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Introduction
G2

Problem Statement

o Cylinder wake at moderate Reynolds numbers
@ The steady state is a solution, but unstable
o Goal: Stabilizing feedback controller that works in experiments
@ Thus, the simulation needs to cope with:
= limited measurements
= short evaluation times

= external perturbations
= actuation at the boundary
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Introduction e ained Riccati Equations

Numerical Example

Model Based and Reduced Controller

We propose a controller, that is a simultaneous application of

o a linearization about the steady state
= to directly attack the deviations

@ a Kalman filter

— estimate the state using a few measurements

o an LQG regulator
= stabilize the linearized system

o and Balanced Truncation
= reduce the linearized and stable system
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Expectations and Limitations

The proposed controller is based on a linearized model

= we expect a good performance for small deviations

and is designed to work for
v limited state information
v fast and unstable dynamics
v high dimensionality

v/ boundary control.
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lllustration Example

Stabilization with a Regulator

Consider the minimal but unstable linear time-invariant system

x = Ax + Bu,
y = Cx.

The positive definite solution X, to the control Riccati equation
ATX:+XA—XBBTX.+CCT =0
defines a stabilizing feedback, i.e.
x = (A— BBT X.)x,

is asymptotically stable.
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Introduction Constrained Riccati Equations Numerical Exampl

lllustration Example

Balanced Truncation of the Stabilized System

For stable linear time-invariant systems like,
x=(A-BB"™X.)x, y=Cx,

Balanced Truncation is the first candidate for model reduction.

@ Compute the controllability and the observability Gramians G,
and G,, e.g. via Lyapunov equations

(A-BB"X.)"G.+ G.(A-BB™X.)+C"C=0
@ From G. and G, one can derive a state transformation such
that the transformed Gramians fulfill
01
Ge = Go = , 0120222 0,>0
On

© Truncate all states associated with o; < gto1.
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Introduction Constrained Riccati Equations Numerical E

lllustration Example

Important Observations

@ For some parameters: G. = X and G, = X,
— Stabilization and truncation in one step

@ There is an a-priori error bound for the truncation
= |H— Hearllu= <232, ., 0

o For constrained systems (like the Navier-Stokes equations)
similar procedures work

—> see below

@ An observer can be reduced simultaneously
= application for output feedback
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Introduction Constrained Riccati Equations Numerical

Computational Challenges

The major effort lies in the computation of X, and X, because of

O high-dimensionality: X., X, € R™"™
— n, is the dimension of the state v(t)

@ nonlinearity of the Riccati equation
— a good initial guess for a Newton iteration is needed

© differential algebraic structure of the state equations
— X¢, X, need to obey divergence constraints
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Constrained Riccati Equations

Constrained Riccati Equations
LQGBT Based Controller

My —Av + JTp = Bu

Jv =0 |m=p 7
y=~Cv ~ Model
l Reduction
Optimal
/ Control
Mv —TMAvy =TBu

with A, M, I € R™"™ J e R™"%, B € R™™ and C € R,
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Constrained Riccati Equations

For Flow Equations

Mv—Av+JTp=Bu
@ Projection onto the manifold of the

Jv =0 constraints
y==Cv e gives an ODE
l @ equivalent in theory

@ but problematic in practice

o numerically infeasible
Mv —TMAv  =T1Bu o systematic errors may be introduced

c o structure is not preserved
y ==Ly
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Introduction Constrained Riccati Equations Numerical E

Constrained Riccati Equations

for constrained dynamics

Mv —Av+J"p=Bu

W =0 e P
y==Cv \\A Model
‘ 7 Reduction
Optimal

Derivation of the constrained Riccati equations
o directly via optimality conditions,
— [KUNKEL, MEHRMANN ’08], [KURINA, MARZ 07|, [HEILAND ’14]
o reformulation of the ODE related system,
— see below, [BENNER, HEILAND ’14]
@ or reformulation of the numerical schemes

— [HEINKENSCHLOSS, SORENSEN, SUN ’08], [GUGERCIN, STYKEL,
WryatT ’13].
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Introduction Constrained Riccati Equations Numerical Examp

Constrained Riccati Equations

Projected Riccati Equation

To define, e.g., the Linear-Quadratic Regulator, one needs a
solution to the associated control Riccati equation of the form

NATOTXM + MT™xXnANT —MmM™xNBB N XM +nc’cn’” =0

for X € R™™.
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Introduction Constrained Riccati Equations

Equivalence to Projected Riccati Equations

Lemma

Let M be invertible, J have full rank, and
MNi=1—JT (UM JT)LIML. The matrix X € R™™ solves,

NATOTXM + M xnANT —mM™xNBB ™ N XM +nc’cn’ =0
if it solves

ATXM + MTXA — MTXBBT XM+
MYJT +JyTMT +cCT =0,
IXMT =0,
MXJT =0,

for a suitable Y € R":",
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Numerical Exan

Constrained Riccati Equations

Introduction

Low-Rank Approximations

How to obtain approximations to a solution of

ATXM + MTXA — MTXBBT XM+
MYJT +JYTMT +ccT =0,
JXMT = 0.

@ Factorize the solution X = ZZH,
Q apply a low-rank Newton-ADI iteration [BENNER, L1, PENZL '08]
to the constrained Riccati equation [Hemwanp ’14], and

@ obtain skinny factors Z, , that approximate X ~ Z,,kZ,',"l.
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Constrained Riccati Equations

Constrained Riccati Equations
Applications

Same idea and result for

o Lyapunov equations,
o e.g. for Balanced Truncation,

o Filter Riccati equations,
o e.g. for observer design or LQG-Balanced Truncation,

e and Differential Riccati equations,
e e.g. for finite time-horizon control.
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_ Introduction __________________ Constrained Riccati Equations ___________________Numerical Bxample _
Numerical Example

We consider spatially discretized Navier-Stokes equations with
boundary control u and observation y = Cv

1
Mv = —N(v)v — ELV%—JTP— Bu+f,

0=Jv—g,
v(0) =«
y = Cv,

where
@ « is the steady-state solution and

o the input operator B models Dirichlet conditions via
approximating Robin conditions
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Introduction Constrained Riccati Equations Numerical Example

Definition of the Input Operator

o Control through injection and suction at outlets ¢,
lc, located at the cylinder periphery at +7/3.

@ Prescribe Dirichlet conditions for the velocity

v=gi(x)ui(t), v =g(x)ut)

at ', and I'¢,, where gy, are the shape functions
and uy, are the magnitudes of the controls.

@ Use a small v to relax the Dirichlet conditions to Robin

conditions at 'y /5

1 Ov
VR g1/2U1/2 +’Y(E%— n)

o that are naturally included in Finite Element discretizations.

@ For other approaches see [BENNER, HEILAND 15].
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Introduction Constrained Riccati Equations Numerical Example

Defining the Controller

@ Consider the linearization about «
My =Auv+JTp—Bu+f, v(0)=a,
0=Jv,
y = Cv.
Q Compute X. and X, which solve the associated control and

filter Riccati equations to define the state estimate X and the
regulator u as

M5k = Auk + XoMCT (y — Ca),
u=—BTMX.X,

with %(0) = 0 and A, denoting the observer dynamics.

© Balance and truncate X, and X, to define a reduced observer
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Reduced Closed Loop System ‘

After the truncation, we arrive at

My = —N(v)v — RieLer JTp — BB Xeyku + f,

0=Jv—g,
v(0) = a,

y = Cv,

S = (Aak — Xok G Cu = BuB{ Xer)Su + Xok G (v — ya),
%x(0) =0,

where, in particular, Aok, Bk, Ck, Xck, Xoy define the reduced
system for X (t) € R™ with ny < n, (dimension of v(t)).
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Simulation Setup )
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o Boundary control at 2 outlets

@ 2D cylinder wake

o Navier-Stokes o distributed observation with 6
Equations degrees of freedom

o Re — 100 o LQGBT-reduced order observer

o Taylor-Hood finite and controller of state dimension
elements M =13

o Target: stabilization of the
steady-state solution
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Numerical Example

Simulation Results
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Figure : Measured signal y versus time t € [0, 12] of the perturbed closed
loop system with a reduced controller of dimension n, = 13 (left),
compared to the response of the uncontrolled system (right). Blue
corresponds to the x-component of the velocity and red to y-component.
Below, a snapshot of the magnitude of the velocity solutions at t = 12.
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Introduction Constrained Riccati Equations Numerical Example

Summary and Conclusion

o The general LQGBT approach has been applied to controller
design Navier-Stokes equations

@ The DAE structure is accounted for using constraint Riccati
equations

@ The resulting controller is of very small dimension and works
for limited state information

@ The numerical approximation of the controller requires
advanced methods for solving large-scale Riccati equations

Successful application in boundary control of the cylinder wake

Thank you for your attention!
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