x; �) =
M∑
j=1

ϕkMj(�)qj(x). (11)

The coefficients ϕk
Mj

(�) are determined through the interpola-
tion condition: the interpolant and the nonlinear function have to
be identical at the EIM interpolation points TgM = {xg1, xg2, . . . , xgM},
a set of judiciously selected points in the spatial domain. More
specifically, we obtain the coefficients ϕk

Mj
(�) by solving the linear

system

M∑
j=1

BMij ϕ
k
Mj(�) = g(yk(xg

i
; �); xg

i
; �), 1 ≤ i ≤ M,  ∀k ∈ K,  (12)

where the nodal value matrix is defined as BMi,j = qj(x
g
i
), 1 ≤ i, j ≤

M. Note that the left hand side of (12) is identical to gy
k

M (xg
i
; �).

It remains to construct the basis Wg
M and set of interpolation

points TgM . This construction is based on a POD/Greedy selection
process which is summarized in Algorithm 1 and explained in detail
below. We  present the procedure described in Grepl (2012); see
(Maday, Nguyen, Patera, & Pau, 2009) for the linear nonaffine case.

Before explaining the steps in Algorithm 1, we need to intro-
duce a finite train sample 
train ⊂ D  of size |
train| which shall
serve as our computational surrogate for D. We  also require the
function PODL2(˝)({wk(�), 1 ≤ k ≤ K}), which returns the largest
POD mode, 
1, with respect to the ( · , · )L2(˝) inner product. Here,
L2(˝)  is the space of square integrable functions over ˝.  We
use the method of snapshots to obtain 
1 (Sirovich, 1987): to
this end, we  solve the eigenvalue problem C i = �i i for ( 1 ∈
R
K , �1 ∈ R) associated with the largest eigenvalue of C, where
Cij = (wi(�), wj(�))L2(˝), 1 ≤ i, j ≤ K; we then obtain the first POD

mode from 
1 =
∑K

k=1 
1
k
wk(�).

The POD/Greedy-EIM procedure in Algorithm 1 proceeds by
induction: we first choose randomly an initial parameter value
�1 ∈ D  and calculate the first POD mode, 	1(x), of the time-history
of the nonlinear function evaluated at yk(�1) in step 2. In steps 3
and 4 we choose the first interpolation point, xg1, to be the spatial
point where 	1(x) is maximal, the first basis function, q1(x), to be the
normalized POD mode 	1(x)/	1(xg1), and the nodal value matrix, B1,
is simply q1(x) evaluated at xg1. We  thus obtain a one-dimensional
EIM approximation to the nonlinear function.

Given the current EIM approximation, we perform a greedy
search over 
train in step 6 to find the parameter value where the
L∞(˝)  norm of the interpolation error over time is maximal, i.e.,
where the approximation is worst. We  then calculate the largest
POD mode, 	M+1(x), of the time-history of the interpolation error at
this parameter value in steps 7 and 8. Note that we perform a POD
on the interpolation error instead of the nonlinear function itself
in order to consistently “add” new information at each step of the
POD/Greedy procedure. Given 	M+1(x), we  evaluate the next inter-
polation point and basis function: in steps 9 and 10 we  calculate
the residual vector rM+1(x), in step 11 we set the next interpolation
point, xgM+1, to be the spatial point where the residual is maximal,
and in step 12 we set the next basis function, qM+1(x), to be the
normalized residual. We  then expand the EIM space in step 13 and
update the nodal value matrix in step 14. Finally, we increment
M and go back to step 6 if M ≤ Mmax− 1. In general, we may  also
specify a desired error tolerance, �tol,min, and stop the procedure as

soon as max
�∈
train

∑K
k=1‖g(yk(x; �); x; �) − gy

k

M (x; �)‖L∞(˝) ≤ �tol,min is

satisfied; Mmax is then indirectly determined through the stopping
criterion.

Alogorithm 1. POD/Greedy-EIM Algorithm.
1. specify 
train ⊂ D, Mmax, �1 ∈ D  (arbitrary).
2. 	1(x) = PODL2(˝)({g(yk(x; �1); x; �1), 1 ≤ k ≤ K}).
3.  set M = 1, xg1 = argsup

x∈˝
|	1(x)| and q1(x) = 	1(x)/	1(xg1)

4. set Wg
1 ≡ span{q1} and B1

1,1 = q1(xg1) = 1.
5. while M ≤ Mmax − 1 do

6.  �M+1 = arg max
�∈
train

∑K

k=1
‖g(yk(x; �); x; �)  − gy

k

M
(x; �)‖L∞(˝) ,

where gy
k

M
is calculated from (11) and (12);

7.  ek
M,EIM(�) = g(yk(�M+1); x; �M+1) − gy

k

M
(x; �M+1), ∀k ∈ K;

8. 	M+1(x) = PODL2(˝)({ekM,EIM(�M+1), 1 ≤ k ≤ K});
9. solve for �M

j
from

∑M

j=1
�M
j
qj(x

g
i
) = 	M+1(xg

i
), 1 ≤ i ≤ M;

10. set rM+1(x) ≡ 	M+1(x) −
∑M

j=1
�M
j
qj(x);

11. set xg
M+1 ≡ argsup

x∈˝
|rM+1(x)|;

12. set qM+1(x) ≡ rM+1(x)/rM+1(xg
M+1);

13. Wg
M+1 ← Wg

M
∪ span{qM+1(x)};

14. BM+1
i,j
= qj(x

g
i
), 1 ≤ i, j ≤ M + 1;

15.  M ← M + 1;
16. end

Note that by construction, the EIM space satisfies Wg
M =

span{qm(x), 1 ≤ m ≤ M}  = span{	m(x), 1 ≤ m ≤ M}. Furthermore,
the nodal value matrix BM , 1 ≤ M ≤ Mmax, is lower triangular and
hence computation of the EIM coefficients ϕk

Mj
in (12) is an O(M2)
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operation per timestep. It can be shown that the interpolation pro-
cess is well-defined. For more details on the EIM including an a
priori and a posteriori error analysis for the linear nonaffine case
we refer the interested reader to Barrault et al. (2004), Eftang, Grepl,
and Patera (2010), Grepl et al. (2007), Maday et al. (2009).

We note that we do require the truth solution for all � in 
train
in Algorithm 1 to generate the EIM interpolation points and space.
The overall computational cost is thus very high and the procedure
only viable if there is a clear demand for real-time response or a
many query context.

2.3. Reduced basis method

In Section 2.2.1 we briefly introduced a straightforward reduced
basis approximation to the nonlinear problem (4). We  now return
to this discussion and show that we can devise a very efficient
offline–online computational strategy by combining the EIM with
the reduced basis approximation.

2.3.1. Approximation
We  suppose that we are given the nested reduced basis spaces

Wy
N = span{�n, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, (13)

where the �n, 1 ≤ n ≤ N, are mutually orthogonal basis functions.
We comment on the adaptive procedure for constructing the basis
functions in Section 2.3.3.

Given the nested EIM space Wg
M = span{q1, . . . , qM}, 1 ≤ M ≤

Mmax, and nested set of interpolation points TgM = {xg1, . . . , xgM}, 1 ≤
M ≤ Mmax, our reduced basis approximation ykN,M(�) to yk(�) is

obtained by a standard Galerkin projection: given � ∈ D, ykN,M(�) ∈
Wy
N satisfies

m(ykN,M(�), v) + �ta(ykN,M(�), v; �) + �t

∫
˝

g
yk
N,M
M (x; �)v

= m(yk−1
N,M(�), v) + �tf  (v)u(tk), ∀v ∈ Wy

N, ∀k ∈ K,  (14)

with initial condition y0
N,M(�) = 0. We  then evaluate the output

approximation, skN,M(�) ∈ R, from

skN,M(�) = �(ykN,M(�)), ∀k ∈ K.  (15)

Comparing (14) and (10) we observe that the nonlinearity

g(ykN(�); x; �) is now replaced by its EIM approximation g
yk
N,M
M (x; �).

Here, g
yk
N,M
M (x; �) ∈ Wg

M is given by

g
yk
N,M
M (x; �) =

M∑
i=1

ϕ̃kMi(�)qi(x), (16)

where the coefficients ϕ̃k
Mi

(�), 1 ≤ i ≤ M,  are obtained through the
interpolation condition, i.e., the solution of the linear system

M∑
j=1

BMij ϕ̃
k
Mj(�) = g(ykN,M(xg

i
; �); xg

i
; �), 1 ≤ i ≤ M, ∀k ∈ K.  (17)

Note that the space Wg
M is constructed based on g(yk(�) ; x ; �) and

not g(ykN,M(�); x; �). However, as N and M increase the reduced

basis solution ykN,M(�) converges to the truth solution yk(�) very

rapidly. We  thus expect g(ykN,M(�); x; �) to be well approximated in

Wg
M . We  shall observe the (in fact, exponential) convergence when

we discuss numerical results in Section 4.
We note that the need to incorporate the empirical interpolation

method into the reduced basis approximation only exists for high-
order polynomial or non-polynomial nonlinearities (Grepl et al.,

2007). If g is a low-order (or at most quadratically) polynomial non-
linearity in yk(�), we can expand the nonlinear terms into their
power series and develop an efficient, i.e., online N-independent,
offline–online computational decomposition using the standard
Galerkin procedure (Veroy & Patera, 2005; Veroy, Prud’homme, &
Patera, 2003). We  also note that for linear or nonlinear problems
with a non-affine parameter dependence the EIM is always required
to develop an efficient offline–online computational procedure for
the nonaffine terms.

2.3.2. Computational procedure
The EIM allows us to develop an efficient offline–online compu-

tational procedure to solve (14). We  omit the details here and refer
the interested reader to Grepl et al. (2007), Grepl, (2012).  The main
idea is to first express ykN,M(�) as

ykN,M(�) =
N∑
n=1

ykN,Mn(�) �n (18)

and choose as test functions v = �j, 1 ≤ j ≤ N,  in (14). We then

invoke the affine representation (16) of g
yk
N,M
M and (17) to obtain a

nonlinear algebraic system of dimension N which we solve at each
timestep using a Newton iterative scheme.

During the offline stage we  generate the reduced basis space and
evaluate several parameter independent quantities – the offline
operation count thus depends on N, the dimension of the under-
lying “truth” finite element approximation space. The operation
count in the online stage, however, is (to leading order) O(MN2 + N3)
per Newton iteration per timestep and thus independent of N. Since
N 
 N  we expect significant computational savings in the online
stage relative to classical discretization and solution approaches.
We will confirm these savings in Section 4.

2.3.3. Adaptive sampling procedure
Given Wg

M , TgM , and BM , we  invoke a POD/Greedy sampling pro-
cedure – a combination of the proper orthogonal decomposition
(POD) in time with a Greedy selection procedure in parameter
space – to generate Wy

N (Grepl, 2012; Haasdonk & Ohlberger,

2008). We  shall use the “best” possible approximation g
yk
N,M
M (x; �)

of g(ykN,M; x; �) during the sampling process so as to minimize
the error induced by the empirical interpolation procedure, i.e.,
we set M = Mmax. The POD/Greedy Algorithm is summarized in
Algorithm 2. Here, PODX ({wk(�), 1 ≤ k ≤ K}) returns the largest
POD mode with respect to the (· , ·)X = a(· , · ; �ref) inner product,
where �ref ∈ D  is a reference parameter value; projX,WN (w) denotes
the X-orthogonal projection of w ∈ X onto Wy

N; and the energy norm

is defined as |||wk|||2 = m(wk, wk) + �t
∑k

k′=1a(w
k′ , wk

′
; �).

Alogorithm 2. POD/Greedy Algorithm.
1. Specify 
train ⊂ D, Nmax, �1 ∈ D  (arbitrary).
2.  Set Wy

0 = {0} and N = 1.
3.  while N ≤ Nmax − 1 do
4.  ek

N,proj
(�N ) = yk(�N ) − projX,Wy

N−1
(yk(�N )), ∀k ∈ K;

5.  Wy
N
← Wy

N−1 ∪ PODX ({ek
N,proj

(�N ), 1 ≤ k ≤ K});
6. �N+1 = arg max

�∈
train

|||yK (�) − yK
N,M

(�)|||/|||yK (�)|||;

7. N ← N + 1;
8. end

In general, we may  also specify a desired error tolerance,
�tol,min, and stop the procedure as soon as max

�∈
train

|||yK (�) −

yKN,M(�)|||/|||yK (�)||| ≤ �tol,min is satisfied; Nmax is then indirectly
determined through the stopping criterion.
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3. Nonlinear reaction–diffusion systems

In this section we consider a specific problem belonging
to the class of nonlinear reaction–diffusion systems (Smoller,
1994). Reaction–diffusion systems appear in a large num-
ber of real-world applications: ranging from Biology, where
reaction–diffusion equations characterize the pattern formation
in morphogenesis and mutations in genetics; to Ecology, where
they govern predator–prey relation and the spreading of epi-
demics; to Physiology, where the conduction in nerves and carbon
monoxide poisoning is described by reaction–diffusion equa-
tions; to Chemistry, probably the most notable application area
of reaction–diffusion equations. Furthermore, inherent to these
equations and the specific application area are a large number of
parameters, which, in general, have a very strong influence on the
dynamic behaviour of the system, e.g., such as reaction rates in
chemistry. The reduced basis method is thus ideally suited for the
treatment of parametrized nonlinear reaction–diffusion systems.

We now extend the methodology introduced in the last section
to coupled systems of nonlinear equations. We  introduced sep-
arate reduced basis spaces for each field variable. Furthermore,
we employ the EIM to generate an affine approximation of the
nonlinear coupling term, thus allowing an efficient offline–online
procedure even for the coupled system of nonlinear equations.

3.1. Model problem

As a specific example, we consider a one-dimensional non-
isothermal reaction–diffusion model for the self-ignition of a coal
stockpile with Arrhenius type nonlinearity (Brooks, Balakotaiah,
et al., 1988; Brooks, Bradshaw, & Glasser, 1988; Brooks & Glasser,
1986; Salinger, Aris, & Derby, 1994; Schmal, Duyzer, & van Heuven,
1985). In practice this problem arises if large piles of coal are stored,
e.g., in harbors, over extended periods of time. As the oxygen in the
air reacts with the coal, the pile starts to heat up and can eventually
self-ignite if certain conditions – on porosity, oxygen concentration,
and coal size – are met. We  also note that similar models are used in
combustion theory (see Example 1), biology, and in the description
of porous catalysts.

The field variables are the temperature of the reactive medium
(here, the coal) normalized by the ambient temperature, T(x, t) =
(T(x, t) − T∞)/T∞, and the concentration of the reactant (here, the
oxygen in the air) normalized by the concentration of oxygen in the
ambient air, c(x, t) = (c(x, t) − c∞)/c∞. The coupled set of govern-
ing equations are given by Brooks, Balakotaiah, et al. (1988)

∂T(x, t)
∂t

=∇2T(x, t)+4.287×70, 000(c(x, t) + 1)e−�/(T(x,t)+1), (19)

∂c(x, t)
∂t

= 0.233∇2c(x, t) − 70,  000(c(x, t) + 1)e−�/(T(x,t)+1), (20)

with initial conditions

T(x, t = 0) = T0 = 0, (21)

c(x, t = 0) = c0 =
1

(3x  + 1)2
− 1. (22)

The boundary conditions are

T(x, t)|x=0 = 0, T(x, t)|x=1 = 0,

c(x, t)|x=0 = 0,
∂c(x, t)
∂x

∣∣∣∣
x=1

= 0. (23)

A sketch of the distribution of temperature and concentration for
t > 0 is shown in Fig. 1. Here, x ∈  ̋ ⊂ R

1 is the spatial coordinate
and  ̋≡ [0, 1] is the spatial domain. Note that x = 0 corresponds to

Fig. 1. Sketch of temperature distribution and concentration for the model problem
for t > 0 (note that both quantities are shifted by 1).

the top of the pile at which T(x, t) and c(x, t) are equal to the ambient
temperature and concentration, respectively; and x = 1 corresponds
to the bottom of the pile at which T(x, t) is equal to the ground
(ambient) temperature, and the concentration gradient is zero. The
one-dimensional model accounts only for the vertical variation in
the state variable; the length and width of the coal pile are assumed
to be much larger than its height. The outputs of interest, s1 and s2,
are the temperature and concentration at x = 0.2 both shifted by
one, respectively.

We  only consider one parameter, the Arrhenius number � ,
in this model problem. We assume that � varies in the range
12 ≤ � ≤ 12.6 (Brooks, Balakotaiah, et al., 1988); we  thus have
� ≡ � ∈ D  ≡ [12, 12.6] ⊂ R

P=1. Although the parametric variation
is quite small, we  will see that the system exhibits a very interest-
ing dynamical behaviour in terms of complex oscillatory patterns
for this parameter range.

3.2. Truth approximation

We  next derive the weak form of the governing Eqs. (19) and
(20) and discretize in time using Euler-Backward. We also introduce
the linear finite element truth approximation subspaces YT ≡ {v|v ∈
H1(˝), v = 0|x=0,1} and Yc ≡ {v|v ∈ H1(˝), v = 0|x=0} both of dimen-
sion N  = 501, where H1(˝)  is a suitable Hilbert space and  ̋≡ [0,
1] is the spatial domain. We  associated to YT and Yc a set of piece-
wise linear (over each element) basis functions �i(x), 1 ≤ i ≤ N
(note that we  use the same spatial discretization for YT and Yc and
they thus share the same basis). We  shall consider the time inter-
val I = [0,  6] and a timestep �t  = 1E − 3; we thus have K = 6000.
Our truth approximation is thus: given � ∈ D, find Tk(�) ∈ YT and
ck(�) ∈ Yc such that1

m(Tk(�), vT ) + �ta(Tk(�), vT ) − �t

× 4.287 × 70,  000

∫
˝

(ck(�) + 1)e−�/(Tk(�)+1)vT

= m(Tk−1(�), vT ), ∀vT ∈ YT , ∀k ∈ K (24)

m(ck(�), vc) + �t  × 0.233a(ck(�), vc) + �t

× 70,  000

∫
˝

(ck(�) + 1)e−�/(Tk(�)+1)vc

= m(ck−1(�), vc), ∀vc ∈ Yc, ∀k ∈ K (25)

1 Note that we use our usual notation here: Tk(�) = T(x, tk ; �) and ck(�) = c(x,
tk ; �).
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Fig. 2. Outputs s1(t ; �) and s2(t ; �) for � = 12.0 as a function of time.

with initial conditions m(T0(�), vT ) = m(T0, vT ), ∀vT ∈
YT , m(c0(�), vc) = m(c0, vc), ∀vc ∈ Yc . We  then evaluate the
outputs from

sk1(�) = �(Tk(�)) + 1, ∀k ∈ K,  (26)

and

sk2(�) = �(ck(�)) + 1, ∀k ∈ K.  (27)

Here, �(v) =
∫
˝
ı(x − 0.2)v, where ı(x) is the Dirac delta function,

and the bilinear forms are given by

m(w, v) =
∫
˝

wv, a(w, v) =
∫
˝

∂w
∂x
∂v
∂x
. (28)

We also define the nonlinearity g as

g(ck(�), Tk(�); �) = (ck(�) + 1)e−�/(Tk(�)+1). (29)

The algebraic equations induced by (24) and (25) directly follow
from the discussion in Section 2.1 and are therefore omitted. Note,
however, that we now obtain a coupled system of nonlinear equa-
tions which have to be solved at each timestep using a Newton
iterative scheme.

3.2.1. Numerical results
We  present results for the truth approximation. In Fig. 2, we plot

the outputs s1 and s2 for � = 12.0 over (discrete) time. The sharp
peak in the temperature output s1 and corresponding drop in the
concentration output s2 indicates the ignition of the system. After
the ignition, the system goes into a stable steady-state solution.
In Fig. 3 we show the corresponding output plots for � = 12.5; we
first note that the ignition occurs at a later point in time and that
the maximum temperature reached is higher. For this parameter
value the system does not return to a steady-state solution, but
converges to a period 1 limit cycle. Finally, we present in Fig. 4 the
output plots for � = 12.58. Again, the time of ignition occurs later
and the maximum temperature is higher than before. Furthermore,
the system converges to a limit cycle with mixed mode oscillations.
To clearly visualize the limit cycles, we show in Figs. 5 and 6 the
phase plots for the solutions corresponding to the two  parame-
ter values � = 12.5 and � = 12.58 without the transient behaviour,
respectively. We  can clearly see the period 1 limit cycle for � = 12.5;
as � is increased, a period doubling cascade occurs leading to the
mixed mode oscillations for � = 12.58.

We  note that there is a certain critical parameter value �crit: if
� < �crit the system goes into a stable steady-state solution after the
first ignition, whereas if � ≥ �crit the system converges to a limit
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Fig. 3. Outputs s1(t ; �) and s2(t ; �) for � = 12.5 as a function of time.
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Fig. 6. Limit cycles in phase plane (s1(t ; �) vs. s2(t ; �)) for � = 12.58 without tran-
sition from initial condition.

cycle after the first ignition. We  numerically identified this critical
value to be approximately �crit≈ 12.24.

The systems clearly exhibits a very complex dynamic behaviour
with a strong dependence on the parameter �. Approximating such
a systems with a reduced order model over parameter and time is
certainly a very challenging task.

3.3. Reduced basis approximation

We  develop the reduced basis approximation for the coupled
system of nonlinear Eqs. (24) and (25) by generalizing the approach
described in Section 2.3.1. We  first introduce a finite train sam-
ple 
train ⊂ D  and solve and store the solutions Tk(�) and ck(�)
to (24) and (25) for all � ∈ 
train and for all k ∈ K,  respectively.
Given g(ck(�), Tk(�) ; �) in (29), we generate the nested EIM spaces
Wg
M = span{q1, . . . , qM}, 1 ≤ M ≤ Mmax, and nested set of interpo-

lation points TgM = {xg1, . . . , xgM}, 1 ≤ M ≤ Mmax, according to the
procedure described in Section 2.2.2. Note that the nonlinearity
depends on both field variables and we thus have to generalize the
definition of the interpolant (11) and of the EIM coefficients (12):

the approximation gc
k,Tk

M (x; �) to g(ck(�), Tk(�) ; �) is given by

gc
k,Tk

M (x; �) =
M∑
m=1

ϕkMm(�)qm(x) (30)

where the coefficients ϕkMm(�) are determined from

M∑
j=1

BMij ϕ
k
Mj(�) = g(ck(xg

i
; �), Tk(xg

i
; �); �), 1 ≤ i ≤ M (31)

and BMij = qj(x
g
i
), 1 ≤ i, j ≤ M,  1 ≤ M ≤ Mmax. Given Wg

M and TgM , we
next define the associated nested reduced-basis spaces for the tem-
perature

WT
NT
= span{�T,m, 1 ≤ n ≤ NT }, 1 ≤ NT ≤ NT,max, (32)

and the concentration

Wc
Nc
= span{�c,m, 1 ≤ n ≤ Nc}, 1 ≤ Nc ≤ Nc,max, (33)

according to the adaptive procedure described in Section 2.3.3. We
introduce separate spaces for temperature and concentration with
possibly different dimensions NT and Nc, respectively.

Our reduced-basis approximation is then: given � ∈ D,
TkN,M(�) ∈ WT

NT
and ckN,M(�) ∈ Wc

Nc
satisfy

m(TkN,M(�), vT ) + �ta(TkN,M(�), vT ) − �t  × 4.287

× 70,  000

∫
˝

g
ck
N,M

,Tk
N,M

M (x; �)vT

= m(Tk−1
N,M(�), vT ), ∀vT ∈ WT

NT
, ∀k ∈ K (34)

m(ckN,M(�), vc) + �t  × 0.233a(ckN,M(�), vc) + �t

× 70,  000

∫
˝

g
ck
N,M

,Tk
N,M

M (x; �)vc

= m(ck−1
N,M(�), vc), ∀vc ∈ Wc

Nc
, ∀k ∈ K (35)

with initial conditions determined from m(T0
N,M(�), vT ) =

m(T0, vT ), ∀vT ∈ WT
NT

, and m(c0
N,M(�), vc) = m(c0, vc), ∀vc ∈ Wc

Nc
;

here, g
ck
N,M

,Tk
N,M

M (x; �) is given by

g
ck
N,M

,Tk
N,M

M (x; �) =
M∑
m=1

ϕ̃kMm(�)qm(x) (36)

where the coefficients ϕ̃kMm(�) are determined from

M∑
j=1

BMij ϕ̃
k
Mj(�) = g(ckN,M(xg

i
; �), TkN,M(xg

i
; �); �), 1 ≤ i ≤ M, (37)

and BMij = qj(x
g
i
), 1 ≤ i, j ≤ M,  1 ≤ M ≤ Mmax. Finally, we  evaluate the

outputs from

sk1,N,M(�) = �(TkN,M(�)) + 1, ∀k ∈ K,  (38)

and

sk2,N,M(�) = �(ckN,M(�)) + 1, ∀k ∈ K.  (39)

The offline–online computational procedure directly follows from
the scalar case briefly discussed in Section 2.3.2. We  thus omit the
details and only summarize the computational cost: the opera-
tion count in the online stage is O(MN2 + N3) per Newton step per
timestep, where N = NT + Nc. Again, the operation count in the online
stage is thus independent of N.

4. Numerical results

We  now present numerical results for the model problem intro-
duced in Section 3.1.  We  choose for 
train ⊂ D  a regular grid of
15 parameter points over D  and we take �g1 = 12. Next, we  pur-
sue the POD/Greedy-EIM procedure in Algorithm 1 to construct
Wg
M , TgM , and BM , 1 ≤ M ≤ Mmax, with Mmax = 36. We  plot the con-

vergence of the error εgM,max = max
�∈
train

∑K
k=1‖g(ck(�), Tk(�); �) −

gc
k,Tk

M (x; �)‖L∞(˝) in Fig. 7.
We next turn to the reduced basis approximation and con-

struct the reduced basis spaces WT
NT

and Wc
Nc

according to the
POD/Greedy procedure in Algorithm 2 using the same train sam-
ple 
train. In Fig. 8(a) and (b) we  plot, as a function of NT, Nc,
and M,  the maximum relative errors �T

N,M,max,rel in the temper-
ature and �c

N,M,max,rel in the concentration, respectively; here

�T
N,M,max,rel = max

�∈
Test

|||TK (�) − TKN,M(�)|||/|||TK (�T )|||,  where �T ≡
arg max

�∈
Test

|||TK (�)||| (similarly for �c
N,M,max,rel) and 
Test is a test

sample of size 25 (a regular grid in D; note that the test and train
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samples are, of course, different). We  observe that the reduced
basis approximation converges very rapidly. We  also note the
“plateau” in the curves for M fixed and the “drops” in the NT,
Nc→ ∞ asymptotes as M increases: for fixed M the error due to
the coefficient function approximation will ultimately dominate
for large NT and Nc; increasing M renders the coefficient function
approximation more accurate, which in turn leads to a drop in
the error. We  further note that the separation points, or “knees,”
of the NT–M-convergence curves (respectively Nc–M-convergence
curves) reflect a balanced contribution of both error terms; nei-
ther NT (resp. Nc) nor M limit the convergence of the reduced basis
approximation.

We turn to the output estimate and present, in Fig. 9(a)
and (b), as a function of NT, Nc, the maximum relative output
errors �s1

N,M,max,rel and �s2
N,M,max,rel, respectively; here, �s

N,M,max,rel is

the maximum over 
Test of max
k∈K
|sk(�) − skN,M(�)|/smax(�), where

smax(�) ≡ max
k∈K
|sk(�)|. We  observe also very rapid convergence of

the reduced basis output approximation. The output error shows
the same behaviour as the error in the energy norm: the M-
asymptotes level off at a lower and lower error as M increases. To
obtain a maximum relative error in both outputs of less than 1%,
we require approximately M = 30, NT = 13, and Nc = 13.

In Table 1 we present, as a function of N = NT = Nc and M,  the aver-
age online computational times to calculate sk1,N,M(�) and sk2,N,M(�)
for all k ∈ K and for all � ∈ 
Test. The values are normalized with
respect to the computational time for the direct calculation of the
truth approximation output sk1(�) and sk2(�) for all k ∈ K.  The com-
putational savings are O(100) for all values of N = NT = Nc and M.  For

Table 1
Online computational times to solve for sk

1/2,N,M
(�) normalized with respect to the

time to solve for sk
1/2

(�) for 1 ≤ k ≤ K.

N M sk
1/2,N,M

(�), ∀k ∈ K sk
1/2

(�), ∀k ∈ K

4 12 2.22E−03 1
8  30 2.74E−03 1

12  30 3.42E−03 1
16  36 3.96E−03 1
20 36 5.12E−03 1

an accuracy of less than 1% in the output bound (NT = Nc = 13, M = 30)
the computational savings are approximately a factor of 300.

In the one parameter case we  could also obtain a very efficiently
evaluable approximation of the outputs sk1,2(�) by performing a
direct interpolation of precomputed outputs at certain parameter
values. We therefore compare the reduced basis output approxima-
tion with this output interpolation. To this end, we assume that we
precomputed and stored the “truth” outputs sk1/2(�), k ∈ K for all
� ∈ 
train. Note that this step requires the same number of “truth”
solves as the reduced basis offline stage. Given a new parameter
value � ∈ D, we  then calculate the interpolated outputs, sk1/2,int(�),
by performing a linear interpolation at each timestep between the
two precomputed solutions whose parameter values are closest to
the new parameter value. In Figs. 10 and 11 we present the “truth”
output, the reduced basis output, and the interpolated output as
well as the errors as a function of time for the temperature and
concentration output, respectively. A zoom at the time of ignition
of these plots is shown in Figs. 12 and 13.  We  note that the reduced
basis output approximation performs much better than the inter-
polated output. This is due to the fact that the ignition times change
with the parameter and the interpolation thus cannot capture the
correct dynamics. We  also confirm the superior behaviour of the
reduced basis output approximation compared to the interpolated
output in Table 2, where we present the maximum relative out-
put error �smax,rel as defined previously and the maximum relative

Table 2
Comparison of maximum relative output errors for reduced basis approximation
and direct interpolation of the output.

Reduced basis Interpolation

�s1
max,rel

1.39E−03 6.74E−01
�s2

max,rel
1.16E−03 4.15E−01

�s1
max,rel,L2(I)

2.00E−04 4.08E−01

�s2
max,rel,L2(I)

5.38E−05 1.49E−01
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Fig. 8. Convergence of the reduced basis approximation: maximum relative error in the energy norm.
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Fig. 9. Convergence of the reduced basis approximation: maximum relative output error.
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Fig. 10. Comparison of reduced basis output s1,N,M(t ; �) and interpolated output
s1,int(t ; �) for � = 12.5 and NT = 16, Nc = 16, and M = 36.
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Fig. 11. Comparison of reduced basis output s2,N,M(t ; �) and interpolated output
s2,int(t ; �) for � = 12.5 and NT = 16, Nc = 16, and M = 36.
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Fig. 12. Comparison of reduced basis output s1,N,M(t ; �) and interpolated output
s1,int(t ; �) for � = 12.5 and NT = 16, Nc = 16, and M = 36, zoom at time of ignition.

L2(I)-output error �s
max,rel,L2(I)

, defined as the maximum over 
Test

of
√∑K

k=1(sk(�) − sk
N,M/int(�))2/

√∑K
k=1s

k(�)2.

Finally, we present in Fig. 14 the truth temperature output sk1(�),
the reduced basis output approximation sk1,N,M(�) and the relative
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Fig. 13. Comparison of reduced basis output s2,N,M(t ; �) and interpolated output
s2,int(t ; �) for � = 12.5 and NT = 16, Nc = 16, and M = 36, zoom at time of ignition.



Author's personal copy

M.A. Grepl / Computers and Chemical Engineering 43 (2012) 33– 44 43

0 1 2 3 4 5 6
0

1

2

3

4

Time t

O
ut

pu
t s

1(t
;μ

)

Temperature,μ = 12.6 s
1
(t;μ)

s
1,N
 (t;μ)

0 1 2 3 4 5 6
10

−8

10
−6

10
−4

10
−2

Time t

R
el

. E
rr

or
 in

 s
1(t

;μ
)

Fig. 14. Output s1(t ; �), output estimate s1,N,M(t ; �), and relative output error as a
function of time for � = 12.6 and NT = 16, Nc = 16, and M = 36.
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Fig. 15. Output s2(t ; �), output estimate s2,N,M(t ; �), and relative output error as a
function of time for � = 12.6 and NT = 16, Nc = 16, and M = 36.

error |sk1(�) − sk1,N,M(�)|/s1,max(�) as a function of (discrete) time

for � = 12.6; here, s1,max(�) = max
k∈K

sk1(�). The corresponding results

for the concentration output are shown in Fig. 15.  Note that � = 12.6
is the most difficult parameter value in terms of dynamic behaviour
due to the highest temperature during ignition and the following
mixed mode oscillation. The reduced basis approximation repro-
duces the initial ignition as well as the mixed mode oscillation very
well. The maximum relative error (shown on a log-scale) remains
approximately on the order of 10−4 throughout the whole time
interval of interest.

5. Conclusions

We have presented a model order reduction technique for
parametrized nonlinear reaction–diffusion systems. To this end,
we employed the reduced basis method, a model order reduction
technique which proved very powerful for systems with simultane-
ous dependence on parameter and time. We  presented numerical
results for a nonlinear reaction–diffusion system modelling the
self-ignition of a coal stockpile. The reduced basis approximation
converged very fast – despite the complex dynamic behaviour and

strong dependence on the parameter – resulting in a significant
dimension reduction. The reduced basis approximation accurately
captured the dynamic behaviour and thus also performed clearly
superior compared to a direct interpolation of the output.

Our second focus was the development of an efficient
offline–online computational procedure even in the presence of
strong nonlinearities. To this end, we employed the empirical
interpolation method to construct an affine coefficient-function
approximation of the nonlinear term. The EIM allows a complete
decoupling of the offline stage – where the reduced basis spaces
are generated – and the online stage – where, given a new param-
eter value, we  solve the reduced basis approximation and evaluate
the output. The online stage depends only on N and M and the
parametric complexity of the problem. We  observed a significant
O(102) reduction in online computational time for the solution of
the reduced model compared to the solution of the full model.

We thus believe that if there is a high premium on real-time
performance or a many-query context – for example in the design,
optimization, control, and characterization contexts – the reduced
basis approach presented here can be very gainfully employed.
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