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Moments - Interpolation approach

||e|| ≤ β(ν)||u|| with lim
ν→n

β(ν) = 0
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Moments - Interpolation approach

W (s∗) = Wr (s
∗) . . .

dkW (s)

dsk

∣∣∣∣
s=s∗

=
dkWr (s)

dsk

∣∣∣∣
s=s∗
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Moments - Interpolation approach

Let

V =
[
(s∗I − A)−1B, (s∗I − A)−2B, . . . , (s∗I − A)−kB

]
,

be the generalized reachability matrix and W any matrix such that

W ∗V = I

Then a reduced order model which matched the moments of the system
at s∗ is described by the equations

ξ̇ = W ∗AV ξ + W ∗Bu

y = CV ξ + Du
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Moments - Time domain approach

Consider a linear, single-input, single-output, continuous-time, system
described by the equations

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) (1)

and let
W (s) = C (sI − A)−1B

be the associated transfer function.

Definition

The 0-moment of system (1) at si ∈ C is the complex number
η0(si ) = C (si I − A)−1B. The k-moment of system (1) at si ∈ C is the
complex number

ηk(si ) =
(−1)k

k!

[
dk

dsk
(C (sI − A)−1B)

]
s=si

with k ≥ 1 and integer.
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Moments - Time domain approach

Lemma

Suppose si /∈ σ(A). Then there exists a one-to-one relation between the
moments η0(s1), . . . , ηk1 (s1), . . . , η0(sη), . . . , ηkη (sη) and the matrix
CΠ, where Π is the unique solution of the Sylvester equation

AΠ + BL = ΠS ,

with S ∈ Rν×ν any non-derogatory matrix with characteristic polynomial

p(s) =

η∏
i=1

(s − si )
ki , where ν =

η∑
i=1

ki , and L such that the pair (L,S) is

observable.

K. Gallivan, A. Vandendorpe, and P. Van Dooren, Model reduction and
the solution of Sylvester equations, in Proc. MTNS, Kyoto, Japan, 2006.
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Moments - Time domain approach

The interconnected system has a globally invariant manifold given by

M =
{

(x , ω) ∈ Rn+ν : x = Πω
}

with Π the unique solution of the Sylvester AΠ + BL = ΠS .
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Moments - Time domain approach

The interconnected system has a globally invariant manifold given by

M =
{

(x , ω) ∈ Rn+ν : x = Πω
}

with Π the unique solution of the Sylvester AΠ + BL = ΠS . As a result

y(t) = CΠω(t) + CeAt(x(0)− Πω(0))

where the first term on the right-hand side describes the steady-state
response of the system, and the second term on the right-hand side the
transient response.
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Moments for nonlinear systems

The interconnected system has a local invariant manifold

M =
{

(x , ω) ∈ Rn+ν : x = π(ω)
}

if π(ω) solves f (π(ω), l(ω)) =
∂π

∂ω
s(ω).
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{

(x , ω) ∈ Rn+ν : x = π(ω)
}

if π(ω) solves f (π(ω), l(ω)) =
∂π

∂ω
s(ω). Then

y(t) = h(π(ω)) + ε(t, x(0)− π(ω(0)))

and the steady-state response is by definition the moment of the
nonlinear system at s(ω).
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The key message

In this talk I will try to convey the message that the one-to-one
relation between moments and steady-state response is a flexible
and powerful tool to extend the moment matching approach to general
class of systems.

Our toolbox is constituted by the steady-state equations

x(t) = Πω(t)

x(t) = π(ω(t))

x(t) = Π(t)ω(t)
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Motivations

I Time-delay systems are ubiquitous
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Motivations

I Time-delay systems are ubiquitous

I Delays generate unexpected behavior

I Model reduction for linear and nonlinear systems

I What is the role of the delay in the reduced order model?
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Definition of moment for LTD systems

Consider a linear, single-input, single-output, continuous-time, time-delay
system described by the equations

ẋ =
ς∑

j=0

Ajxτj +

µ∑
j=ς+1

Bjuτj , y =
ς∑

j=0

Cjxτj , (2)

and let W (s) =
ς∑

j=0

Cje
−sτj

(
sI −

ς∑
j=0

Aje
−sτj

)−1 µ∑
j=ς+1

Bje
−sτj .

Definition
The k-moment of system (2) at si ∈ C is the complex number

ηk(si ) =
(−1)k

k!

[
dk

dsk

(
ς∑

j=0

Cje
−sτj

(
sI −

ς∑
j=0

Aje
−sτj

)−1 µ∑
j=ς+1

Bje
−sτj

)]
s=si

with k ≥ 0 integer.
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Definition of moment for LTD systems

Lemma

Let Ā(s) =
ς∑

j=0

Aje
−sτj and suppose si /∈ σ(Ā(si )) for all i = 1, . . . , η. Then

there exists a one-to-one relation between the moments η0(s1), . . . , ηk1 (s1),

. . . , η0(sη), . . . , ηkη (sη) and the matrix
ς∑

j=0

CjΠe−Sτj , where Π is the unique

solution of the Sylvester-like equation

ς∑
j=0

AjΠe−Sτj − ΠS = −
µ∑

j=ς+1

BjLe
−Sτj

with S ∈ Rν×ν any non-derogatory matrix with characteristic polynomial

p(s) =

η∏
i=1

(s − si )
ki , where ν =

η∑
i=1

ki and L such that the pair (L, S) is

observable.
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Moments for LTD - Time domain

The interconnected system has a globally invariant manifold given by

M =
{

(x , ω) ∈ Rn+ν : x = Πω
}

with Π the unique solution of the Sylvester-like equation.
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(x , ω) ∈ Rn+ν : x = Πω
}

with Π the unique solution of the Sylvester-like equation. As a result

y(t) =
ς∑

j=0

CjΠe−Sτjω +
ς∑

j=0

CjL−1{(sI − Ā(s))−1(x(0)− Πω(0))}

where the first term on the right-hand side describes the steady-state response
of the system, and the second term the transient response.
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Neutral type - Distributed delays

ẋ =

q∑
j=1

Dj ẋcj +
ς∑

j=0

Ajxτj +

µ∑
j=ς+1

Bjuτj +
r∑

j=1

∫ t

t−hj

(Gjx(θ) + Hju(θ))dθ
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j=ς+1

Bjuτj +
r∑

j=1

∫ t

t−hj

(Gjx(θ) + Hju(θ))dθ

The relation between moments and steady-state response is a powerful tool!

x(t) = Πω(t) ωτ = eSτω(t)

∫ t

t−h

ω(θ)dθ = S−1(I − e−Sh)ω(t)
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Dj ẋcj +
ς∑

j=0

Ajxτj +

µ∑
j=ς+1

Bjuτj +
r∑

j=1

∫ t

t−hj

(Gjx(θ) + Hju(θ))dθ

The relation between moments and steady-state response is a powerful tool!

x(t) = Πω(t) ωτ = eSτω(t)

∫ t

t−h

ω(θ)dθ = S−1(I − e−Sh)ω(t)

Hence, the associated Sylvester-like equation is

ς∑
j=0

AjΠe−Sτj +
r∑

j=1

GjΠS−1(I − e−Shj ) +

q∑
j=1

DjΠSe−Scj − ΠS =

= −
µ∑

j=ς+1

BjLe
−Sτj −

r∑
j=1

HjLS
−1(I − e−Shj ).

Π unique if si /∈ σ

(
q∑

j=1

Djse
−scj +

ς∑
j=0

Aje
−sτj +

r∑
j=1

Gj
1− e−shj

s

)
and si 6= 0.
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Reduced model with free parameters

The system

ξ̇ =

%∑
j=0

Fjξχj +

ρ∑
j=%+1

Gjuχj , ψ =
d∑

j=0

Hjξχj ,

is a model of the original system at S , if sl /∈ σ

(
%∑

j=0

Fje
−slχj

)
for all

l = 1, . . . , η, and there exists a unique solution P of the equation

%∑
j=0

FjPe
−Sχj − PS = −

ρ∑
j=%+1

GjLe
−Sχj ,

such that
ς∑

j=0

CjΠe−Sτj =
d∑

j=0

HjPe
−Sχj
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d∑

j=0

Hjξχj ,

is a model of the original system at S , if sl /∈ σ

(
%∑

j=0

Fje
−slχj

)
for all

l = 1, . . . , η, and there exists a unique solution P of the equation

%∑
j=0

FjPe
−Sχj − PS = −

ρ∑
j=%+1

GjLe
−Sχj ,

such that
ς∑

j=0

CjΠe−Sτj =
d∑

j=0

HjPe
−Sχj
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Reduced model with free parameters

To construct a family of models that achieves moment matching at ν points
select P = I . This yields the family of reduced order models

ξ̇ =

(
S −

ρ∑
j=%+1

GjLe
−Sχj −

%∑
j=1

Fje
−Sχj

)
ξ +

%∑
j=1

Fjξχj +

ρ∑
j=%+1

Gjuχj ,

ψ =

(
ς∑

j=0

CjΠe−Sτj −
d∑

j=1

Hje
−Sχj

)
ξ +

d∑
j=1

Hjξχj ,

with Gj , Fj and Hj any matrices.
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d∑

j=1

Hje
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j=1
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with Gj , Fj and Hj any matrices.

The delay-free model is in this family

ξ̇ = (S − G1L)ξ + Gu,

ψ =
ς∑

j=0

CjΠe−Sτj ξ
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Example - Exploiting Fj

Consider the model of a LC transmission line described by the equations

ẋ1 = − 1

C1

(
1

R1
+

√
C0

L

)
x1 −

2

C1

√
C0

L

1− R0

√
C0
L

1 + R0

√
C0
L

x2τ + b1u,

ẋ2 = x1 +
1− R0

√
C0
L

1 + R0

√
C0
L

x2τ + b1u,

y = c1x1 + c2x2,
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ẋ2 = x1 +
1− R0

√
C0
L

1 + R0

√
C0
L

x2τ + b1u,

y = c1x1 + c2x2,

Giordano Scarciotti
Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems
19/56



Example - Exploiting Fj

Consider the model of a LC transmission line described by the equations
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A family of reduced order models at (S = 1, L = 1), parameterized in G , is
described by the equations

ξ̇ =

1− e−τ
1− R0

√
C0
L

1 + R0

√
C0
L

− G

 ξ +
1− R0

√
C0
L

1 + R0

√
C0
L

ξτ + Gu,

ψ =
[
c1 c2

]
Πξ.
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Interpolating (ρ + 1)ν points

Can we exploit the additional free parameters to interpolate more points?
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Interpolating (ρ + 1)ν points

Can we exploit the additional free parameters to interpolate more points?

Let Sa ∈ Rν×ν and Sb ∈ Rν×ν be two matrices such that σ(Sa) ∩ σ(Sb) = ∅.
Consider F0 and H0 given before with χ2 = 0, S = Sa, d = 1 and L = La = Lb.
Then the selection

F1 = (Sb − Sa − G3(e−Sbχ3 − e−Saχ3 ))(e−Sbχ1 − e−Saχ1 )−1,

F0 = Sa − G2L− G3Le
−Saχ3 − F1e

−Saχ1 ,

H1 = (CΠb − CΠa)(e−Sbχ1 − e−Saχ1 )−1,

H0 = CΠa − H1e
−Saχ1 ,

belongs to the family of reduced order models achieving moment matching at
Sa and Sb, for any G2 and G3, with Pa = Pb = I .
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From delay-free to time-delay
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Bode plot of a n = 1006 delay-free system (blue/solid line), of a ν = 8
delay-free reduced order model (black/dash-dotted line) and a ν = 8 time-delay
reduced order model (red/dotted line). The squares indicate the first set of
interpolation points, whereas the circles indicate the second set.
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Moment for NLTD systems
Consider a nonlinear, single-input, single-output, continuous-time, time-delay
system described by the equations

ẋ = f (xτ0 , . . . , xτς , uτµ), y = h(x)

Consider a signal generator described by the equations

ω̇ = s(ω), θ = l(ω),

and the interconnected system

ω̇ = s(ω), ẋ = f (xτ0 , . . . , xτς , l(ωτµ)), y = h(x).

Assumption

There exists a unique mapping π(ω), locally defined in a neighborhood of
ω = 0, which solves the partial differential equation

∂π

∂ω
s(ω) = f (π(ω̄τ0 ), . . . , π(ω̄τς ), l(ω̄τµ)) (3)

where ω̄τi = Φs
τi (ω) is the flow of the vector field s at τi .
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ω̇ = s(ω), ẋ = f (xτ0 , . . . , xτς , l(ωτµ)), y = h(x).

Assumption

There exists a unique mapping π(ω), locally defined in a neighborhood of
ω = 0, which solves the partial differential equation

∂π

∂ω
s(ω) = f (π(ω̄τ0 ), . . . , π(ω̄τς ), l(ω̄τµ)) (3)

where ω̄τi = Φs
τi (ω) is the flow of the vector field s at τi .

Giordano Scarciotti
Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems
23/56



Moment for NLTD systems

Assumption

The signal generator is observable.

Definition

The function h(π(ω)), with π solution of equation (3), is the moment of
the system at (s(ω), l(ω)).

Theorem

Assume the zero equilibrium of the system ẋ = f (xτ0 , . . . , xτς , 0) is locally
exponentially stable and s(ω) is Poisson stable. Then there exists a
unique π(ω) and the moment of the system at (s(ω), l(ω)) coincides with
the steady-state response of the output of the interconnected system.

Giordano Scarciotti
Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems
24/56



Moment for NLTD systems

Assumption

The signal generator is observable.

Definition

The function h(π(ω)), with π solution of equation (3), is the moment of
the system at (s(ω), l(ω)).

Theorem

Assume the zero equilibrium of the system ẋ = f (xτ0 , . . . , xτς , 0) is locally
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Reduced order model for NLTD systems

A family of models that achieves moment matching at (s(ω), l(ω)) is
described by the equations

ξ̇ = s(ξ)− δ(ξ)l(ξ̄χu )− γ(ξ̄χ1 , . . . , ξ̄χ%) + γ(ξχ1 , . . . , ξχ%) + δ(ξ)uχu

ψ = h(π(ξ))

where ω̄χi = Φs
χi

(ω) and δ and γ are arbitrary mappings such that

∂p

∂ω
s(ω) = s(p(ω))− δ(p(ω))l(p(ω̄χu )) + δ(p(ω))l(ωχu )−

− γ(p(ω̄χ1 ), . . . , p(ω̄χ%)) + γ(p(ωχ1 ), . . . , p(ωχ%))

has the unique solution p(ω) = ω.
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Dynamics of an oilwell drillstring

∂2θ

∂z2
(z , t) =

I

GJ

∂2θ

∂t2
(z , t), z ∈ (0, L), t > 0

coupled to the mixed boundary conditions

GJ
∂θ

∂z
(0, t) = ca

(
∂θ

∂z
(0, t)− Ω(t)

)
, GJ

∂θ

∂z
(L, t)+IB

∂2θ

∂t2
(L, t) = −T

(
∂θ

∂t
(L, t)

)
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Dynamics of an oilwell drillstring

Reduced order model Open-loop reduced order model

ξ̇ = −δ(ξ) [ξ − rτ2 ]

ψ = π(ξ)

ξ̇ = −δ(ξ) [ξ − µτ2 ]

µ = −k1π(ξ̇τ2 )− k2π(ξτ2 ) + r

ψ = π(ξ)
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Recap and further directions

The problem of model reduction by moment matching has been changed
from a problem of interpolation of points to a problem of interpolation of
signals. The output of the reduced order model has to behave as the
output of the original system for a class of input signals, a concept which
can be translated to nonlinear systems, time-delay systems and...
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The problem of model reduction by moment matching has been changed
from a problem of interpolation of points to a problem of interpolation of
signals. The output of the reduced order model has to behave as the
output of the original system for a class of input signals, a concept which
can be translated to nonlinear systems, time-delay systems and...

The results described are based on the availability of a differential
representation of the signal generator, namely ω̇ = Sω. However, there
are notable applications in which this may not be the case. For instance,
the input of a dynamical system describing a power electronic device can
often be a PWM wave (e.g. a square or sawtooth wave) which cannot be
represented as the output of a system described by smooth differential
equations.
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Analysis of a square wave

Consider a square wave u(t) defined as

u(t) = sign(sin(t)) =


1, (k − 1)π < t < kπ,

0, t = kπ or t = (k + 1)π,

−1, kπ < t < (k + 1)π,

i.e. with sign(0) = 0, and k = 1, 3, 5, . . . ,+∞.
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Consider a square wave u(t) defined as

u(t) = sign(sin(t)) =


1, (k − 1)π < t < kπ,

0, t = kπ or t = (k + 1)π,

−1, kπ < t < (k + 1)π,

i.e. with sign(0) = 0, and k = 1, 3, 5, . . . ,+∞.

The Laplace transform of this function is

L(u(t)) =
1− e−sπ

s(1 + e−sπ)
,

and this has the poles

s1 = 0, si = (2j + 1)ι,

with j = −∞, . . . ,−1, 0, 1, . . . ,+∞.
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Analysis of a square wave

Since the function u(t) is periodic, it admits a Fourier series, namely

u(t) =
4

π

∞∑
i=1,3,5,...,+∞

1

i
sin(it).
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Analysis of a square wave

Since the function u(t) is periodic, it admits a Fourier series, namely

u(t) =
4

π

∞∑
i=1,3,5,...,+∞

1

i
sin(it).

The Laplace and Fourirer transform of the square wave suggest that we could
describe u(t) by means of the infinite dimensional system

ω̇ =



. . .
. . .

. . . +2ι 0
0 +ι 0

0 0 0
0 −ι 0

0 −2ι
. . .

. . .
. . .


ω

with output u = Pω for some “matrix” P.
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i=1,3,5,...,+∞

1

i
sin(it).

The Laplace and Fourirer transform of the square wave suggest that we could
describe u(t) by means of the infinite dimensional system

ω̇ =



. . .
. . .

. . . +2ι 0
0 +ι 0

0 0 0
0 −ι 0

0 −2ι
. . .

. . .
. . .


ω

with output u = Pω for some “matrix” P.
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Generator in explicit form

To overcome these issues we consider signal generators in explicit form. Thus,
consider

ω(t) = Λ(t, t0)ω0, u = Lω,

Note that for linear systems in implicit form

Λ(t, t0) = eS(t−t0).
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consider

ω(t) = Λ(t, t0)ω0, u = Lω,

Note that for linear systems in implicit form

Λ(t, t0) = eS(t−t0).

But it describes a very large class of signals: noncontinuos periodic signals,
time-varying systems, a subclass of hybrid systems, a subclass of nonlinear
systems,...

We want to characterize the “moments” of the following interconnection

ω(t) = Λ(t, t0)ω0

ẋ = Ax + BLω

y = Cx
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Characterization of the moments

Theorem

Let Π(t) =

(
eA(t−t0)Π(t0) +

∫ t

t0

eA(t−τ)BLΛ(τ, t0)dτ

)
Λ(t, t0)−1

be a family of matrix valued functions parametrized in Π(t0) ∈ Rn×ν . Given
“mild” assumptions there exists a unique Π∞(t0) such that, for any Π(t0),

lim
t→+∞

Π(t)− Π∞(t) = 0. Moreover, if x(t0) = Π∞(t0)ω(t0) then

x(t)−Π∞(t)ω(t) = 0 for all t ≥ t0, and the set {(x , ω) | x(t) = Π∞(t)ω(t)} is
attractive.
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x(t)−Π∞(t)ω(t) = 0 for all t ≥ t0, and the set {(x , ω) | x(t) = Π∞(t)ω(t)} is
attractive.

Remark
Π∞(t) is also the unique solution of

Π̇(t) = AΠ(t) + BL− Π(t)Λ̇(t, t0)Λ(t, t0)−1

with the initial condition Π(t0) = Π∞(t0). From a practical point of view, it is
necessary to know the initial condition Π∞(t0). However, since the motion
Π∞(t) is attractive, any solution of the two equations converges to Π∞(t).

Giordano Scarciotti
Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems
33/56



Characterization of the moments

Theorem

Let Π(t) =

(
eA(t−t0)Π(t0) +

∫ t

t0

eA(t−τ)BLΛ(τ, t0)dτ

)
Λ(t, t0)−1

be a family of matrix valued functions parametrized in Π(t0) ∈ Rn×ν . Given
“mild” assumptions there exists a unique Π∞(t0) such that, for any Π(t0),

lim
t→+∞

Π(t)− Π∞(t) = 0. Moreover, if x(t0) = Π∞(t0)ω(t0) then

x(t)−Π∞(t)ω(t) = 0 for all t ≥ t0, and the set {(x , ω) | x(t) = Π∞(t)ω(t)} is
attractive.

Remark
Π∞(t) is also the unique solution of

Π̇(t) = AΠ(t) + BL− Π(t)Λ̇(t, t0)Λ(t, t0)−1

with the initial condition Π(t0) = Π∞(t0). From a practical point of view, it is
necessary to know the initial condition Π∞(t0). However, since the motion
Π∞(t) is attractive, any solution of the two equations converges to Π∞(t).

Giordano Scarciotti
Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems
33/56



The periodic case

Consider the signal generator

ω(t) = ω(t − T ),

ω(t) = h(t, t0)ω0, t0 − T ≤ t < t0,

u = Lω,

then Π∞(t) becomes

Π∞(t) = (I − eAT )−1

[∫ t

t−T
eA(t−τ)BLΛ(τ, t0)dτ

]
Λ(t, t0)−1
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A numerical example
Consider the matrix of square waves

Λu(t, 0) =

 u
(

2π

T
t +

π

2

)
− u

(
2π

T
t

)
u
(

2π

T
t

)
u
(

2π

T
t +

π

2

)
 .

The previous equation computed for t = 0

Π∞(0) = −A−1(I − eAT )−1
[(

e
3
4
AT − eAT + e

1
2
AT − e

1
4
AT
)
BL +

+
(
e

1
2
AT − e

3
4
AT + e

1
4
AT − I

)
BLΛu

(
T

4
, 0

)]
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Looking at new Π’s

Λ∼(t, 0) =

 cos

(
2π

T
t

)
− sin

(
2π

T
t

)
sin

(
2π

T
t

)
cos

(
2π

T
t

)
 Λ∧(t, 0) =

 ∧
(

2π

T
t +

π

2

)
− ∧

(
2π

T
t

)
∧
(

2π

T
t

)
∧
(

2π

T
t +

π

2

)

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Time history of the entries of the matrices
Π∼ (top), Π∧ (middle) and Πu (bottom).

Time history of the output (solid lines)
y∼ (top), y∧ (middle) and yu (bottom).
Time histories of the steady-state of the
output (dotted lines) computed as CΠ∼ω,
CΠ∧ω and CΠuω.
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A new family of reduced order models

Definition
The system described by the equations

ξ(t) = F (t, t0)ξ0 +

∫ t

t0

G(t − τ)u(τ)dτ,

ψ(t) = H(t)ξ(t),

is a model of the system, if there exists a unique solution P∞(t) of the equation

P(t) =

(
F (t, t0)P(t0) +

∫ t

t0

G(t − τ)LΛ(τ, t0)dτ

)
Λ−1(t, t0)

with P(t0) = P∞(t0) such that for any P(t0), lim
t→+∞

P(t)− P∞(t) = 0 and

CΠ∞(t) = H(t)P∞(t)

Giordano Scarciotti
Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems
37/56



A new family of reduced order models

Definition
The system described by the equations

ξ(t) = F (t, t0)ξ0 +

∫ t

t0

G(t − τ)u(τ)dτ,

ψ(t) = H(t)ξ(t),

is a model of the system, if there exists a unique solution P∞(t) of the equation

P(t) =

(
F (t, t0)P(t0) +

∫ t

t0

G(t − τ)LΛ(τ, t0)dτ

)
Λ−1(t, t0)

with P(t0) = P∞(t0) such that for any P(t0), lim
t→+∞

P(t)− P∞(t) = 0 and

CΠ∞(t) = H(t)P∞(t)

Giordano Scarciotti
Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems
37/56



A new family of reduced order models

Definition
The system described by the equations

ξ(t) = F (t, t0)ξ0 +

∫ t

t0

G(t − τ)u(τ)dτ,

ψ(t) = H(t)ξ(t),

is a model of the system, if there exists a unique solution P∞(t) of the equation

P(t) =

(
F (t, t0)P(t0) +

∫ t

t0

G(t − τ)LΛ(τ, t0)dτ

)
Λ−1(t, t0)

with P(t0) = P∞(t0) such that for any P(t0), lim
t→+∞

P(t)− P∞(t) = 0 and

CΠ∞(t) = H(t)P∞(t)

Giordano Scarciotti
Model Reduction by Moment Matching for Linear and Nonlinear Time-Delay Systems
37/56



The periodic family

Definition
The system

ξ̇ = F̃ξ + G̃u,

ψ(t) = CΠ∞(t)P∞(t)−1ξ(t),

is a model of the system, if σ(F̃ ) ∈ C<0 and

P∞(t) = (I − e F̃T )−1

[∫ t

t−T

e F̃ (t−τ)G̃LΛ(τ, t0)dτ

]
Λ(t, t0)−1,

is non-singular for all t ∈ R≥0.
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Systems with unknown description

If we have the steady-state response CΠω(t), how do we
recover the moments Π?
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Systems with unknown description

If we have the steady-state response CΠω(t), how do we
recover the moments Π?

How do we obtain a reduced order model if we do not have
the matrices A, B , C , but we have measurements of the input
and output of the system?
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Let’s manipulate the response

Recall that the output of a linear system can be written as

y(t) = CΠω(t) + CeAt(x(0)− Πω(0))

This can be rewritten as

vec(CΠω(t))− vec(CeAtΠω(0)) = vec(y(t)− CeAtx(0)),

and

(ω(t)> ⊗ C − ω(0)> ⊗ CeAt) vec(Π) = vec(y(t)− CeAtx(0)).

Finally

(ω(0)> ⊗ C )(eS
>t ⊗ I − I ⊗ eAt) vec(Π) = vec(y(t)− CeAtx(0))
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Let’s manipulate the response

Define the time-snapshots Rk ∈ Rw×nν and Υk ∈ Rw as

Rk =


(ω(0)> ⊗ C)(eS

>tk−w+1 ⊗ I − I ⊗ eAtk−w+1 )
...

(ω(0)> ⊗ C)(eS
>tk−1 ⊗ I − I ⊗ eAtk−1 )

(ω(0)> ⊗ C)(eS
>tk ⊗ I − I ⊗ eAtk )

 ,

Υk =


y(tk−w+1)− CeAtk−w+1x(0)

...

y(tk−1)− CeAtk−1x(0)

y(tk)− CeAtk x(0)

 .
This yields the on-line estimate

vec(Πk) = (R>k Rk)−1R>k Υk
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Exploiting the steady-state

Note that the equation can be written as

y(t) = CΠω(t) + ε(t),

with ε(t) = CeAt(x(0)− Πω(0)) an exponentially decaying signal.
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Exploiting the steady-state

Note that the equation can be written as

y(t) = CΠω(t) + ε(t),

with ε(t) = CeAt(x(0)− Πω(0)) an exponentially decaying signal.

Thus, let C̃Π be such that
y(t) = C̃Πω(t),

and define the time-snapshots R̃k ∈ Rw×ν and Υ̃k ∈ Rw as

R̃k =
[
ω(tk−w+1) . . . ω(tk−1) ω(tk)

]>
and

Υ̃k =
[
y(tk−w+1) . . . y(tk−1) y(tk)

]>
.

Then
vec(C̃Πk) = (R̃>k R̃k)−1R̃>k Υ̃k ,

is an approximation of the on-line estimate CΠk .
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A recursive implementation

It is easy to derive a recursive least-squares estimation of C̃Πk . To this end, let

Φk = (R̃>k R̃k)−1,

Ψk = (R̃>k−1R̃k−1 + ω(tk)ω(tk)>)−1.

Then
C̃Πk = C̃Πk−1 + Φkω(tk)(y(tk)− ω(tk)>C̃Πk−1)

−Φkω(tk−w )(y(tk−w )− ω(tk−w )>C̃Πk−1),

with
Φk = Ψk −Ψkω(tk−w )×

×(I + ω(tk−w )>Ψkω(tk−w ))−1ω(tk−w )>Ψk

and
Ψk = Φk−1 − Φk−1ω(tk)×

×(I + ω(tk)>Φk−1ω(tk))−1ω(tk)>Φk−1.

For SISO systems the two matrix inversions are two divisions. The computation
complexity of updating the estimate is O(1).
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A family of reduced order models

Definition
The system described by the equations

ξ̇ = Fkξ + Gku, φ = Hkξ,

is a model of the system at (S,L) at time tk , if there exists a unique solution
Pk of the equation

FkPk + GkL = PkS ,

such that
C̃Πk = HkPk ,

Remark
Select Pk = I , for all k ≥ 0. If σ(Fk) ∩ σ(S) = ∅ for all k ≥ 0, then the model

ξ̇ = (S − GkL)ξ + Gku,

φ = C̃Πkξ,

is a model of the system at (S,L) at time tk .
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Linear time-delay systems

These resuls can be easily extended to linear time-delay systems. In fact,
we have already seen that for linear time-delay systems the following holds

y(t) =
ς∑

j=0

CjΠe−Sτjω(t) + ε(t),

Then

vec

 ˜ς∑
j=0

CjΠe
−Sτj
k

 = (R̃>k R̃k)−1R̃>k Υ̃k ,

is an approximation of the on-line estimate
ς∑

j=0

CjΠe
−Sτj
k , and families of

reduced order models at time tk can be easily defined.
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Matching with prescribed eigenvalues

Determining at every k the matrix Gk such that
σ(Fk) = {λ1,k , . . . , λν,k} for some prescribed values λi ,k . The
solution of this problem is well-known and consists in selecting
Gk such that

σ(S − GkL) = σ(Fk).

This is possible for every k and for all λi ,k 6∈ σ(S) and note

that Gk is independent from the estimate C̃Πk . Note also that
by observability of (L, S), Gk is unique at every k .
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Prescribed relative degree, zeros,
compartmental constraints

These problems can be solved at each k if and only if

rank

[
sI − S

C̃Πk

]
= n,

for all s ∈ σ(S) at k . Even though the asymptotic value of

C̃Πk satisfies this condition there is no guarantee that the
condition holds for all k . However, if the condition holds for
the asymptotic value, there exists k̄ � 0 such that for all
k ≥ k̄ the equation has a solution.
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System with n = 1006
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Figure: Bode plot of the system (solid line), of the reduced order model at
tk = 90s (dotted line), of the reduced order model at tk = 110s (dash-dotted
line) and of the reduced order model at tk = 140s (dashed line). The circles
indicate the interpolation points.
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A nonlinear example
The averaged model of the DC-to-DC Ćuk converter is given by the equations

L1
d

dt
i1 = −(1− u)v2 + E , L3

d

dt
i3 = −uv2 − v4,

C2
d

dt
v2 = (1− u)i1 + ui3, C4

d

dt
v4 = i3 − Gv4,

y = v4,
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A nonlinear example
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A matlab toolbox for moment matching
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A matlab toolbox for moment matching
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Thank you for your attention!
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