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More friends (experiments)

e A. Spohn, V. Parezanovic, E. Kaiser ......... (PPRIME, Poitiers)
................. soon: MLC in separation control over a smooth ramp
e J. Borée, D. Barros, C. Li, Y. Cao ........... (PPRIME, Poitiers)

........................... MLC in drag reduction of an Ahmed body
.................... machine learning modelling in combustion engine

e F. Harambat, T. Ruiz ............. (PSA, Peugeot-Citroén, Velizy)
....................... MLC in drag reduction of a realistic car model
e N. Gautier, N., J.-L. Aider, ... ..... ... ........... (PMMH Paris)
................ MLC for mixing enhancement of backward facing step
e M. Stanislas, C. Raibaudo, C. Cuvier, ... ............ (LML Lille)
.......... MLC for separation mitigation of a turbulent boundary layer
e A. Kourta, A. Debien & N. Mazellier .......... (PRISM, Orléans)

.......... MLC for separation mitigation of a turbulent boundary layer

e C.0O. Paschereit, C.N. Nayeri, K. Oberleithner, J. Moeck .. (TU
Berlin)
..... combustion-related experiments, soon: MLC in wind-turbine, cars

e R. Radespiel, R. Semaan, P. Scholz, ... ......(TU Braunschweig)
.......................... MLC in drag reduction of a d-shaped body
........ MLC in highlift airfoil with ~100 actuators and ~ 500 sensors




MLC experiments in this talk

MLC collaborator
MLC exp. planned

MLC exp. achieved

PPRIME Poitiers . V. Parezanovic, J. Delville (t), K. Fourment (t), J.-P. Bonnet
PMMH Paris . N. Gautier, N., J.-L. Aider

LML Lille . M. Stanislas, C. Raibaudo, C. Cuvier

PRISME, Orléans . A. Kourta, A. Debien & N. Mazellier
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Turbulence control — transport vehicles

Control goals Control strategies
e |ift increase e aerodynamic design
e drag reduction e passive (e.qg. riblets)
e acoustic noise reduction e active, open-loop
e mixing/combustion control (e.g. periodic blowing)
e active, closed-loop
(largest opportunities!)




Turbulence control — other applications




Turbulence control — even more applications

Simple prototype flows Transport vehicles Energy systems Production etc.

Tatal Artificial Heart Human Heart
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Rear side of the island Guadalupe (20 Aug. 1999)



von Karman vortex street in technology

Damaged tanker — oil visualization

Van Dyke (1982), page 100



von Karman vortex street in technology

Tacoma Narrows Bridge (7 Nov. 1940)




D- shaped body: Experimental setup

Pastoor, Henning, Noack, King & Tadmor 2008 JFM

Rep = 20000...60000

incoming flow

) flow visualization

, @® pressure gages
L =36H Re actuators




D- shaped body: Un-actuated flow

=| Pastoor, Henning, Noack, King & Tadmor 2008 JFM

smoke visualization, Reg = 40000

Stn, = 0.20 CD.0 = 1.2 Ep’o = —0.5



D- shaped body: Open-loop control

Pastoor, Henning, Noack, King & Tadmor 2008 JFM

Symmetric actuation St;, = 0.635t, ...... suggested by ROM
J.-L. Aider et al. — backward facing step Rerp = 40000

¢y =0.015 Sta=0.126 cp/epo=0.85 ¢cp/|epol = —0.6

40% increase in base pressure.

20% decrease in drag.



D-shaped body: Closed-loop control

= | Pastoor, Henning, Noack, King & Tadmor (2008) JFM

Phase control ............. .. .. .. ....... derived from ROM
Repr = 40000

¢y =0.015 Sty =0.17 cp/epo=0.85 ep/lcpo| = —0.6
Same drag reduction, but at all Re [20000,60000] ...

. and with 40% less actuation energy.



D- shaped body: Closed-loop control /]

Pastoor, Henning, Noack, King & Tadmor 2008 JFM

Phase control ............. ... ... ....... derived from ROM
Repr = 40000

¢y =0.015 Sty =0.126 cp/cpo=0.85 ¢p/leppo| = —0.6
Same drag reduction at same actuation energy.

But only one (!) actuator.



Generalized mean fleld model
Luchtenburg et al. 2009 JFM & | =| Aleksic et al. 2010 AIAA

Dynamical system structure:

[ ~n ~MNn

aq | o’ —w"” 0 O aq 0 O
dlay| | o™ 0 O as 0 O
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with state-dependent coefficients
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50 — 50 _ 410 (An)Q _ M0 (Aa)Q ,
o0 = w4 Wwn (An)Q 4 @ (Aa>2 ,
as = c+c (AM)2 4 (A9)?,

with A" = \/a? + a3, A% = /a3 + a7 and b = (b,b/&%)



Prototyplc model of frequency cross-talk

Luchtenburg et al. 2009 JFM &

Aleksic et al. 2010 AIAA

Simplified generalized mean-field modael.

Goal =

e Fixed point

i ai | i o1 —1 O
a> | 1 o4 O
az3| | 0O O -0.1

a4 | 0 0 10

2

g1

0 |[a] 0
0] ao 0]
—10 a3 T O
—0.1 ]| ag | b |

O.l—a%—az—a%—ai

mitigate instability J = a2 + a3 + 0.0162 = min

Linear control = first oscillator uncontrollable!

..................... a1l =ap» =a3 =aq =0

e Linearized system around fixed point ........ o1 =0.1

Nonlinear control:

Excite 2nd osc. a5 +a3 > 0.1 = o1 < 0



Frequency cross-talk
— show stopper for model-based control

Reynolds stress
at any frequency Uy = dm.s~!

changes mean flow Actuators S
=] Reynolds 4+ Hussain 1972 JFI\/ISF—\‘_‘"“"""*’ ol s -,”/:' (2 o

Hot-wire rake

Normal turbulence cascade : "
. . . 2=1m.5_1 ’
Dominant — high frequencies ‘ :

Inverse turbulence cascade 200 mm
Dominant — lower frequencies

High frequency forcing
can mitigate the dominant frequency
=| Glezer+ 2005 AIAA-J, [=| Luchtenburg+ 2009 JFM, ...

Low-frequency forcing too
=| Aider+4+ 2014, |=| Pastoor+ 2008 JFM, ...




Turbulence control — decision tree
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Machine learning control I/

| =] Duriez et al. 2014 AIAA, [=| Wahde 2008

(" Dynamical system N\ J
da
b = F (a,b)
' S
E \_ (a) Y, g)
= S
5 " Control law b — K (s) ) B o5
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MLC = model-free optimization of control laws



Machine learning control 11/

| =] Duriez et al. 2014 AIAA

Step 1: 1st generation with random nonlinear control laws
bl =Kl (s),m=1,...,100

Optimization process

Step 2-50:
R CE R CESE
Biologically inspired . .
. Crossover .
optimization of the . >< .
control laws based b! =K! - J!' |~ Recopy |b?=K?— J?
on the 'fitness grades’ ° Mutation .
[ . . .
J[b= K(s)] )
b, =K, — J, b, =K, —J,
- / - /

=| J.R. Koza 1992 Genetic Programming, The MIT Press

Detailed description




Machine learning control 1711

|=| Duriez et al. 2014 AIAA, | =] Gautier et al. 2015 JFM

Gradient search Genetic algorithm/programming
requires structure identification | = evolutionary algorithm for regres-
of the control law and yields pa- | sion with parameter/structure identi-
rameter identification fication of the control law

(local minimization) (global minimization)

Example of an evolutionary minimization



MLC — generalized mean- fleld model

Luchtenburg, Glinther, Noack, King & Tadmor 2009 JFM & | = | Duriez et al. 2014 AIAA

C goal: b(a) with J =7 [ dt |af + a3 + 0.016%| = min
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MLC H> Lorenz equation

= | Duriez et al. 2014 AIAA

Forced Lorenz system MLC goal:
daq Find a control law b(a)

& 7 (a2 —a1), with mimimizes the

E = a1 (p—a3z)—ap, max. Lyapunov exponent
2 = ajap — faz +b, T
o =10, 3=28/3 and p =20 J=eXD(—/\1)+%bf dt b

Controlled Lorenz attractors

v=1 ~ = 0.01 v =0
A = 0.715, A = 2.072, A\ = 17.613
30| {7 60" | 1000
20| Nl |
: : 04
cc?1@5- S 22 5- ) S ,
| : ~1000- .
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Conclusions

Noack+ 2011 Springer (—ROM),; Kaiser4+ 2014 JFM (— CROM); Gautier4 2015 JFM (—MLC)

Turbulence control = attractor control

Physics mechanisms are strongly nonlinear.

Model-based control design

— one or two frequencies

Model-free machine learning control design

— broadband turbulence

e Shear turbulence control, drag reduction, ...

e MLC consistently outperformed best open-loop forcing

e Even when a linear dynamics was invalidated.

In Progress: Cluster-based control (CROM, RL, ...)
— model-based alternative for MLC . ... [Nt



More information or any ideas

Call 24h/7d

+61-2-62688330

=

+1-206-543-7124

AN

wr .

+49-17682001688

+48-61-6652778

+33-549-366015

. Or read

Kaiser4 2014 JFM

Gautier+ 2015 JFM

.. machine learning control

= | Pastoor+ 2008 JFM
bluff-body control

Luchtenburg+4+ 2009

airfoil control

. or ask now!!!

In any case, stay tuned in for news 4 publications:

e http://MachineLearningControl.com

e http://ClusterModelling.com



http://TurbulenceControl.com
http://TurbulenceControl.com
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