Closed-loop turbulence control using machine learning

Stop thinking and let your PC and experiment do the hard work!

Friends / core team

Complex systems

M. Abel
M. Segond
Ambrosys

Control theory

S. Brunton *U Washington*

Closed-loop turbulence control — theory

L. Cordier, T. Duriez, E. Kaiser, B. Noack, K. von Krbek, C. Pivot, M. Schlegel, et al.

Closed-loop turbulence control

— experimental demonstrators

D. Barros
J.-P. Bonnet
J. Borée
R. Li
V. Parezanovic

R. Semaan R. Radespiel Braunschweig

R. King
TU Berlin

Statistical physics

Robert Niven
UNSW
Australia

CFD + Stab.anal.

M. Morzyński TU Poznań

More friends (experiments)

• A. Spohn, V. Parezanovic, E. Kaiser (PPRIME, Poitiers)
oon: MLC in separation control over a smooth ramp
• J. Borée, D. Barros, C. Li, Y. Cao(PPRIME, Poitiers)
of an Ahmed body
machine learning modelling in combustion engine
• F. Harambat, T. Ruiz(PSA, Peugeot-Citroën, Velizy)
on: MLC in drag reduction of a realistic car model
• N. Gautier, N., JL. Aider, (PMMH Paris)
of backward facing step
• M. Stanislas, C. Raibaudo, C. Cuvier, (LML Lille)
• A. Kourta, A. Debien & N. Mazellier (PRISM, Orléans)
• C.O. Paschereit, K. Oberleithner, J. Moeck(TU Berlin)
combustion-related experiments, soon: MLC in wind-turbine, cars
• R. Radespiel, R. Semaan, P. Scholz, (TU Braunschweig)
of a d-shaped body
\dots MLC in highlift airfoil with \sim 100 actuators and \sim 500 sensors

1. An eldorado of engineering applications
The need for closed-loop turbulence control
2. Weapons of choice
A review of turbulence control strategies
3. Machine learning control (MLC) as magic bullet
a fool-proof method
4. Recent MLC applications
Demonstrations in shear turbulence experiments
5. Turbulence control strategies revisited
MLC as paradigm shift

1. An eldorado of engineering applications
The need for closed-loop turbulence control
2. Weapons of choice
A review of turbulence control strategies
3. Machine learning control (MLC) as magic bullet
a fool-proof method
4. Recent MLC applications
Demonstrations in shear turbulence experiments
5. Turbulence control strategies revisited

Turbulence control → **transport vehicles**

Control goals

- lift increase
- drag reduction
- acoustic noise reduction
- mixing/combustion control

Control strategies

- aerodynamic design
- passive (e.g. riblets)
- active, open-loop (e.g. periodic blowing)
- active, closed-loop (largest opportunities!)

Turbulence control \mapsto **other applications**

Turbulence control → **even more applications**

Simple prototype flows

Energy systems

Production etc.

Turbulence control → **decision tree**

Turbulence control → nonlinearity challenge

■ Duriez et al. 2014 AIAA

Frequency cross-talk = show stopper for model-based control

 $U_1 = 4 \, m.s^{-1}$

 $U_2 = 1 \, m.s^{-1}$

200 mm

Actuators

Hot-wire rake

Reynolds stress

at any frequency changes mean flow

■ Reynolds + Hussain 1972 JFMs

- Normal turbulence cascade
 Dominant → high frequencies
- Inverse turbulence cascade
 Dominant → lower frequencies
- Low-frequency forcing too
 □ Aider+ 2014, □ Pastoor+ 2008 JFM, ...

Prototypic model of frequency cross-talk

 $oxed{\equiv}$ Luchtenburg et al. 2009 JFM & $oxed{\equiv}$ Aleksić et al. 2010 AIAA

Simplified generalized mean-field model:

$$\frac{d}{dt} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} \sigma_1 & -1 & 0 & 0 \\ 1 & \sigma_1 & 0 & 0 \\ 0 & 0 & -0.1 & -10 \\ 0 & 0 & 10 & -0.1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ b \end{bmatrix}$$

$$\sigma_1 = 0.1 - a_1^2 - a_2^2 - a_3^2 - a_4^2$$

Goal = mitigate instability $J = \overline{a_1^2 + a_2^2} + 0.01\overline{b^2} \stackrel{!}{=} \min$

Linear control \Rightarrow first oscillator uncontrollable!

- Linearized system around fixed point $\sigma_1 = 0.1$

Nonlinear control: Excite 2nd osc. $a_3^2 + a_4^2 > 0.1 \Rightarrow \sigma_1 < 0$

1. An eldorado of engineering applications
The need for closed-loop turbulence control
2. Weapons of choice
A review of turbulence control strategies
3. Machine learning control (MLC) as magic bullet
Introduction to a fool-proof method
4. Recent MLC applications
Demonstrations in shear turbulence experiments
5. Turbulence control strategies revisited
MLC as paradigm shift

Machine learning control I \equiv Duriez et al. 2014 AIAA, \equiv Wahde 2008

MLC = model-free optimization of control laws Similar approaches exist for robotic missions, etc.

Machine learning control II

■ Duriez et al. 2014 AIAA

Step 1: 1st generation with random nonlinear control laws

$$b_m^1 = K_m^1(s), m = 1, ..., 100$$

Step 2-50:

Biologically inspired optimization of the control laws based on the 'fitness grades'

$$J\left[b=K(s)\right]$$

Optimization process

Machine learning control III ☐ Duriez et al. 2014 AIAA, ☐ Gautier et al. 2015 JFM

Gradient search

requires structure identification of the control law and parameter identification based on local minimization

Genetic programming

= evolutionary algorithm for regression with structure identification of control law

Example of an evolutionary minimization.

MLC → generalized mean-field model

| ■ Luchtenburg, Günther, Noack, King & Tadmor 2009 JFM & | ■ Duriez et al. 2014 AIAA

MLC → **Lorenz equation**

🔳 Duriez et al. 2014 AIAA

Forced Lorenz system

$$\frac{da_1}{dt} = \sigma(a_2 - a_1),$$
 $\frac{da_2}{dt} = a_1(\rho - a_3) - a_2,$
 $\frac{da_3}{dt} = a_1a_2 - \beta a_3 + b,$
 $\sigma = 10, \ \beta = 8/3 \ \text{and} \ \rho = 20$

MLC goal:

Find a control law $\frac{b(a)}{a}$ with mimizes the max. Lyapunov exponent

$$J = \exp(-\lambda_1) + \frac{\gamma}{T} \int_0^T dt \ b^2$$

Controlled Lorenz attractors

$$\gamma = 1 \\
\lambda_1 = 0.715,$$

$$\gamma = 0.01$$
 $\lambda_1 = 2.072$,

$$\gamma = 0 \\
\lambda_1 = 17.613$$

1. An eldorado of engineering applications
The need for closed-loop turbulence control
2. Weapons of choice
A review of turbulence control strategies
3. Machine learning control (MLC) as magic bullet
a fool-proof method
4. Recent MLC applications
Demonstrations in shear turbulence experiments
5. Turbulence control strategies revisited
MLC as paradigm shift

TUCOROM wind-tunnel

 \equiv Parezanović et al. 2014 FTC & \equiv Duriez et al. 2014 AIAA

New turbulence control wind-tunnel at P' →

Control team at control desk

Flow visualization

TUCOROM mixing layer demonstrator

■ Parezanović et al. 2014 FTC

TUCOROM mixing layer control experiment

 \equiv Duriez et al. 2014 AIAA & \equiv Parezanović et al. 2014 FTC

set-up	actuation Q	width W
a) unactuated flow	0%	100%
b) best periodic forcing	100%	155%
c) MLC closed loop forcing	54%	167%
MLC vs open-loop	-46%	+12%

Pseudo visualizations from 24 hot-wire sensors

MLC has found a very effective nonlinear low-frequency resonance mechanism!

MLC in water tunnel experiment (PMMH)

■ Gautier, Aider, Duriez, Noack, Segond & Abel 2015 JFM (accepted)

Mixing enhancement (BFS)

$$J = \overline{s} + \frac{3}{2} \overline{|b|}^2 = \min!$$

s: normalized recirculation zone; b: normalized actuator velocity

MLC has found a very effecting flapping mode mechanism for decreasing the recirculation zone!

MLC in a boundary layer experiment (LML)

Duriez, Parezanović, Laurentie, Fourment, Delville, Bonnet, Cordier, Noack, Segond, Abel, Gautier, Aider, Raibaudo, Cuvier, Stanislas & Brunton 2014 AIAA

Separation control of a turb. boundary layer over a ramp

J = measure of attachment + actuation penality = min!

MLC outperformed the best open-loop forcing by finding periods where blowing is not efficient!

Conclusions

- \equiv Noack+ 2011 Springer (\mapsto ROM); Kaiser+ 2014 JFM (\mapsto CROM); Gautier+ 2015 JFM (\mapsto MLC)
- Turbulence control = attractor control

 Physics mechanisms are strongly nonlinear.
- Model-based control design
 - → one or two frequencies
- Model-free machine learning control design
 - → broadband turbulence
 - shear turbulence control, drag reduction, ...
 - MLC consistently outperformed best open-loop forcing
 - Even when a linear dynamics was invalidated.
- In Progress: Cluster-based control (CROM, RL, ...)
 - → model-based alternative for MLC

More information or any ideas

Call 24h/7d

... or read

... or ask now!!!

In any case, stay tuned in for news + publications:

- http://MachineLearningControl.com
- http://ClusterModelling.com