=

mathLab

innevating with mathematics

Recent advances on nonlinear Reduced Order Modelling for stability and
bifurcations problems in incompressible fluid dynamics

Giuseppe Pitton, Gianluigi Rozza*
SISSA, International School for Advanced Studies, Mathematics Area, mathLab, via Bonomea 265, 34136, Trieste, Italy

Abstract

In this paper we propose a Reduced Basis framework for the computation of bifurcation and stability
problems arising from nonlinear partial differential equations. The proposed method aims at reducing the
complexity and the computational time required for the construction of bifurcation and stability diagrams.
The method is quite general since it can in principle be specialized to a wide class of nonlinear problems,
but in this paper we focus on an application in incompressible Fluid Dynamics at low Reynolds numbers.
The validation with a benchmark cavity flow problem is satisfactory.
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1. Introduction

The study of stability and bifurcation of nonlinear systems is an established research field, of great
importance both from the applied mathematics and engineering perspective.

The aim of Bifurcation Theory is the computation of branches of non-unique solutions for nonlinear
problems [1], and the detection of the intersection points between the solution branches, called bifurcation
points, as a function of some physical or geometrical control parameters.

Some typical control parameters are the geometrical aspect factors, or relevant adimensional quantities
(such as the Reynolds number, or the Grashof number), or the boundary conditions, or forcing terms.

Usually the results of a stability analysis are represented in a diagram where the stability region of
each branch of solutions is depicted as a function of the control parameters. Bifurcation diagrams show a
qualitative or quantitative (pointwise or integral) aspect of a solution as a function of the control parameters,
allowing to understand the structure and the physical features of the solution set. See for example [2] for a
classical introduction to stability problems in Fluid Mechanics.

For instance, Bifurcation Theory is of evident practical importance in the analysis of stability problems
in Elasticity, where it is well known that for many structures there exists a critical load which if exceeded
will produce a catastrophic collapse (a classic reference on this subject is [3], a more mathematically oriented
one is [4]).

Common applications of Bifurcation Theory in Fluid Mechanics include a wide range of industrial prob-
lems such as tribology, microfluid dynamics, biomedical industry, biomedicine (blood flows), and many more.
In particular, the field of hydrodynamic stability focuses on the classification of the nature of flows as some
control parameters are varied [2]. Specifically, the purpose of a stability investigation is, given a well-defined
initial or boundary value problem, to classify the asymptotic solutions as stable, or time periodic, or even
chaotic in time.
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The construction of stability maps and bifurcation diagrams is a delicate and very expensive task,
requiring an important computational effort and prohibitive if the number and range of parameters is large.
This is particularly true for three and higher dimensional simulations.

Recent developments of Reduced Order Modelling (ROM) techniques have focused on the reduction of
computational time for a wide range of differential problems, while mantaining a prescribed tolerance on
error bounds [5]. It is therefore of great interest to further investigate how such methods can be applied to
stability problems in Fluid Dynamics and Elasticity in order to reduce the computational power required.

The literature has already shown the effectiveness of Proper Orthogonal Decomposition (POD) both
for analysis of principal modes [6] and for the reduction of computational power required by transient
simulations. For instance, Terragni and Vega [7] showed how a POD approach could save a considerable
amount of computing time for the analysis of bifurcations in some nonlinear dissipative systems. In a recent
paper Herrero, Maday and Pla [8] have shown that both POD and the Reduced Basis Method (RBM)
can reconstruct the behaviour of velocity and temperature field for a two-dimensional natural convection
(Boussinesq) problem with large reduction of the computational power with respect to classical techniques.
In particular, stable and unstable solutions are correctly identified, and a surrogate error estimate is always
mantained below a prescribed tolerance. A recent remarkable work by Yano et al. [9] introduced a RB
Method for the stability of flows under perturbations in the forcing term or in the boundary conditions,
based on a space-time framework that allows for particularly sharp error estimates.

Summarizing, given the relatively fast decay of energy spectrum for flows at sufficiently low Reynolds
numbers, a Reduced Order Modelling technique could be expected to be an efficient tool for flow stability
analysis. Reduced Basis (RB) techniques [10] historically have been proven effective for the study of elastic
stability of plates [11], but their application in more complex parametrized stability problems such as in
Fluid Mechanics is an open and quite relevant research field.

In this paper, we propose the application of Reduced Order Modeling (ROM) techniques to reduce
the quite demanding computing costs for bifurcation and stability analysis of flows. We will consider a
benchmark problem well known in the literature, namely a buoyancy-driven flow in a rectangular cavity [12].

The focus of this work is devoted on several improvements with respect to the state of the art for these
problems, approached with ROM: in particular we mention approximation stability, sampling, and reduced
eigenproblems for stability analysis. Our exposition presents the topic from the different viewpoints of
Nonlinear Mathematical Analysis, Applied Mathematics and Numerical Analysis, trying to underline the
different aspects of the problem under consideration.

The structure of the paper is the following. In section 2 we present the class of abstract problems that will
be considered and we briefly recall some important results on Nonlinear Analysis and Bifurcation Theory.
Section 3 is devoted to the presentation of a general ROM technique and particular attention is devoted
to the approximation of bifurcation problems. In section 4 the mathematical setting for the approximation
of incompressible Fluid Dynamics equation is recalled, and the high-order method used is presented. In
section 5 the ROM technique previously developed is specialized to the Navier-Stokes case and finally some
numerical results are show and discussed in section 6.

2. Abstract setting

We start our discussion of reduction strategies for bifurcation and stability problems recalling some
basic elements of Nonlinear Analysis that will prove to be useful in the applications. Despite being a
relatively recent field, there are at least two main frameworks of Nonlinear Analysis of striking effectiveness, a
topological one and a variational one. Roughly, the motivation behind these two approaches are respectively:

e consider at the problem as a functional equation between Banach spaces, and study it in a purely
abstract setting [1] (e.g. using Implicit Function Theorem, Degree Theory, etc.);

e when possible, exploit the variational structure of the problem, and find solutions as stationary points
of some “energy” functional [13].



We will focus on the first approach, since the latter is limited to equations derived from a variational
principle, most notably semilinear elliptic equations. Furthermore, most of the existing results of Numerical
Analysis for nonlinear problems are cast in such setting. This setting is quite abstract, in fact it encompasses
a large class of maps between functional spaces, such as differential and integral equations. As a result the
results obtained are very general although we will mainly be concerned on differential problems.
We consider nonlinear problems depending on a parameter g € D C RP in the form: find u € X such
that:
(F(p,u),v) =0 Yv ey, (1)

where F': D x X — Y’ is amap, X and Y are Banach spaces and the angled parenthesis denote the duality
pairing between Y and its dual space Y’. The family of parameter-dependent solutions {u(u)},cp forms
a subset of X, and for some parameter values there may be some qualitative changes in the structure of
the solutions. For instance, there may be a loss of uniqueness of the solution, usually followed by a change
in the stability properties under infinitesimal or finite perturbations, or the transition from steady state to
time dependent solutions, just to mention a few possibilities.

Rigorously, we say that (u*,u*) is a bifurcation point for (1) if there exist at least two sequences
(pl,ul)yCcDx X, (u2,u2) C D x X such that:

D) (s tp) # (psuy)  Vmyn €N,
i) (F(ut,,ul,),v) =0 YveY, fori=1,2;
i) (uhoub) = () and  (2,02) = (uhut)  YmneN.

We define the (Fréchet) differential of F' with respect to the variable u, defined if exists a linear operator
D, F(p,u) € Z(X,Y’) such that:

| F(u+w) — F'(u) = Dy ' (p, ) [w]|ly
llwl| x —0 llwl] x

Yw € X. (2)

With Z(X,Y) we denote the set of all linear continuous operators from X to Y, and we denote with
D, F(p,u)[v] € Y’ the action on v € X of the differential of F' with respect to the variable u evaluated at
the point (i, u). Many important results in Nonlinear Analysis depend on the existence of partial derivatives
of the operator F.

The simplest case is when the partial derivative is an isomorphism from X to Y, and we write D, F'(, u) €
Iso(X,Y”). In this case we say that (u*,u*) is a reqular solution (or a nonsingular solution) of (1), and its
existence and uniqueness are ensured locally by the Implicit Function Theorem (IFT) [1]. The fact that
the map F' is invertible with invertible differential means practically that it is possible to express locally
u as a function of . This is possible only if the differential D, F(u*,u*) is invertible, since in this case
D, F(p*,u*)~1 1 Y’ — X maps neighbourhoods into neighbourhoods.

In contrast, if (u*, u*) is a bifurcation point of (1), then D, F(u*, u*) is not invertible, and it is impossible
to express u as a function of p directly. In particular, when D, F'(u*, u*) ¢ Iso(X,Y”) two possibilities arise:

D, F(p*,u") ¢ R(D,F(p*,u")) limit point;

3
D, F(p*,u*) € R(D F(p*,u")) bifurcation point; )

where D, F(p*, u*) is the partial derivative of F' with respect to the parameter . For both cases we suppose
also that D, F'(p*,u*) has a closed range and satisfies:

dimker(D, F(p*,u*)) = dim(R(D, F(u*,u*))*) (4)

where R(D, F(u*,u*))* is the orthogonal complement to R(D, F(u*,u*)), such that Y’ can be written as
a direct sum:
Y = R(D F (", u*)) @ R(DyF (1", u")) (5)
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and ker F = {v € X s.t. F(v) = 0} is the kernel of the operator F. We mentioned that the Implicit Function
Theorem plays a fundamental role when studying the properties of the solution set of equation (1). The
form of the IFT that we consider here is the following: let F € C*(A x U,Y’) with k > 1, A C D,U C X,
and suppose that (u*,u*) € A x U are such that

(F(p*,u*),v) =0 YveY  D,F(u",u*)e€Iso(X,Y"), (6)

that is, u* solves the problem (1) with the parameter p* and the u partial derivative of F' is invertible in a
neighbourhood of (u*,u*). In particular, there exist neighbourhoods 5 C D of p* and V' C X of v* and a
map v € C*(Z, X) such that:

(F(p,y(p)0) =0 VwveV,Vpes. (7)

In the next paragraphs, the Implicit Function Theorem will be frequently applied to parametrize solution
sets in a neighbourhood of a singular point and allow the following of solution branches.

2.1. Limit points

We consider limit points (p*,u*) such that the differential D, F(u*,u*) is compact and has a one-
dimensional kernel, dimker D, F(pu*,u*) = 1. Let @9 € X be a basis for the kernel of D, F(u*,u*). In
this case the differential map is not an isomorphism, and the Implicit Function Theorem cannot be applied
directly to parametrize u with respect to u. However, introducing a new parameter s € [—¢, ], the solution
set can be parametrized in a neighbourhood of the limit point:

pls) = p* +£(s)
u(s) = u” + spo +7(£(s), )

for a map £ : [—e,e] — R. The existence of the map £ is important both for building an approximation
strategy for the fold points and in the following of the solution branch in a neighbourhood of a fold point.

(8)

2.2. Bifurcation points

In the case of simple bifurcation points multiple branches of solution issue from a principal branch, hence
the study of the solutions set is a particularly delicate task. A classical tool in this case is provided by the
Lyapunov-Schmidt reduction, that allows to split the problem in an appropriate way such that the IFT can
be applied on some subsets of X and Y.

At a simple bifurcation point, we require that the differential D, F(u*, u*) has a closed range and a
one-dimensional kernel, dimker D, F(u*,u*) = 1 (although these hypotheses can be relaxed, see [14]). Let
now o € X be a basis for the kernel of D, F(u*,u*) and ¢ € Y’ a basis for the topological complement
of the range of D, F(u*,u*). Next, let R(A) be the image of X under the operator A. We introduce a
projection on the range of the differential P : Y/ — R(D,F(u*,u*)) and its complementary projection
Q=1—-P:Y = (R(D F(u*,u*)))*:

Pw = (w,Re§)oh Yw eY’ (9)
Qw =w — (w,Re§)ps YweY’,
where R : Y/ — Y is the Riesz representation operator. The Lyapunov-Schmidt reduction consists in the

projection of equation (1) both on the range of D, F(u*,u*) and on its complementary set. With the latter
projection we have the auziliary equation

(QF (p,u),v) =0 YveY (10)

for which the Implicit Function Theorem can be applied to introduce two new parameters £, s and a map
v 1 [—e¢,e¢] X [—€5,65] = R(DyF(p*,u*)) such that we can express

p=p"+E
u=u"+E&po + (£, s¢o)-
4
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Figure 1: Schematic solutions’ behaviour at singular points. Dashed branches are unstable. (a): pitchfork
bifurcation, (b): fold, (¢): transcritical bifurcation.

Then, applying the dual projection we obtain the bifurcation equation:

(F(p™ + & u” + 500 + (8, s¢0)), Reg) =0 (12)

that can be solved locally for £, s and ¢g. Notice how the careful use of the two projections allows to recover
the parameter-solution mapping, for sufficiently small values of the parameter s.

To give an intuitive understanding of the solutions set behaviour when a singular point is approached,
we draw in figure 1 an illustration of some common bifurcation and fold points.

We remark that for both fold and bifurcation points, the Implicit Function Theorem allows to write a
parametrization such that in a neighbourhood of the singular point (u*,u*) there exists a function ¢ such
that & changes sign if (p*,u*) is a bifurcation point, and has a minimum or maximum in zero without
changing sign if (u*,u*) is a fold point. This fact will be useful in the applications. The existence of & is
important also for the practical computation of solution branches near a singular point, as we shall see in
section 3.1.

2.8. Branching of periodic solutions

The last ingredient of Bifurcation Theory that we consider is the bifurcation from periodic solutions.
The abstract problem (1) can be regarded as a particular case of the following time-dependent problem:

wou — F(p,u) =0 (13)

for which the solution u does not depend on time. In equation (13) we suppose that the periodic solutions
branching from the steady state solutions have period w. The abstract theory for the time-independent
problem (1) could be recovered with some modifications, but from the practical viewpoint it is usually
easier to rely on the Hopf bifurcation theorem [1]. According to Hopf result, it is still sufficient to study the
linearized operator D, F(u,u), in particular the form:

(wOu — Dy F (s, w)[w],v) =0 YoeY (14)
and we assume that
i) D, F(u*,u*) is nonsingular and has a pair of simple, purely imaginary eigenvalues: +iw*;
ii) there are no other eigenvalues for D, F'(u*, v*) in the form +ikw*, with k € N;

then, (p*,w*,u*) is a bifurcation point for periodic solutions, with period w*.

Finally, we remark that the families of singular points briefly described in this section are not the only
possibile cases in the framework of Nonlinear PDEs, but we focused on these classes because of their relevance
in applications (e.g. Nonlinear Fluid Mechanics).



3. A discrete setting

Many of the results of Nonlinear Analysis exposed in section 2 apply in the finite-dimensional case,
providing a rigorous foundation for the numerical approximation and strategies for the actual computation.
A milestone in the numerical approximation of nonlinear problems is the theory developed by Brezzi, Rappaz
and Raviart [15, 16, 17] (BRR), to which we frequently refer in the rest of the section. A good introduction to
this theory is provided by [14]. In this section we rely on BRR theory for the case of Reduced Order Modelling
that has many analogies but also some specialities over the traditional Galerkin approximation methods,
the most relevant being that the conventional general purpose bases with local support are replaced with
problem dependent bases endowed with global support. Referring for instance to [5] for a detailed overview
on the Reduced Order Methods of interest, we proceed recalling some basic facts about ROMs and POD
that will be useful in the following.

3.1. Truth approzximation

The first step of a ROM (RB, POD, ...) is to extract information from a series of known solutions
characterized by different values of the parameters. Usually these solutions need to be approximated through
a computational method commonly called truth approrimation in the community, which can be any classical
discretization method for PDEs (such as the Finite Element Method, Spectral Element Method, Finite
Volume Method, etc). We focus here on (Petrov-)Galerkin projection methods, that recover much of the
setting in the original problem (1). The approximated solution uN is obtained as projection of the full
solution « on a finite dimensional subset XV of X (the superscript N denotes the dimension of XN ),
and the test function space is replaced with a finite dimensional subset YV of Y. As a result, the truth
approximation of problem (1) reads: find v € X such that

(F(u,uM),0) =0  YwoeY?V, (15)

Throughout this work we assume that v — F(\ ) is a nonlinear map, and to obtain a linear algebra
problem from equation (15) we need to introduce a suitable approximation scheme. For instance, a possible
approach consists in constructing a sequence of successive approximations {u{c\f } such that the k-th element
of the sequence solves a linearized problem. Let us write a decomposition of F' into its linear and nonlinear
parts, L and N:

F(p,u) = pL(p)u + N (g, u), (16)

then two popular fixed point linearization strategies are as follows.

Picard iterations in this case we rewrite problem (15) as an approximation for a fixed point of F. At
iteration k + 1, solve for uﬁﬂrls

Ly + Nl ),0) =0 WoeyV (17)

Banach-Caccioppoli theorem ensures that a fixed point exists and is unique provided that F' is a
contraction map on a sufficiently large ball B(ug) C X, i.e. there exists a constant [ € (0,1) such that

[EF(p,u) — Fpsw)lly <lllu—wlx  Vu,w € Blu) (18)
and that u’,gf — 4 in the norm of X.

Newton-Kantorovich iterations in this case also the first differential of F' is exploited:

{(F(Mui\/ )+ DuF (pup w0y =0 vweyV 19)
u{c\il = u{c\/ + w{c\il.

Newton-Kantorovich iterations are convergent if a Lipshitz condition is satisfied on the differential of
F
IDF(,w)[o] = DuF(a)fully, < v —wlx  Vu,v,wes (20)

where S is an appropriate open convex subset of X.
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We remark that convergence results are available [18] in both cases also when the operator F' is being
approximated by a sequence {Fp,} C Iso(X,Y”) such that consistency is preserved, F},(, uQ/) — F(u, uN).
This fact is of particular importance since often in Numerical Analysis the continuous operators are replaced
with discrete operators e.g. exact integrals are approximated by quadrature formulas.

After the linearization, it is possible to derive a linear algebra problem simply by expanding the approx-
imate solution at k-th iteration: u} = Ei\il u{e\[ i where {;} and {1);} are basis sets respectively for X
and YV, Replacing the series expansion for vV, and choosing v = 1);, we have a linear algebra problem:

Akuk = bk, (21)
for each step k, whose terms have the form:

Apij = (L(w)pi + DuF (,up_ )i ) i = udy, b = (N(uup ,4i). (22)

System (21) can then be solved by the usual techniques (see for instance [19]). However, our discussion of
the algebraic problem is only illustrative, and in the real practice much more complex discretization methods
are used. In particular, for medium and large sized problems it is mandatory to distribute the computation
between many CPUs, for instance via a Domain Decomposition Method (see [20] or [21]).

The presence of multiple solutions for a given parameter value requires some care to ensure that the
computed solutions belong to the same branch, as in some cases the computation could oscillate between two
solutions without converging. A popular method to deal with this problem is the continuation method [22].
In its simplest version, it consists of two steps:

Step 1. predictor: starting from a known solution (¥, u*), compute a prediction (ji*, @%) = (u* +Ap*, u* +
Au*) on the tangent space to (u*,u*) by solving for Au* the problem:

D, F(uF u®)Ap® + D, F(p*, uF) Auk =0, (23)
where A" is given (and sufficiently small);
Step 2. corrector: starting from the prediction (ii*, "), solve iteratively the original problem (1) imposing
the additional constraint that the solutions are orthogonal to the tangent space at (u*, u*):

Dy F(uf uf)Apl + Do F(pf  ul) Auf = —F(uf_y,uf_y)

(8", Apf)p + (@, Auf)x =0 (24)
pi = pbog +Auf o =y + Auf

3

with the starting condition that the sequence of approximant solutions issues from the predictor
solution:
E_ ~k E_ =~k
Ho = [ Up = U (25)

3.2. Sampling

The information needed for building a reduced order approximation is obtained by constructing a set
of properly selected truth solutions {uN (LN, c XN computed for a suitable sequence in the parameter
space {u*}Y; C D. There exist different methods! for identifying a sequence {u'} C D, often based on a
“worst case” criterion, which given an initial sequence {ui}le, aims at searching for the parameter p**!
whose solution is the worst approximated one within the space spanned by the snapshots Sy = {uN (u)}e,.
Then, the new solution vV (uF*1) is added to the snapshots space Sy41 = SpU{uY (1F1)} and the algorithm
is restarted until a suitable stopping criterion is satisfied.

Two of the most popular sampling methods based on a worst case strategy are the following.

I'We refer the interested reader to [5] for a brief overview on the history of the Reduced Basis Method and a review of many
sampling techniques.



Greedy Algorithm Very widely spread in the ROM community, we refer to [23] for a comprehensive
review and to [24, 25] for some relevant convergence estimates. Suppose that are given k — 1 lin-
early independent snapshots Sp_1 = {u{v }C XN Then the k-th snapshot is computed as solution
characterized by the parameter value p* € D such that

uk = argmin e p HuN(,uk) - HgkuN(,uk)HX , (26)

where Ils, : XN 5 S, is the projector on the space generated by Si. Then uV () is used to enrich
the snapshots space: Sy = Sp_1 U {uV (1)}, To simplify the computation of the minimizer p* of
equation (26), usually two additional constraints are imposed:

e the parameter space D is replaced by a finite subspace =;

e the projection error |[u’N (u*) — IIs, u™ (u*)|| x is replaced by some parameter-dependent estimate
A(p) such that
caA(pF) < N (1F) = Tsu (1¥)]| < Cad(i) (27)

for ca,Ca > 0. This estimate is introduced to avoid computing the explicit solution u? (u*)
and its projection for all u* € Z. We discuss on section 3.9 a possible strategy for obtaing an
expression for A(u).

These two approximations together give origin to the family of weak greedy algorithms.

It is easy to verify that the snapshot spaces produced by Greedy Algorithms are hierarchical spaces,
that is §§ C S; C -+ C Sk. This property has a great practical importance since it allows to enrich
the set of snapshots without throwing away the previously computed solutions, since the new one is
simply added to the previous set.

Centroidal Voronoi Tessellation Centroidal Voronoi Tessellation (CVT) has been introduced by Du
and Gunzburger [26] as sampling strategy for Reduced Order Modelling. We need to define three
preliminary concepts:

e a collection of subsets {V;}¥_; of D is called a tessellation of D if they are disjoint V; NV; = 0 if
i # j, and covering |J;_, Vi = D;

e we endow the parameter space D with a distance function 9 induced by the norm of X between
the corresponding solutions:

o', 1?) = [l (') — N (1) x (28)
Then, given a set of points {u‘} C D, we define the i-th Voronoi region V; C D as:
V; = {v € D such that o(v, u*) < o(v, W) Vj # i}, (29)

and {u'} C D are a set of given generating points.

e suppose that a density function ¢ : D — R is given on the parameter space. Then we define the
mass centroid & € D of a subset U of D as the barycenter of U, namely:

£ = argmin, g, /u o(v,v)o(v) dv. (30)

Note that in general the generating points defining the Voronoi regions in (29) and the mass centroids
defined in equation (30) do not coincide, but if this happens, the tessellation defined by the generating
points {u'} is named Centroidal Voronoi Tessellation (CVT).

A possible choice for the density function is the projection error as defined for the Greedy algorithm:

o(p) = [[u™ (1) — Hxwu™ ()| (31)
8



where [Ty~ : X — X7 is the projection operator from X to its subspace X* (although in general
X" need not be a subspace of X; in this case supposing that both X and X% are imbedded in an
“environment” set E, the projection Iy~ can be defined as the element in X that minimizes the
distance in E from a given element in X). Then, if we define the “weight” of each Voronoi region V;
as

Wi = /V 0 &)o) dr (32)

it can be shown that the CVT of dimension £ of the parameter set is defined by the generating points
{pi}k_| that minimize the “total weight” functional:

k
F=> W (33)

In this sense the CVT is a best approximation sampling method, and is often combined with the
POD defined in section 3.3 to form the CVOD method [27], popular in the ROM community. To help
the intuition on the meaning of the symbols entering in the integral (32), we refer to the sketch on
figure 3.2. Illustrative picture of some basic quantities entering in the definition of the CVT.

For computational purposes, some additional approximations are introduced, namely:

e as in the weak Greedy algorithm, D is replaced by = and the projection error (31) by a suitable
estimator A(u);

e instead of computing all the generating points {,uk} at each iteration, the first k points are kept fixed
and only the k + 1-th generating point is computed as minimizer of the total weight functional (33);

e another possibility is to consider the Delaunay triangulation (dual of the Voronoi diagram) and take as
next point the barycenter of the triangle with the largest weight #;. This technique has been introduced
by Iollo et al. [28] for Delaunay samplings.

We remark that the last two strategies allow to obtain a hierarchical sampling.We sketch on figure 2 an
example step of CVT sampling procedure. The enhanced approximation properties of the RB space are
visualized by the reduction in density of the isolines of the weight function p.

In the description of Greedy and CVT sampling methods, we implied more or less explicitly that the
snapshot space contains only solutions of the original problem (1) for different parameter values, as done in
the classical Lagrangean interpolation theory. For this reason, ROMs based on such spaces are often called
Lagrange ROM.

However, sampling methods are by no means restricted to Lagrange spaces, and can be applied to sample
not only the solutions manifold, but also the tangent bundle to the solutions manifold (originating Hermite
ROMs, [29]) or higher order derivative spaces (originating Taylor ROMs, [11]). Note that the solutions
manifold and its tangent spaces are all embedded in the original space X, so there is no need to change the
discretization method for sampling Hermite or Taylor spaces.

Operatively, the tangent bundle is sampled by linearizing the original problem (1) and chosing among
all the possible small linear increments from the solution (u*,u*) the one closer to the solutions manifold.
This is equivalent in finding Tu* € X such that:

(DLF(uF uM)[TuM],v) = —(D,F(u ub),0) Yo e, (34)

For higher order sampling methods it is sufficient to impose that higher order Taylor expansions of the
original problem (1) are canceled out. For instance, a second order expansion would be in the form: find
T?u* € X such that:

(Do F (i) [Tu®, T?uF),0) = — (2D, F (1", u®)[Tu¥) + D, F (p*, u*), v) Yo ey, (35)

where D, F(u,u) € Z(X,X,Y’) is a bilinear operator taking two elements of X to Y, or equivalently it
can be seen as a linear operator from X to the space of linear operators from X to Y’, Dy, F(p, u)[w, ] €
Z(X,Y’). Similar considerations hold for the other second order differentials, D,,, F' (i, w) and D,,, F(u, u).

Hp
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Figure 2: One step of CVT sampling on a two parameters test case. The red dots show the sampled points,
the isolines refer to the weight function g(r). The black contours are the boundaries of each Voronoi region.
On the left there is a representation of a sampling set in the parameters space consisting of 9 points. On
the right the same set has been enriched by applying one step of the CVT algorithm. Note the new region
on the upper right part of the figure, and how the new sampled point has considerably stretched the region
confined inside the isoline of minimum value.

We remark that Hermite spaces may be a particularly good choice when attempting a ROM in the case
of parametrized problems with multiple solutions. In fact, as exposed in section 3.1, a popular method to
force the computed solutions to lay on the same branch is the continuation method, that requires at each
iteration a solution of the tangent problem (34). Our claim is that Hermite sampling is an interesting choice
in this case since it would simplify the computation of solutions branches during the online phase:

Step 1. in the predictor phase, impose the solution increment Au” of equation (23) to lay on the space
spanned by the tangent reduced basis set;

Step 2. during the correction phase, orthogonalize the reduced basis set with respect to the tangent basis
set, in order to fulfill by construction the constraint on the orthogonality of the increments (24).

3.3. Proper Orthogonal Decomposition

When dealing with time-dependent problems, it is preferable not to add all the snapshots of a time-
dependent run to the snapshots space Si, otherwise the Reduced Basis Space will likely be too large and
many of the basis will be almost parallel, making the online projection phase an ill conditioned problem. A
common technique is to extract the “most significant” modes of a time sequence using a RB approximation
in combination with a Proper Orthogonal Decomposition [30]. There are many alternative ways to compute
the POD modes of a sequence of snapshots {u{v } € XN, Here we focus on the method based on the
eigenvalues of the correlation matrix [30]. The entries of the correlation matrix C € RV*Y are computed as

Cij = (¥, ul)y, (36)

then, if (A\;, ;) is a couple eigenvalue-eigenvector of C, each basis vector is computed as
N
G=> Vi pupy (37)
k=1
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where 1); , denotes the k-th component of the i-th eigenvalue. The POD modes obtained are automatically
orthogonal, but not normal in general. The eigenvalue A; associated to each POD mode is related to the
fraction of energy stored in the corresponding mode.

A remarkable property of the space generated by the POD bases is that it minimizes the projection
error in the norm of the space V' of the snapshots used for the construction of the correlation matrix in
equation (36):

ol 2
XIJDVOD = Span{gi}il\il = arg minXNcX,dimX:N Z ||ui\f - HXNU{\[HV . (38)
i=1
In this sense, the POD modes exhibit a best approximation property. It can be shown (see for instance [30])
that the spaces spanned by the POD are hierarchical once the snapshots are fixed.

The sampling algorithms presented in section 3.2 are frequently combined with a POD for parametrized
time-dependent problems. If a Greedy sampling algorithm is used to select the parameters, and the POD
is used to recover the most relevant time snapshots, the sampling procedure is called POD-Greedy and we
refer to [31] and [32] for details. To clarify the sampling process of time-dependent parametrized problems,
we report in Algorithm 1 a possible implementation strategy of the POD-Greedy algorithm.

Algorithm 1 A POD-Greedy strategy for the sampling of parameter dependent evolution problems.

1: repeat

2. find p*! such that 't = argmax,, 5 fOT | (it — s uN (pit1)] x dt

3: compute a sequence of snapshots {u; 41,1 }}_ for the time dependent problem related to the param-
eter

4: compute the [ POD modes of the sequence {¢;11}._; such that the retained energy is above a
prescribed ratio

5: orthogonalize the time modes with respect to the previous basis sets: (ii1x = @it16 —

U0k gig ; Pit 1k
6: add the new basis functions {¢; 414 },_; to the basis set: Sit1 = S; U {Civ1.4}
7: until max,c5x A(u) < tol

Lastly, we remark that when sampling time dependent problems in view of a POD application, it is
important to make sure that the sampling rate is sufficiently high so that the desired time harmonics are
well resolved. Usually the sampling rate required for a POD is higher than the minimum defined by the
Nyquist criterion, since spurious correlation of noisy data may affect the POD modes [33].

3.4. Construction of the Reduced Basis

The snapshots obtained through the sampling technique exposed in section 3.2 will not in general form
a basis for the Reduced Basis spaces. Although the POD could be performed on the entire snapshots space
Sy to compute a series of orthogonal modes with decreasing energy, this approach is avoided for medium
and large problems because of the high number of operations involved (due to eigenpairs computation of big
and full correlation matrices).

A much cheaper method to build an orthonormal basis starting from a set of linearly independent vectors
is the Gram-Schmidt process, as discussed in [5].

Given a set of N, snapshots {u (1?)}Y=" we compute a basis function ¢; for each® i = 1,..., N by
means of the following orthonormalization procedure:

=V () = G (), Gx G e o (39)
2 TCilx

?Note that in general N # Ngy.
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where (-, -)x is the inner product in the space X and the last normalization step may or may not follow, as
we will discuss in paragraph 3.7.

We now introduce the reduced basis approximation space X* simply as X = span{¢;}}¥, that will be
used for the online approximation.

3.5. Online approzimation

After a suitable Reduced Basis is constructed for the problem of interest, one can achieve a substan-
tial computational reduction by constructing a new approximation scheme based on a (Petrov-)Galerkin
projection on spaces XV, YV whose dimension is much lower than in the truth approximation case:

N =dim XV « NV = dim XV, (40)

For the sake of simplicity, we limit ourselves to the case where the test Y and trial XV spaces have the
same dimension, but this constraint can be relaxed.

As done in section 3.1, we may simply apply the Galerkin Projection on the Reduced Basis spaces so
that the online problem reads: find u” € X* such that:

(F(u,u™),v) =0 voe YN, (41)

Again, a suitable linearization of the operator is required in order to obtain a Linear Algebra problem that
can be solved with the usual methods, except that this time the linear system has much smaller dimension,
allowing for very fast solution.

Also, since the Reduced Basis matrices are computed offline and assembled online, there is the necessity
of introducing a rapid way to assemble parameter-dependent matrices. The simplest case is when the map
F(-,u): D — F(u,u) is affine with respect to the parameters. Then, the operator can be written as

F(pu) = pL(p)u+ 3 O ()N (u) (42)
=1

for appropriate functions ©% : D — R, and the matrix arising from the linearization of F' and a consequent
evaluation of the linearized map on the Reduced Basis spaces can be written as:

AN = Zq: O (u)A'. (43)

For problems lacking affine parameter dependence, a possible way to recover the decomposition (43) during
the online phase is applying the Empirical Interpolation Method [34], still a very active research area.

3.6. Geometric parametrization

The parameter i has a particular importance when it® describes the geometry of the domain on which
the problem is posed. The main idea behind this procedure is to refer each of the infinitely many possible
geometric configurations to a common “original” domain. This way, the necessity of constructing a new
mesh for each computation vanishes, and the problem can be set only on the original domain. The solution
obtained on the original domain can then be mapped to the “true” domain.

In the following, we will denote the reference domain simply by {2, whereas the parametrized domain,
depending on a parameter that for simplicity we denote p will be referred to as 2(u). Following [5], we now
express the affine transformation between the reference domain and the parametrized geometry as:

T = TaH(C/B\,/L) _ C(M) " G(M)/w\ Vo € .Q(/L)7v/w\ S 67 (44)

3or at least some of its components
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where C'(u) is a displacement vector and G(u) is a deformation tensor. The affine transformation (44) can

be used to map the abstract problem (41) from a reference domain 2 to a domain of interest 2(p). In
pratice, this is done by applying the chain rule and the change of variables theorem:

0 0 a 1o
- Y5 Y G dw= () (45)
7 7 7 . J

J

for all Z € 2 and = € £2(u), where the Jacobian J*T (1) = | det(G())] has been introduced.

3.7. A comment on the condition number of the problem

As we have seen, a good ROM tries to operate at an optimal point between two contrasting phenomena:
on one hand we seek high performances during the online phase by decreasing as much as possible the
number of reduced bases, on the other hand we try to mantain a good accuracy on the results. We remark
that for a large class of problems there is no point in trying to achieve a very high accuracy by adding
too many bases during the online phase, since the addition of bases, if not carefully chosen, could severely
increase the condition number of the linear system.

For instance, in many elliptic problems the modes obtained with POD or with a GS orthogonalization
have an energy decreasing exponentially with the mode number. In this case, we can expect the condition
number of the online problem to be no less that the ratio between the energy of the most and least energetic
modes, that could easily be of the order of 10'%. Even if the modes are normalized after their orthogo-
nalization, the low condition number of the online matrix will not be representative of a well conditioned
problem, since cathastrophic cancellation errors during the normalization phase would artificially reduce the
condition number without recovering the expected accuracy [35].

3.8. Detection of singular points

We now turn our attention to the approximation properties of the Reduced Basis spaces presented in
the previous sections with respect to the detection of the classes of singular points discussed in section 2.3.
In this way we aim at building a detecting tool for singular points and branches of non-unique solutions.

From the practical viewpoint, we want to study the eigenvalues of the differential D, F(u,u(p)) €
Z(X,Y’) as p is varied. To do so, we project D, F' evaluated on a solution obtained with the Reduced Basis
method as explained in section (3.5) on a basis for the spaces X~V and YV in order to obtain the differential
operator’s matrix T'(u):

Tij (1) = (DuF (p,w™ (W)IGi], ) (46)

where {¢;}¥ | is a basis for Y and the dependence of T(zz) on the parameter-solution couple (i, u¥(u)) is
emphasized. Then we compute the eigenvalues of T(u) in order to detect one of the following cases:

o fold point: if u is a fold point, we expect that in a neighbourhood of p the spectrum of T(u) will show
an eigenvalue approach to and then depart from the imaginary axis;

e bifurcation point: in this case, in a neighbourhood of p we can find an eigenvalue of T(u) changing
sign;

e Hopf bifurcation point: in this case, in a neighbourhood of u there is a couple of complex conjugate
eigenvectors of T(u) crossing the imaginary axis.

The situation described above should however be taken as indicative when the approximation spaces are built
with a satisfactory accuracy. Otherwise, the discretization step will introduce perturbations of significative
magnitude, that could not only affect the position of the detected singular points, but change the topology
of the solutions set, as described in [17]. We refer to section 3.9 for a comment on error certification.

We remark that since T(u) has a small dimension, all the eigenvalues can be computed at a reasonable
expense, for instance using QR iterations [19].
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Since the stability of both steady state and time-dependent problems is related to the spectral properties
of the operator’s differential, we might expect that good results of the ROM in the detection of bifurcation
points are related to the effictiveness in the approximation of the spectral values.

In this context, we might regard the Reduced Basis method as a Krylov method for approximating
the eigenvalues of a parametrized operator, with the peculiarity that the Lanczos or Arnoldi methods for
generating a basis set for the Krylov space are replaced by a “smarter”, ad-hoc set of basis vectors (we refer
to [36] for Krylov methods, and to [37] for Arnoldi methods). This is of particular importance when the
dimension of the parameter space is relatively high, since it is the case where the efficiency of the RBM can
provide the most striking savings in computational time with respect to standard methods.

Recently, a ROM-based eigenvalue approach has been introduced for the detection of mechanical vibra-
tion in the automotive industry [38], showing reliable results.

3.9. Certification

We conclude our brief focus on Reduced Order Methods ideas with a note on error estimation. Basically
we are interested in computing error bounds for the approximated solutions both in the steady state and in
the time-dependent case, and also error bounds for the location of singular points.

Regarding the error bounds for the Reduced Basis solutions, the framework of BRR theory can by all
means be specialized to return error bounds in the form:

Alp) = [ () — ™ () - (47)

the error bound (47) can be expressed in terms of quantities related to F' and its differential (for details
see [39, 40], and [10] for a review). For this reason we recall the definition of some constants:

e the continuity constant v of a is, if it exists:

(DuF (p, w)[w], v)

¥ = sup sup = [|DuF (11, w)|| 2 (x,yr) < +00; (48)
SR el ol ! Lewer
e the coercivity constant « of a is, if it exists:
F
o= inf inf W (49)

wex veY ||ullx|v|ly

e the inf-sup constant B of a is, if it exists:

- (D F ()l v)
b= s kel (50)

e the residual r is obtained computing the operator F' on the approximate solution:

¥ (p) = Fuu® (), (51)

and its dual norm is given by:

(F(pu, u™ (1)), v)

Tolly (52)

[ (1) |y = sup
veY

We remark that the parameter-solution correspondence implied by the preceding definitions is one-to-one
only on each solution branch, and sufficiently far away from bifurcation points. Anyway, in general there is
no need of computing explicitly the constants (48)-(50), but only a reasonably sharp upper or lower bound
that can be estimated for example via a Successive Constraint Method (SCM, see e.g. [41]).
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For regular solution branches, BRR theory in [17] returns error estimates supposing that F}, is a consistent
approximation of F' and that its differential is Lipshitz continuous:

IDuF (1, 0) = DuF (1, 0) gy < Llu—vlx  Yu,0€S (53)
for some subset S of X, and has a bounded inverse:
HDuF(ﬂ’u)_luf(y/,X) < +00. (54)

Then, the following bound holds:
HU(M) - “N(“)Hx <2 HDMF(M’ UN<N))_1H$(Y’,X) [1F (1, u™ (1)) ||y
Cy
B
for an appropriate function f, at least when XV is sufficiently large.
For the approximation of simple limit points, BRR theory considers the case in which the decomposition
in linear and nonlinear parts, L and N respectively, of F' is such that both L and D, N (u,u) are compact

operators from X to Y’. In this case the Implicit Function Theorem can be applied to a regularized version
of I’ as exposed in section 2 to obtain estimates in the form:

() = 1™ (s)] + [lu(s) — u™(s)l|x < ¢ Jnf llu(s) —vllx, (56)

(55)

where s € [—¢,¢] is a real number used to parametrize the solution set in a neighbourhood of the fold point
(p*,u*). Similar results are available [42] also for the case of simple quadratic fold points. We remark that
in equation (56) the right hand side expresses the approximation properties of the space XV, and could be
specialized for instance applying the theoretical bounds available for POD or Greedy sampling.
Lastly, we comment on the error estimation for time-dependent nonlinear problems in the form:

ou

— = F(u,u). 57

5 = ) (57)
If F is coercive, or if it is possible to find an energy-like bound on the solution, usually there are estimates
based respectively on Gronwall lemma or energy conservation that have the form:

1 (1) = uN ()15 < Cexp(=at) [ () |y (58)

In general this bound is effective only if some smallness criterion is satisfied, e.g. for sufficiently small times
or for small data.

Another possibility is found by noting that in principle the estimates provided by BRR theory can be
adapted to the case where X and Y’ are Banach spaces defined on a space-time domain, as shown in [43, 9]
for the Navier-Stokes equations?.

In this case the norms of X and Y’ should be set up appropriately depending on the problem structure.
For instance, for a linear heat equation the classical choice [44] would be X = L2([0,T]; H'(£2)), with the
norm:

Ju(e, £)]% = / u(, 5)? ds + /Q Vuly, )] dy. (59)

Then, the bound (55) holds in the space-time norm of X, that although is still non-decreasing in time, it
could be much better than the exponential bound (58).

One disadvantage of this approach is that the algebraic linear system to be solved online, and the
computation of an estimate for the residual’s dual norm are more demanding. Furthermore, even in this
approach some form of control on the operator is necessary, specifically by requiring the diffusion constant
to be sufficiently large.

4In truth the cited papers develop the theory even further, deriving also bounds for output functionals of the solution and
stability criteria for flows under a large class of perturbations.
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4. Application to Incompressible Fluid Dynamics

In this section the results of the previous sections are specialized for the case of Navier-Stokes equations.
For the sake of generality, we focus in particular on the Rayleigh-Bénard equations for buoyancy driven
flows.

4.1. Mathematical model
The strong formulation of the Rayleigh-Bénard cavity problem, as stated in [12], is given in adimensional

variables as follows
%—?+u-Vu—Au+Vp:Gr19] on {2

divu =0 on {2

u=0 on I'p (60)
—AY =0 on {2

I =z on I'p.

Where 3 is the vertical versor, z the horizontal coordinate, Gr the Grashof number wich expresses roughly
the ratio of buoyancy to viscous forces, and is a parameter. The domain {2 considered in the benchmark
is a rectangular bidimensional cavity with unit height and width A. We consider the problem with fully
Dirichlet boundary conditions, in symbols we write I'p = 9{2. Solving equations (60) allows to obtain the
triple (u,p,¥), representing adimensional fluid velocity, pressure and temperature, respectively.

System (60) consists of three equations, from the top to the bottom expressing momentum, mass and
energy balance for an arbitrarily small control volume, treating the fluid as a continuum (see for instance [45]
for a detailed exposition of the physical theory). In particular, energy equation as stated on system (60)
represents the limit of the more general energy balance equation as the Prandtl number tends to zero. This
approximation, along with the simple boundary conditions allows to solve analytically the energy equation,
leading to the linear solution in temperature ©¥ = x. Navier-Stokes equations and energy equation are in
this case uncoupled.

It is convenient to write the variational form of system (60). For this purpose, we introduce the velocity
and pressure spaces V' = [HE(2)]4 and Q = L3(12), respectively®, where d is the spatial dimension. Then,
multiplying the momentum and mass balance equations in (60) respectively by the test functions v € V'
and g € @, and integrating formally by parts, we get the variational formulation that reads as follows: find
(u,p) € V x Q such that

m(u,v) + c(u, u,v) + a(u,v) + b(v,p) = f(v) YveV (61)
b(u,q) =0 Vg € Q.
Where the following bilinear forms have been introduced
a(u,v) = / Vv : Vudx
Q
b(v,q) = / gdivvde (62)
Q
m(u,v) :/ v - a—udm,
0 ot
along with the variational form
c(u,w,v) = / v (u-Vw)de (63)
Q
and the linear form
fv) = / Griy - vde. (64)
Q

5The notation chosen for the function spaces may need clarification. We refer with H& to the Sobolev space with zero trace
at the boundary (velocity), and with L2 to the Lebesgue L? functions with zero average (pressure).
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4.2. Parametrized formulation

We are interested in approximating the solutions set of equations (61) for a wide range of aspect ratios
for the rectangular geometry, and for an interval of the Grashof number over which the bifurcations take
place. Specifically, the independent parameters are the cavity length 4 = A and the Grashof number Gr.
To simplify the notation, let us introduce the parameters vector pu = (u, Gr).

As discussed in section 3.6, we introduce a domain parametrization. The main idea behind this procedure
is to refer each of the infinitely many geometric configurations to a common “original” domain. This way,
there is no need of constructing a new mesh for each computation, and all the problems can be cast on
the original domain only. The solution obtained on the original domain can then be mapped to the “true”
domain.

In the following, the dependence of the variational forms on the parameters vector p will be denoted
explicitly, and problem (61) will be cast as: find (u(p),p(p)) € V' x Q such that

m(p;u(p), v) + c(p;u(p), u(p),v) + a(p; w(p), v) + b(p; v, p(p) = f(piv) Vv eV (65)
b(p;u(p),q) =0 Vg € Q.

The dependence on the parameters p of the solution has been explicitly pointed out. We remark that each
of the operators can be affinely split into a part which depends on p and a part depending on v and .
This allows an offline-online decomposition in the computational steps, a feature of great importance for the
efficiency of the reduced order method, as discussed in section 3.5.

4.3. Spectral element approximation

Having set the variational form of the Parametrized Partial Differential Equation (P?DE or yPDE), we
proceed with the numerical approximation for problem (65) by means of the Galerkin projection method.
The Galerkin method consists in the projection of the continuous problem into a finite dimensional subspace
(VN QV) such that VY c V and QV C Q. The finite-dimensional approximation of problem (65) is: find
(N (), pV (1)) € VN x @V such that

mh(/'"; U'N(H’)’ vN) + ch(/'l'; U'N(u')’ U’N(u’)’ vN) + ah(/"'; U'N(u’)’ UN)
+on (v, N () = fr (s o) VoV e VN (66)
bn (s ™ (), V) = 0 VeV e QV.

In equation (66), the differential forms show the subscript ;, to remind the possible presence of “variational
crimes” such as Gaussian quadrature.

Then, given a set of basis functions {cp{\f }{\Q‘l and {wﬁf }szpl for VN and QN respectively, we can expand
the approximate solutions as

N Ny
N (p) =D uN (el M) =D e (wvr . (67)
=1 k=1

An aspect of fundamental importance is the choice of the finite-dimensional spaces VN and Q. Among
the many possibilities developed over the years, we choose the Legendre Spectral Element Method (for
details we refer for instance to [46] or [47, 48]) as implemented in the open source software Nek5000 [49]. In
this work, we used the Py — Py couple for velocity and pressure with polynomials of order 20.

Choosing the basis functions as test functions, we obtain the algebraic form of problem (66). A delicate
point when implementing the numerical solver is the choice of the linearization method for the nonlinear
convective term. In this work, we adopted the operator splitting-explicit in time third order backward
difference/extrapolation formulas. For details on the Py — Py splitting methods, we refer to [50].

After the linearization, and expanding uV and pV as a linear combination of the basis functions, a
Linear Algebra problem has been obtained, in the form:

s 7o) () = (77) <68>
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where U (p) = w (1) and Py, (1) = ppY (p) are the unknowns vectors, and F () is the vector arising from the
discretization of the explicit terms. In system (68), BT (1) and B(u) are the discrete gradient and divergence
matrices respectively, and H () is the discrete Helmholtz operator, obtained as linear combination of the
velocity mass and stiffness matrices.

5. A reduced order modelling technique for Navier—Stokes bifurcation problems

In this section the results of section 2 are specialized to construct a possible framework for the fast
solution of bifurcation problems based on the Proper Orthogonal Decomposition and Reduced Basis (POD-
RB) methods.

We remark that as for the truth spaces, the reduced basis spaces should be chosen in order to fulfill three
fundamental properties. First, it is important that good stability properties are verified, that is, the trial
and test spaces must lead to a well-posed problem (approzimation stability). Secondly, the reduced order
spaces should guarantee good approximation properties for all the parameters on a given interval. Third,
the reduced order spaces should have the lowest possible dimension while mantaining the required tolerance
(algebraic stability, i.e. no ill-conditioning in the reduced order matrices). In the following we will discuss
how these properties can be satisfied by a careful choice of the spaces V'V and Q™.

5.1. Reduced order formulation of the Navier-Stokes equations

A basis for the spaces V¥ and QY can be computed through the techniques discussed in section 3.4,
but some additional care is required to ensure the approximation stability of the reduced basis spaces. In
general, the basis obtained as described in section 3.4 will not fulfill the Brezzi inf-sup condition:

BN = inf sup bp; g, w)

S0, (69)
9€Q" yevn [lgllorllvllvy

As a consequence, the standard stability estimate for mixed problems (see for instance [51]):

19
- w¥ly < (14 57 ) i e oy (70)

wN eV
does not guarantee the desired approximation properties of VN and QV as Y — 0. Some possibilities to
recover the inf-sup control are the following.

Supremizer enrichment this method consists in the enrichment of the velocity space with an ad-hoc set
of basis functions, called supremizers and denoted with the symbol T#. The name supremizers is
justified by the way they are computed: each supremizer is obtained imposing that:

THo = arg sup blpsi o, w) (71)
weor wlvy
where o is a basis for the pressure space Q~. The supremizers ensure by definition that the inf-sup
constant is positive, but require additional offline computations for their construction and produce a
velocity space of larger dimension for the online phase with respect to the other two methods discussed
here. The final enriched space may depend also on the online parameter value and can be assembled
online.

We refer to [35] and [52] for an analysis of the supremizer stabilization, to [53] for a proposed surrogate
option, and to [54] for an application to nonlinear parametrized problems, solved along with some
rigorous and heuristic insights on the stabilized spaces. In particular, according to [54], usually it is
not required to compute a supremizer basis for each element of the pressure basis, but only for some
selected pressure basis functions.
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Petrov-Galerkin stabilization a less popular option in the ROM community, studied by Rovas [55] for
general nonsymmetric problems, Amsallem and Farhat [56] for supersonic fluid-structure interaction
problems, and recently by Dahmen [57] and Abdulle and Budéc [58] for Stokes problems. This method
consists in building different reduced basis spaces for trial and test functions, in order to generate an
oblique (i.e. non-orthogonal) online projection that can have better stability properties for non-coercive
and non-symmetric problems. A disadvantage of this method is a more complex offline phase, since
two different sampling procedures should be set up for the trial and test reduced basis spaces.

Piola transformation introduced in the ROM community by [59], consists in an online preprocessing of
the velocity basis set {¢;} that allows to obtain a set of (weakly®) divergence-free basis functions
{¢dv) for each value of the geometric parameter p. Having divergence-free basis allows to cancel out
the pressure term from momentum equation, thus removing any stability issue for mixed problems.
Pressure can then be recovered by means of a post-processing step, using the velocity coefficients to

obtain the pressure field:
=> u o, (72)
k=1

or alternatively a Poisson problem for the pressure can be solved online:
A () = — div (u (') - Tu (') (73)

We refer for example to [60] for an analysis of velocity-pressure reduced order models.

2

Each snapshot u?V(pu?) is weakly divergence-free in the original domain 2(x*), but this is not true
when the snapshot is pulled back to the reference domain (2. In fact, the parametrized formulation
imposes:

/ qdivu(p’)de =0 Vg € QY (74)
2(pt)

that in coordinates reads:

d d
[ 1250 = [5G 58 g o

]:1 k=1

It can be concluded that the snapshots do not cancel out the standard divergence on the reference
domain:

/ Z auJ da: Vg e QN (76)

but instead the pushed forward, or “stretched” divergence (75).

An advantage of this method is that the online system is smaller because all the pressure-related
computations can be avoided, and there is no need of additional offline pre-processing as required by
the two previous techniques. A disadvantage is that during the online phase an additional preprocessing
step is required to “map” the matrices on the parametrized divergence-free space.

In the following section, we explore the possibilities offered by the Piola transformation to build a
divergence-free basis on the reference domain.
The form of the Piola transformation can be inferred by comparing equations (75) and (76):

{ WV = PN = Gy ()l + Gro(p)ud (77)

2 = Py = Gy () + G (p)ud

6Due to the variational formulation, the discrete divergence vanishes but in general this is not true for the pointwise
divergence.
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for the two-dimensional case. In equation (77), w4V is the vector "V after the Piola transformation has
been applied with the (vectorial) map P. The superscript 4V is used to stress the fact that after being
Piola-transformed the vectors are divergence free.

After the reference basis {¢%V} is built by means of the Gram-Schmidt procedure (39), the mass, stiffness

and convection matrices are assembled on the reference domain:

M, :[adiv'@iiv 4
0

Ry= [ V&9 az (78)
0
Cijk = /@ (Clv . V&) . &V dz.

Note that we do not have to assemble any pressure-related matrix.
During the online phase, the divergence-free basis {¢}V} on the reference domain will not satisfy the
divergence-free constraint on the original domain. Consequently, the differential forms (62), (63), (64) should

not be evaluated on the basis {@iv} on the reference domain, but instead on the parametrized divergence-free
basis {Cf“’}. Such basis are obtained through a parametrized Piola transformation of the original basis:

{S?—mmﬁ“—Gmm&?+&xm?§ (79)

oy = Po ()¢ = Goy () Azdiv + G22(M)A1fi,12v-

During the parametrized simulation, it is not necessary to build explicitly the new basis {¢{V}, but only to
evaluate its effect on the matrices (78) (i. e. on the coeffcients).

Finally, we obtain the reduced order formulation of problem (61) by applying first the Galerkin projection
on VN x QN followed by the Piola transformation. The reduced order problem reads: find (u™ (u),p™ () €
VN x QN such that

ma (5 (1), ™) 4 en(ps u® (p), ™ (1), o) + an(p;u™ (1), ™) = fr(p;0™) (80)
for all vV € V. The algebraic problem becomes:

Hy(n)Un (1) = Fy(p), (81)

where Hy is a linear combination of the mass, stiffness and convection matrices. The performance improve-
ments obtained through the ROM are clear, since the (sparse) algebraic system (68) of order N, + N, has
been reduced to the (dense) system (81) of order N, with N,, < N,y < Ny + N.

5.2. Branching detection and tracing

5.2.1. Steady bifurcation
To identify a steady state bifurcation point, we follow a technique similiar to Lemma 4 in [61] that we
briefly discuss. First, we rewrite the variational problem (61) in the abstract form of section 2:

F(p; (u(p), p(p))) = 0, (82)

then we introduce the linearized advection operator T (u*) : V +— V, obtained by taking the Fréchet
derivative of the convection term w - Vu about a base solution u*:

T(u")v]=u* - Vo+ov-Vu™ (83)
According to [61], if (u*,w*) is a bifurcation point, the equation

1o+ T (0" (1)) o] = 0 (84)
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has at least one nonzero solution v.
From a reduced order modelling perspective, following [62] we search for a change of sign of the eigenvalues
of the matrix T'(u*), defined as
Tyj(v*) = T((u*, ¢™)ols ™) ¢
i div +div div k oL div ~div div k (85)
= (GG VG UN + D (G G- VEY)oUR
k=1 k=1

We portray in figure 3 the eigenvalues of the operator T (u*) evaluated in a neighbourhood of a bifurcation
point for a reduced order simulation of the cavity toy model problem. In particular, we fix an interval for
the Grashof number where there exist both a steady state and a Hopf bifurcation point for the single roll
flow, and we evaluate the spectrum of the tangent operator on a basis set obtained from flows with one, two
and three rolls, and we compare it with the spectrum computed on a basis set coming from snapshots with
only two and three rolls. In the first case we can see both a steady state bifurcation (the eigenvalue crossing
the zero) and, for higher values of the Grashof number, a Hopf bifurcation (the pair of complex conjugate
eigenvalues crossing the imaginary axis). In the second case no eigenvalue passes through zero or crosses
the imaginary axis, hence the second reduced basis set is not able to detect the two bifurcations.
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Figure 3: Reduced Model Eigenvalues of the tangent advection operator 7T at the bifurcation point for
A =4, for Gr € [80-10%,110 - 103]. On the left the tangent operator is evaluated on a basis set with one,
two and three rolls, on the right a set with only two and three roll flows.

To give an intuitive understanding of this behaviour, we draw in figure 4 the projection of a bifurcating
line (in black) on two planes. On the blue plane the bifurcation is correctly visualized, but in the green plane
the projected curve (in red) no longer bifurcates. This analogy suggests that a similar projection behaviour
may affect the reconstruction of bifurcating solutions sets if the reduced basis sets are not chosen properly.

As a further example, we report in figure 5 the path of the eigenvalues in a neighborhood of a steady
bifurcation point. Highlighted in red is the path of the eigenvalue changing its sign as the Grashof number
is increased. For clarity, we draw in figure 5 the evolution of the minimum eigenvalue as a function of the
Grashof number for the same test case of figure 3. It can be seen that the zero is reached approximately at
Gr = 30.9 - 103, very close to the reference result of [63]. Furthermore, the critical eigenvalue crosses the
origin with nonzero velocity, making eigenvalue analysis adequate for bifurcation detection purposes.

5.2.2. Hopf bifurcation
The Hopf bifurcation differs from the steady state bifurcations because it does not regard the branching
of steady state solutions. Instead, Hopf bifurcation identifies the point at which time-dependent solutions
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Figure 4: Intuitive visualization of the interpolation behaviour shown in figure 3: the original bifurcating
curve (in black) does still bifurcate if projected in the blue plane, that we imagine spanned by the correct
basis set, but it does not if projected in the lower plane, spanned by an incomplete basis set.
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Figure 5: Left: evolution in the complex plane of the Reduced Model eigenvalues of 7 with the Grashof
number in a neighborhood of a steady bifurcation point. Highlighted in red is the path of the critical
eigenvalue, responsible for the bifurcation. Right: Reduced Model minimum eigenvalue of T~ as a function
of the Grashof number. For clarity, the Grashof number is divided by 103.
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become stable. This implies that a random perturbation from a steady state does not damp off in time, but
after a transient it leads to a new, time-dependent solution.

For the detection of Hopf bifurcation points, the results of section 2.3 apply directly. We write the
time-dependent Navier-Stokes equations seeking for a solution in the form of a superposition of a steady
state solution u*(x) and a small perturbation w/(x)e’t. Neglecting the second order terms, we obtain a
linearized equation that rules the time-evolution of the perturbations:

u* - Vu' +u' - Vu' — Au’' = —ou’ (86)
that can be seen as an eigenvalue problem for the linearized Navier-Stokes operator £ : V +— V:
L(u*)[u] = —ou'. (87)
If equation (87) admits an eigenvalue o* such that fo* > 0, the corresponding perturbation will grow in
time, and if So* > 0, an oscillatory solution has to be expected, at least until the nonlinear term u’ - Vu’
remains sufficiently small.
Applying this technique to the reduced order model, the Hopf bifurcation is detected when the matrix

L associated to the linearized Navier-Stokes operator £(u*) admits an eigenvalue satisfying the conditions
above. Explicitly, the matrix L has the form

Nu Nu
Lij =Y _(¢H, ¢ - V¢ )oUR + > (¢, ¢ - VEi)oUR + (V¢ Vi), (88)
k=1 k=1

Approximating numerically the Reduced Order Model eigenvalues of matrices (85) or (88) is not par-
ticularly difficult due to their low dimension, hence direct eigenvalue algorithms can be used, such as the
QR algorithm. Usually performing eigenvalue approximations of large sparse matrices arising from the sta-
bility analysis of Navier-Stokes equations is a delicate task, as Arnoldi methods can compute only a few
eigenvalues. We refer to [64] for a discussion on the approximation of any number of eigenvalues for large
systems.

6. Numerical results

We now test the efficiency of the reduced basis method for flow bifurcation problems on a well-known
test case, presented at the GAMM benchmark on oscillatory convection of low Prandtl number flows, [12].
Many experimental and numerical references exist on this benchmark, among which we will refer to the
results in [63].

In this benchmark the parameters are the domain length A € [2,10] and the Grashof number Gr €
[50 - 10,1 - 10%], defined in [63] as the conventional Grashof number multiplied by the domain length A.
In the considered parameter domain there exist regions admitting unique steady solutions, multiple steady
solutions, and unsteady solutions, consequently this represents a good problem to test the proposed numerical
method.

Some representative solutions for this benchmark are shown in figure 6. As it can be seen in the
visualizations, the solutions are very heterogeneous as the Grashof number and Aspect Ratio are varied
within D.

We choose as reference domain the rectangle with A = 2 and the affine transformation is given by:

()-ran-()+ 1)

For this simple geometry, the Piola transformation P(u, ), is simply the inverse of G (1).

Operatively, it is sufficient to compute once the reduced order matrices on the reference domainand the
right hand side vector for all the Reduced Basis functions {¢%V}. Then, during the online phase, each entry
of the matrices is multiplied by the corresponding G;;(p) in order to evaluate the differential forms on the
basis set ¢3Y instead of ¢V,

For the time evolution of the online system we chose third order semi-implicit Backward Difference
Formula (BDF3).
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Figure 6: Some snapshots for the GAMM benchmark. From top to bottom, and from left to right: (u =
2,Gr = 50); (= 3.37,Gr = 264.9); (u = 5.52,Gr = 132.1); (u = 8.36, Gr = 50.77); (u = 10, Gr = 100).
All snapshots are steady state, except the one with three rolls.

6.1. Bifurcation diagram for A =4

In the first test case the geometric aspect ratio is fixed to A = 4, and the snapshots are collected until
the tolerance computed as in (27) falls below 10~*. The sampling procedure provided 13 snapshots for
Gr € [40-103,1-105], of which 7 are steady state solutions, and the remaining 6 are computed by a POD
of 2 time periodic solutions, with an L? energy threshold fixed to 99.9%. To test the proposed methodology
(CVT-POD, SEM, Piola transformation) in the usual RB framework we try to rebuild a known bifurcation
diagram with the reduced model, with the aim to reconstruct the different solution branches.

According to [63], for this configuration there are three steady solutions up to Gr = 120 - 103, after
which a Hopf bifurcation occurs and the flow becomes unsteady. The three branches of steady solutions
are characterized by a single roll flow up to Gr = 25 - 103, then flows with two rolls are stable for Gr <
100 - 103, and finally three roll flows exist from this last point up to the Hopf bifurcation. The steady state
retained snapshots are almost equally distributed between one, two and three roll flows. The time-dependent
snapshots are taken at the extreme ends of the Grashof parameter domain, very close to the Hopf bifurcation
and at the Gr = 1-10° extreme. Both the time-dependent simulations required 3 POD modes to store the
99.9% of the energy.

To build the bifurcation diagram, we performed first a reduced time-dependent simulation with an
homogeneous initial condition, and for the lowest value of the Grashof number, set at Gr = 40 - 103. We
remark again that in [63] was used a different definition for the Grashof number, hence the value to be used
for the numerical simulations is Gr = 10 - 10%. This run evolved to a steady state solution (within an L2
tolerance of 1078), and successfully rebuilt the first snapshot, consisting in the one roll flow typical of the
low Grashof solutions.

Then, some time-dependent simulations are carried out with increasing values of the Grashof number,
using as initial condition the result of the previous simulation. The continuation method has been used until
the Hopf bifurcation was reached. Finally, the continuation method has been run backwards, with decreasing
values of the Grashof number. The results obtained are synthesized in figure 7, where the evolution of the
horizontal velocity at a fixed point is plot as a function of the Grashof number. The three branches can
clearly be identified, and some hysteresis is present, especially at the one to two rolls transition. For clarity
reasons, we also plot the streamlines of some representative solutions.

Note that to build the bifurcation diagram we had to compute 24 solutions for different values of the
Grashof number with, N = 13 basis functions. The online procedure required slightly less than 600 seconds,
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while the full order run would have taken about 24 cpu-hours for each solution, thus requiring approximately
576 cpu-hours to complete, on a IBM iDataPlex DX360M3 cluster. We estimate that in this way we reduced
the computation time approximately by a factor of two:

offline computation time + online computation time 13 -24 + % 5497
~ = 54%,

equivalent fully offline computation time T 24-24

but this savings estimate can be much better when the number of offline runs becomes large, as we shall see
in the next numerical test.

Bifurcation diagram for A=4

100

~200

0 0 a0 60 50 100

Figure 7: Bifurcation diagram for an aspect ratio of 4. The graph shows the horizontal velocity at the point
(0.7,0.7) as a function of the Grashof number. The three lines are associated to the solutions with 1, 2, and
3 rolls, and the streamlines of some representative solutions are plotted for clarity.

6.2. Stability regions

After the satisfactory results of the fixed-geometry test, we consider the more general case with parametrized
geometry. The parameter space D is now two dimensional, in particular we choose Gr € [50 - 103, 1 - 10°]
and A € [2,6].

At first, we collect a sufficient set of snapshots to extract the information needed for the online phase. We
start from a set of 5 snapshots, corresponding to the four vertices and the center of the parameter rectangle
D. Such snapshots are used as a starting set for the CVT sampling procedure exposed in section 3.2. For
the sake of clarity, we report a scheme of the actual algorithm (Algorithm 2).

We remark that the sampling procedure exposed in Algorithm 2 is divided between two basis sets: one for
the steady snapshots and another for the time-dependent snapshots. This separation is necessary because,
due to the time averaging errors, the tolerance of the steady state snapshots as computed in equation (91)
is an order of magnitude lower than the tolerance for the time-dependent snapshots. If the CVT were
performed without this precaution, the steady state regions of D would be heavily underrepresented, or
conversely the number of time-dependent snapshots would be too large. The selection of suitable tolerance
criteria for the two sampling procedures is a difficult task, and we chose to set the two tolerance values
treating the steady-state and time-dependent cases as separate, imposing tolerances based on experience
and on the realizable error bounds.

In this test, the sampling provided a total of 108 basis functions, arising from 30 steady and 21 unsteady
snapshots. Almost all the unsteady snapshots required 3 POD modes to store the 99.9% of the energy,
except for a few cases where 2 modes were enough. We report in figure 8 the position of the snapshots on
the parameter plane (A, Gr), as computed by the Algorithm 2 (CVT).

As a basic validation for the online solver, we run several online simulations with all the 108 basis
functions, for the parameters pu' used for the snapshot computation where the solution is known to be
unique. The steady state snapshots have been correctly rebuilt by the online simulation, with L2 differences
between the snapshots and their online reconstruction alway of the order of the sampling tolerance.
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Algorithm 2 The Centroidal Voronoi Tessellation sampling strategy used in section 6.2.

1: repeat
2: build the Delaunay triangulation for the points in the parameter space u’ € D
3: find the triangle K; C D with the largest residual
resg, = Z () —uN(uj)HL2 (90)
pwieK;

4: compute the barycenter (Grt, u?) of K;
5: compute the new snapshot w(p")
6: compute the corresponding basis function Cl‘-i“’
7 update the tolerance:
i
vol = max (w(u') = Y (u(u'), ()¢ ) (91)
j=1
8: until max,cx A(u) < tol
1000 s
800} . ) e
600} . . '
400} e T "
200k - H ... RO DR ™~ . B . ... ..
0

Figure 8: Parameters selected by the sampling Algorithm 2. The red square mark denotes the steady
state snapshots, the black circle marks the time-dependent snapshots. The Grashof number is expressed in
thousands.

26



On the other hand, the unsteady simulations show some discrepancies with the snapshots in terms of the
oscillation’s frequency, but the L? difference between the average values of the offline and online simulation
are of the same order of magnitude of the sampling tolerance. We suspect that the frequency discrepancy
of the online phase should be ascribed to the absence of the rejected POD modes that could be responsible
for the frequency drift.

Despite the frequency drift during the online phase, the behaviour of the Hopf bifurcation frequency
shows the expected decay as the geometry is varied. In figure 9, we plot the frequency at the onset of Hopf
bifurcation for the one, two and three roll cases, as a function of the cavity length A. The asymptotic decay
is confirmed by the benchmark [63], and is physically justified since for longer cavities the stability area of
one roll flows shrinks to very low Grashof numbers, and consequently the flow must happen at a low velocity
in order to mantain the stability of this very long vortex. Also, we note that sudden changes in the stability
area happening about A = 4.8 in figure 10 are reflected by the abrupt change of sign of the derivative of the
red curve in figure 9.
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Figure 9: Frequency f = 1/w at the onset of the periodic solution as a function of the geometric aspect factor
A. The one roll solutions are marked in black, the two rolls solutions in red and the three rolls solutions in
blue.

In particular, a remarkable feature of the online phase is that the basis arising from snapshots that
are physically impossible for a certain flow configuration are cancelled out by the Galerkin projection. For
instance, if we fix A = 4, the only admissible solutions for this geometry display one, two, or three rolls, and
the basis arising from four or five rolls snapshots are automatically excluded by the online projection (the
corresponding coefficients begin very close to machine zero).

Next, we investigate the stability of the reduced basis solutions using the techniques exposed in sec-
tion 5.2, with the goal of identifying the stability regions of each flow pattern. In particular, we are
interested in finding the curves in the parameters’ plane that limit the stability of steady flows with one,
two, three or four rolls. These curves are formed either by an envelope of steady bifurcation points or Hopf
bifurcation points.

First, we compute the Hopf bifurcation point for a series of values of A € [2,6]. We adopt a subset of the
108 basis consisting of the 25 basis with a single roll. At each run a continuation method on Gr is used, and
the reduced system is evolved until a new steady state is reached, with the modulus of the time derivative
below a tolerance of 1078, After the steady solution is reached, the eigenvalues of the reduced linearized
Navier-Stokes operator (88) are computed, and the Hopf bifurcation is marked for the Gr whose maximum
eigenvalues have a real part sufficiently close to zero.

This operation is repeated for the solution branch with two roll basis (of dimension 14), and for the three
and four roll branches (dimension 22 and 9 respectively). For each subset, the geometry parameter A range
is bounded below by the snapshot with the lowest value of A.

Then, we compute the steady state bifurcations by running reduced order simulations using basis sets
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formed by all the possible couples of snapshots, to be sure that all the bifurcation points are identified. For
instance, running a first reduced order simulation with the basis sets arising from one and two rolls snapshots
guarantees that we identify the regions where the one roll flows lose stability in favour of two roll flows (this is
the most frequent case for low values of the geometric parameter. Then, running a reduced order simulation
with basis functions arising from snapshots with one and three rolls, we detect the bifurcation points at
which one roll flows become unstable in favour of three roll flows (typical for larger values of the geometric
parameter), and so on with all the possible permutations of basis functions.

For a fixed geometrical parameter A, the simulation is started for a Gr not too far from the Hopf
bifurcation, then Gr is gradually reduced until there is a sign change in an eigenvalue of the matrix (85).
The value of Gr for which there is a steady bifurcation is used to draw the stability region, although the
existence region of a flow pattern might be larger due to hysteresis, as shown in the bifurcation diagram 7
and by the reference [63]. In this paper however, we focus on the determination of the bifurcation points
and less on the precise computation of stability regions.

We report in figure 10 the results of such analysis, performed for A € [2,6] and Gr € [50 - 103, 1 - 10°].
Notice that the one roll flows are stable for all the geometrical aspect ratios if the Grashof number is
sufficiently low. The two, three and four rolls flows on the other hand are stable only for some aspect ratios,
and for sufficiently large Grashof numbers. Overall, the stability results obtained with the reduced order run
are consistent with the high-order results, and the stability isles are visually similiar to the very accurate
results of [63].

2.0 2.5 3.0 35 4.0 4.5 5.0 5.5 6.0

Figure 10: Stability regions in the parameters plane for the one roll flows (in black), the two rolls flows
(red) and the three rolls flows (blue). The Hopf bifurcation points are marked with the circles, the steady
bifurcation points with the square marks. The Grashof number is expressed in thousands.

Finally, we remark that the construction of the diagram in figure 10 with the reduced order method
required the computation of 103 bifurcation points, each taking from 2 to 15 solutions for different values of
the Grashof number. This required roughly 43 cpu-hours on a desktop computer, while the same computation
whithout using the reduced order method would have taken roughly 5000 cpu-hours. Taking into account
the offline phase (the computation of 108 basis functions and the POD-related computations), we get the
following estimate for the computational time reduction:

offline computation time + online computation time 103 -24 + 20 4 103 - 10 - % 10%
~ = 10%,

equivalent fully offline computation time o 103-10-24

where the numbers refer to 20 hours for the POD computations, and we consider an average of 10 runs
per bifurcation diagram, 103 bifurcations computed, and 5 minutes per run during the online phase and 24
hours per run during the offline phase.
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6.3. Time-dependent results

Finally, the accuracy of the ROM is tested with a time-dependent benchmark. For this purpose, we
compare the results of the high order simulation with the results of the ROM simulation for some represen-
tative values of the parameters. In particular, we focus on time-periodic simulations with all the possible
flow structure in the parameter range considered in this work. Specifically, we simulate parameter values
for which a flow structure spanning from one to four vortices is expected.

For each simulation a basis is built starting from the snapshots with the same number of vortices. In
all cases, the reduced order simulations converge to the expected periodic solution. In figure 11 is draw a
comparison of the horizontal velocity at a fixed point as a function of time, as computed with a high order
simulation, and with the reduced order approximation. We remark that the reduced order dynamics is in
good agreement with the high-order dynamics in terms of average value, oscillation amplitude and frequency.
In particular, for the considered test case the relative error in oscillation frequency of the reduced model is
quantified in 0.51%.

The computational reduction is also relevant, since the reduced order simulation takes less than 5 minutes
on a personal computer, whereas the high-resolution simulation requires 24 cpu-hours on the CINECA PLX
cluster (an IBM iDataPlex DX360M3).
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Figure 11: Comparison of the horizontal velocity at a the point (0.7,0.7) vs time for the high order (in red,
HO) and reduced order (in black, RO) simulations. The parameters are Gr = 963791, A = 2.22, and the
resulting flow has a single roll.

7. Perspectives

This work highlights several improvements with respect to the state of the art for parametrized viscous
flow stability and bifurcation problems approached with ROM: in particular the focus has been put on
approximation stability, proper sampling techniques and reduced eigenproblems for stability analysis and
bifurcations detection. The exposition presents the topic from the different viewpoints of Nonlinear Math-
ematical Analysis, Applied Mathematics and Numerical Analysis, trying to underline the different aspects
of the problem under consideration and by bridging these studies with offline high performance computing,
on one side, and online advanced reduced order modelling, on the other one. Tests were performed on a
well-known cavity benchmark problem.

We plan to extend the proposed ROM framework to more advanced 3D problems, in particular with
applications to the study of the Coanda effect in hemodynamics [65], and the influence of geometry on
symmetry breaking. More complex studies may be devoted to bifurcations and stability of flows with an
elastic wall-structure interaction.
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