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Problem Statement

Cylinder wake at moderate Reynolds numbers

The steady state is a solution, but unstable

Goal: Stabilizing feedback controller that works in experiments

Thus, the simulation needs to cope with:
Ù limited measurements
Ù short evaluation times

Ù external perturbations
Ù actuation at the boundary
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Model Based and Reduced Controller

We propose a controller, that is a simultaneous application of

a linearization about the steady state

Ù to directly attack the deviations

a Kalman filter

Ù estimate the state using a few measurements

an LQG regulator

Ù stabilize the linearized system

and Balanced Truncation

Ù reduce the linearized and stable system
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Expectations and Limitations

The proposed controller is based on a linearized model

Ù we expect a good performance for small deviations

and is designed to work for

3 limited state information

3 fast and unstable dynamics

3 high dimensionality

3 boundary control.
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Bänsch, Benner, Saak, Weichelt. Riccati-based boundary feedback
stabilization of incompressible Navier-Stokes flow.
Preprint SPP1253-154, DFG-SPP1253, 2013.

Max Planck Institute Magdeburg Jan Heiland, LQGBT Controller for Flows 6/28



Introduction Constrained Riccati Equations Numerical Example

Illustration Example
Stabilization with a Regulator

Consider the minimal but unstable linear time-invariant system

ẋ = Ax + Bu,

y = Cx .

The positive definite solution Xc to the control Riccati equation

ATXc + XcA− XcBBTXc + CCT = 0

defines a stabilizing feedback, i.e.

ẋ = (A− BBTXc)x ,

is asymptotically stable.
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Illustration Example
Balanced Truncation of the Stabilized System

For stable linear time-invariant systems like,

ẋ = (A− BBTXc)x , y = Cx ,

Balanced Truncation is the first candidate for model reduction.
1 Compute the controllability and the observability Gramians Gc

and Go , e.g. via Lyapunov equations

(A− BBTXc)TGc + Gc(A− BBTXc) + CTC = 0

2 From Gc and Go one can derive a state transformation such
that the transformed Gramians fulfill

Gc = Go =

σ1 . . .

σn

 , σ1 ≥ σ2 ≥ · · · ≥ σn > 0

3 Truncate all states associated with σi < σtol.
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Illustration Example
Important Observations

For some parameters: Gc = Xc and Go = Xo

Ù Stabilization and truncation in one step

There is an a-priori error bound for the truncation

Ù ‖H − Htol‖H∞ ≤ 2
∑
σi<σtol

σi

For constrained systems (like the Navier-Stokes equations)
similar procedures work

Ù see below

An observer can be reduced simultaneously

Ù application for output feedback
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Computational Challenges

The major effort lies in the computation of Xo and Xc , because of

1 high-dimensionality: Xc , Xo ∈ Rnv ,nv

→ nv is the dimension of the state v(t)

2 nonlinearity of the Riccati equation

→ a good initial guess for a Newton iteration is needed

3 differential algebraic structure of the state equations

→ Xc , Xo need to obey divergence constraints
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Constrained Riccati Equations
LQGBT Based Controller

with A, M, Π ∈ Rnx ,nx , J ∈ Rnv ,np , B ∈ Rnx ,nu , and C ∈ Rny ,nx .
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Constrained Riccati Equations
For Flow Equations

Projection onto the manifold of the
constraints

gives an ODE

equivalent in theory

but problematic in practice

numerically infeasible
systematic errors may be introduced
structure is not preserved
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Constrained Riccati Equations
for constrained dynamics

Derivation of the constrained Riccati equations

directly via optimality conditions,
→ [Kunkel, Mehrmann ’08], [Kurina, März ’07], [Heiland ’14]

reformulation of the ODE related system,
→ see below, [Benner, Heiland ’14]

or reformulation of the numerical schemes
→ [Heinkenschloss, Sorensen, Sun ’08], [Gugercin, Stykel,

Wyatt ’13].
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Constrained Riccati Equations
Projected Riccati Equation

To define, e.g., the Linear-Quadratic Regulator, one needs a
solution to the associated control Riccati equation of the form

ΠATΠTXM + MTX ΠAΠT −MTX ΠBBTΠTXM + ΠCTC ΠT = 0

for X ∈ Rnv ,nv .

Max Planck Institute Magdeburg Jan Heiland, LQGBT Controller for Flows 14/28



Introduction Constrained Riccati Equations Numerical Example

Equivalence to Projected Riccati Equations

Lemma

Let M be invertible, J have full rank, and
Π := I − JT (JM−1JT )−1JM−1. The matrix X ∈ Rnv ,nv solves,

ΠATΠTXM + MTX ΠAΠT −MTX ΠBBTΠTXM + ΠCTC ΠT = 0

if it solves

ATXM + MTXA−MTXBBTXM+

MYJT + JY TMT + CCT = 0,

JXMT = 0,

MXJT = 0,

for a suitable Y ∈ Rnv ,np .
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Low-Rank Approximations

How to obtain approximations to a solution of

ATXM + MTXA−MTXBBTXM+

MYJT + JY TMT + CCT = 0,

JXMT = 0.

1 Factorize the solution X = ZZH ,

2 apply a low-rank Newton-ADI iteration [Benner, Li, Penzl ’08]

to the constrained Riccati equation [Heiland ’14], and

3 obtain skinny factors Znk , that approximate X ≈ Znk ZH
nk

.
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Constrained Riccati Equations
Applications

Same idea and result for

Lyapunov equations,

e.g. for Balanced Truncation,

Filter Riccati equations,

e.g. for observer design or LQG-Balanced Truncation,

and Differential Riccati equations,

e.g. for finite time-horizon control.
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Numerical Example

We consider spatially discretized Navier-Stokes equations with
boundary control u and observation y = Cv

Mv̇ = −N(v)v − 1

Re
Lv + JTp − Bu + f ,

0 = Jv − g ,

v(0) = α,

y = Cv ,

where

α is the steady-state solution and

the input operator B models Dirichlet conditions via
approximating Robin conditions
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Definition of the Input Operator

Control through injection and suction at outlets Γc1 ,
Γc2 located at the cylinder periphery at ±π/3.

Prescribe Dirichlet conditions for the velocity

v = g1(x)u1(t), v = g2(x)u2(t)

at Γc1 and Γc2 , where g1/2 are the shape functions
and u1/2 are the magnitudes of the controls.

Use a small γ to relax the Dirichlet conditions to Robin
conditions at Γ1/2:

v ≈ g1/2u1/2 + γ(
1

Re

∂v

∂n
− pn)

that are naturally included in Finite Element discretizations.

For other approaches see [Benner, Heiland ’15].
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Defining the Controller

1 Consider the linearization about α

Mv̇ = Aαv + JTp − Bu + f , v(0) = α,

0 = Jv ,

y = Cv .

2 Compute Xc and Xo which solve the associated control and
filter Riccati equations to define the state estimate x̂ and the
regulator u as

M ˙̂x = Âαx̂ + XoMCT (y − Cα),

u = −BTMXc x̂ ,

with x̂(0) = 0 and Âα denoting the observer dynamics.

3 Balance and truncate Xo and Xc to define a reduced observer

Max Planck Institute Magdeburg Jan Heiland, LQGBT Controller for Flows 20/28



Introduction Constrained Riccati Equations Numerical Example

Reduced Closed Loop System

After the truncation, we arrive at

Mv̇ = −N(v)v − 1

Re
Lv + JTp − BBT

k Xck x̂k + f ,

0 = Jv − g ,

v(0) = α,

y = Cv ,

˙̂xk = (Aαk − XokCT
k Ck − BkBT

k Xck)x̂k + XokCT
k (y − yα),

x̂k(0) = 0,

where, in particular, Aαk , Bk , Ck , Xck , Xok define the reduced
system for x̂k(t) ∈ Rnk with nk � nv (dimension of v(t)).
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Simulation Setup

Ωo

0 0.2 2.2
0
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0.25

0.41

2D cylinder wake

Navier-Stokes
Equations

Re = 100

Taylor-Hood finite
elements

30000 velocity nodes

Boundary control at 2 outlets

distributed observation with 6
degrees of freedom

LQGBT-reduced order observer
and controller of state dimension
nk = 13

Target: stabilization of the
steady-state solution
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Simulation Results
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Figure : Measured signal y versus time t ∈ [0, 12] of the perturbed closed
loop system with a reduced controller of dimension nk = 13 (left),
compared to the response of the uncontrolled system (right). Blue
corresponds to the x-component of the velocity and red to y -component.
Below, a snapshot of the magnitude of the velocity solutions at t = 12.
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Summary and Conclusion

The general LQGBT approach has been applied to controller
design Navier-Stokes equations

The DAE structure is accounted for using constraint Riccati
equations

The resulting controller is of very small dimension and works
for limited state information

The numerical approximation of the controller requires
advanced methods for solving large-scale Riccati equations

Successful application in boundary control of the cylinder wake

Thank you for your attention!
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