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Intro Outline Flow Control Problem
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Intro Flow Control Problem

Wake Stabilization by Cylinder Rotation

Figure : Steady-State Velocity Components at Rey = 60

Obijective

Stabilize the wake behind a circular cylinder using cylinder rotation.

Use linear feedback control to stabilize the steady-state solution.
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Methodology LinNS Two-cylinder ReducedLQR

Linearize about the steady-state

@ An incomplete list: [Tokumaru/Dimotakis,91], [Blackburn/Henderson,99],
[Dennis et al.,00], [He et al.,00], [Bergmann et al.,00], [Noack et al.,03], [Gerhard et al.,03],
[Stoyanov,09], [Benner/Heiland,14], ...

@ Linearize the Navier-Stokes equations about the steady-state flow:
vit)=V+V(t) pt)y=P+p(t), t>0.
@ Leads to the Oseen Equations

Vi=—V - VW -V .VV+7(V)-Vp +Bu
0=Vv-Vv

where 7(v) = p (Vv + VvT), with boundary conditions
o Inflow: v/(t) =0, t>0.
e Outflow edges: (V'(t), p'(t)) is stress-free.
e Bu(t) provides tangential velocity on the cylinder.
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Methodology LinNS  Two-cylinder ReducedLQR

Two-cylinder case

LQR Problem:
Find u(-) (tangential velocities) that
St minimizes

/ y'( ) 4 10||u(t)||2dt.

Controlled Outputs: Seek feedback solutions in the form
Vi) = /Q vI(€, t)de == | BV (LRt

i=1,....,6andj=1,2.
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Methodology LinNS  Two-cylinder ReducedLQR

Computation of hi(-), hy(-)

@ Solve steady-state Navier-Stokes equations for V.
@ Discretized Oseen equations and control outputs

Ex =Ax + Bu
y =Cx
where
_|En O _ [ Ax AJ _ | B _
E_[O 0},A_[A21 e | B=|5 | c=[ci 0]

@ E;y ¢ R™*™ has full rank.
@ Ajy e RM*XM_ Ay € R™XM By € R™*2 and Cy € R12xM,
@ A,¢ has full rank and Ao1 E1_11 A,L is nonsingular.
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Methodology LinNS  Two-cylinder ReducedLQR

@ The LQR problem becomes: Find a control u(-) that solves
min/ [xT(HCTCrxi (1) + 10[ulP(D)} ot
u Jo

subject to
ool LA BT e
@ u(t) = —Kx(?)

@ Computing K requires solving an n = ny + no dimensional
large-scale algebraic Riccati equation:

@ Instead, reduce the dimension first.
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Methodology LinNS  Two-cylinder ReducedLQR

@ Apply Interpolatory Model Reduction to obtain
EX =AX+ Bu({)
y=C

x?

@ where E € R™", A € R"™", B € R™*2, and C € R'2%" with
r<n=n;+no
@ Solve the reduced LQR problem
A],PE;; + E],PA;; — E[;PBsR'BJPE;; +C]C; =0
K=R 'B/PE;.

@ Then
u=— Kx
= — KV’ Vx
—~
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IntModRed Set-up TangIntDAE AvoidProj Results

Interpolatory Model Reduction for DAEs

@ Full-order model: Linearized/Discretized Model

Ex(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t),

@ AcR™" BeR™M CecRP and D € RP*™.
@ Let U(s) and Y(s) denote the Laplace transforms of u(t) and y(t)

@ Transfer function:

Y(s) = G(s)U(s), where G(s)=C(sE—-A)"'B+D.
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IntModRed Set-up TangIntDAE AvoidProj Results

Model Reduction

@ The goal is to construct a reduced model of the form
EX(t) = AX(t) + Bu(f),  y(t) = CX(t) + Du(t),

where E,KGR’X’,EGR’X’",EIGRPX’, and D € RP*™ with r < n

@ Construct V€ R™ and W' € R"*", assume x(t) ~ VX(t):

E=W'EV, A=W’AV, B=W'B, and C=CV.

e Define G(s) = C(sE—A)"'B+D

° é(s) has the same number of inputs and outputs but a smaller
state-space dimension: Low-order rational approximation to G(s).

o Y(s) - Y(s) = (é(s) - G(s)) u(s)
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IntModRed Set-up TangIntDAE AvoidProj Results

Model Reduction by Tangential Interpolation

@ Pick interpolation points {o;}/_, € C together with the left
directions {c;};_; € CP and the right directions {b;};_, € C™:

¢/G(0)) =¢/G(0)),  G(o))bj = G(o))b; (1
and  ¢/G/(0))b; = ¢/ G'(o))b;. (2)
@ Construct
V= [(mE ~A)'Bby, -, (o/E—A)" Bb,] e C™" and
W= [(01 E-AT)"'CTc; - (6,E— AT)"'CT¢c, ] e

@ Then the interpolation conditions (1) and (2) are satisfied.
[Skelton et. al., 87], [Grimme, 97], [Gallivan et. al., 05]

@ Interpolatory reduction of port-Hamiltonian systems:
[G./Polyuga/Beattie/vanderSchaft, 12], [Beattie/G.,11] and [Chaturantabut/Beattie/G.,13]
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IntModRed Set-up TangIntDAE AvoidProj Results

Tangential Interpolation for DAEs

Recall in our case

_ | Exn O [ A Al _ | B4 _
E_[ },A_{Am e | B=| 2| c=[Ci 0

E{; € R™*™ and Ay € R™*™ have full rank and Aoq E(ﬂ AzT1 is
nonsingular = Leading to an index-2 DAE.

Let G(s) be additively decomposed as: G(s) = Ggp(s) + P(s),

We will require that G(s) = Gyp(S) + P(s), with P(s) = P(s),

This will guarantee:  Gex(S) = G(S) — é(s) = Gyp(s) — ésp(s).

[Stykel,2004], [Mehrman/Stykel,2005], [Benner/Sokolov,2005], [Ali et al., 2013]

[Heinkenschloss et al., 08]
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IntModRed Set-up TangIntDAE AvoidProj Results

@ G(s) = Gsp(s) + P(s).
o We want G(s) = Gyy(s) + P(s) with P(s) = P(s),
@ Problem reduces to: ésp(s) interpolates Gy ().

@ P, = the spectral projector onto the right deflating subspace of
(AE — A) corresponding to the finite eigenvalues.

@ P;: Defined similarly for the left deflating subspace.

@ W, and V.,: Span, respectively, the right and left deflating
subspaces of (AE — A) corresponding to the infinite eigenvalues.
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dology IntModRed Nonlinear Conc Set-up TangIntDAE AvoidProj Results

Theorem ([G./Stykel/Wyatt,12])

Given are G(s) = C(sE — A)~'B + D, interpolation points o € C and
u € C; and the tangential directions b € C™ and ¢ € CP. Define Vs and
W; such that

Vi = [(mE —~A)"'PBby, -, (0/E - A)*1p,Bbr} c ™" and
Wf = |:(O‘1 E— AT)_1PrTCTC1 .. (O’rE _ AT)_1P,TCTCr] c CN<r

Define W = [W;, W] andV = [ V¢, V|, and constructé(s). Then,
Q@ P.(s) =P(s), and

e =~
CTG(O'/') = C,-TG(UJ')

G(o))bj =  G(opb; for j=1,2,...,r
c/G'(o))b; = ¢/G'())b;
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IntModRed Set-up TangIntDAE AvoidProj Results

A Circuit Model

c, 0 0 0 0 -G, G 0 0 -1
0 0 0 0 O G -G 0 1 0
E=| 0 0 C 0 0/, A= 0 0o 0 -1 0|,
0 0 O Ly O 0 —1 1 0 0
0 0 O 0 O 1 0 0 0 0
B=[0 0 0 0 -1]=¢, D=0,
SCQG1
G(s) =C(sE—- A) 'B = + sC;
( ) ( ) 3202L1 G1 + SCz + G1 ~~~
P(s)
Gisp(s)
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IntModRed et-up TangIntDAE AvoidProj Results

Interpolation for DAEs

@ Consider the model of an RLC circuit with n = 765 and index-2.

@ Reduce the order to r = 20 using complex interpolation points
without the deflating subspaces:

G(oy) G (oi)

o1 9.8479 x 1073 +:3.4595 x 103 9.8479 x 1073 +:3.4595 x 103
o2 1.1586 x 1072 +16.6549 x 103 1.1586 x 1072 4 16.6549 x 103
o3 1.6518 x 1072 44¢7.9917 x 103 1.6518 x 1072 +47.9917 x 103

G'(07) G/ (o)

o1 | —1.1553 x 10712 —43.7091 x 10~'*  —1.1553 x 10712 —43.7091 x 10~
o2 | —1.1045 x 1072 4471250 x 10713 —1.1045 x 1072 447.1250 x 10~ 13
o3 | —1.1846 x 1073 +41.3335 x 10712 —1.1846 x 1073 +41.3335 x 10~ 12
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IntModRed Set-up TangIntDAE AvoidProj Results

How do the Bode plots match?

10 10 10" 10" 10'®

freq (rad/sec)

@ Polynomial part is completely missed.
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IntModRed Set-up TangIntDAE AvoidProj Results

@ Re-visit the previous example and apply the projection with
deflating subspaces.

Amplitude Bode plots of G and Gtilde
10 T T

| G (i) |
3

—G
Gtilde

Amplitude Bode plot of G — Gtilde
10~ T

1G (o)1
=

10 E
107" \ L L

10° 10" 10" 10 10
freq (rad/sec)

@ Requires computing P, and P,. How to avoid this?
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IntModRed Set-up TangIntDAE AvoidProj Results

—1
o Define M=1- Ay, (A21E;11 A12) AsE]
e N2 =1, NEy; = E;yN’, Null(N) = Range(A+y).
@ Can be equivalently to reduced to ([Heinkenschloss et al.,08])
NE N7V (t) = NA N7 vy(t) + NBu(t)
y(t) = Cvy(t) +Dyu(t) + D2 u(t)
@ We need (O,‘ I'IE11I'IT — I'IA11I'IT)*1I'IBb,-

e Define NEN" =&, MNA{N" =A, and, B=nB
@ Inverse defined on a restricted subspace:

(c&-A))ceE-A)=NT, (c€-A)cE-A)=n.
@ The vector v; = (c€ — A)'Bb; solves

oEy + A Agz vi | _ | Bb;
A1T2 0 Z; - 0

Borggaard and Gugercin Interpolatory Model Reduction for Flow Control



IntModRed E c Set-up TangIntDAE AvoidProj Results

Interpolatlon without P, and P, computations

Theorem (G./Stykel/Wyatt, 2013)
Given {o;} € C, {b;} € C™ and {c,} € CP, letv; and w; solve

oiE11 — Ay A Vi | _ | Bib;
Aoy 0 z - 0 ’

oEfy —Al; AL ][wi]_[Clc
Aoy 0 q 0 ’

fori=1,... r. Construct

V=|[vy,....,v/], and W =[wy,...,W,].

Then G(s) = CV(sWTE;V —WTA;;V)~'W'B; + D;u(t) + Dou(t)
satisfies the required interpolation conditions and matches the
polynomial part.
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IntModRed Set-up TangIntDAE AvoidProj Results

Interpolation points for #» optimal approximation

1 oo ) \?2
16, = (57 [ IGG)IEds)

Given G(s), find é(s) of order r which solves: ~ min  ||G — G/||,,, -
degree(G)=r 2

® |Gy, = sup "’y‘n"o for MISO and SIMO systems

omgmmmuw—vmm<ue—émmwm.

@ Solution for the ODE case: [Meier /Luenberger,67], [G./Antoulas/Beattie,08]
= lterative Rational Krylov Algorithm: [G./Antoulas/Beattie,08]

@ Solution for the DAE case: [G./Stykel/Wyatt,13]
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IntModRed  Nonlinear Conc Set-up TangIntDAE AvoidProj Results

‘H.> optimality for DAE approximation

Theorem ([G./Stykel/Wyatt,13])

For G(s) = Gy(5) + P(s), let G(s) = Gy (s) + P(s) minimize the H

error HG — é‘ . Then, ﬁ(s) = P(s), and, hence ésp(s) minimizes the
2

Ho error HGsp -Gy

...+ Moreover, let Gyp(S) = Cyp(SE,p, — Ap) "By
2

Suppose that that the reduced-order pencil )\Esp Z\sp has distinct
eigenvalues {\;}'_, i.e., Gyp(s) = S 1 525 Ci b!. Then, for
I =1 y " r,

@ lterate on the interpolation points and directions until convergence
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Intro Methodology IntModRed Nonlinear Conc Set-up TangIntDAE AvoidProj Results

lterative Rational Krylov Algorithm (IRKA):

Algorithm (G./Antoulas/Beattie [2008])
@ Choose {o1,...,0,}, {b1,...,b,} and {61, ...,&,}
Q V- [(mE —A)~'Bb; --- (o,E — A)~'Bb, }
W= [(o1E—AT)"'CT& --- (0,E— AT)"'CT¢, ].
© while (not converged)
©@ A=W'TAV,E=W'EV,B=W'B, andC = CV
= ! C,'biT
@ Compute G(s) = ; r—
Q o +— -\, 6,‘ < b; andé,- <—— C;.
oV-= [(015 —A)-"Bb; - (o,E — A)~'Bb, ]
@ W=[(ciE—-AT)"'C7¢ --- (o,E -~ AT)"'CT&, ].

Q A=W’AV, E=WEV,,B=W/B,C=CV, D=D.



IntModRed Set-up TangIntDAE AvoidProj Results

Discretization of Navier-Stokes/Oseen equations

Figure : Discretization by Taylor-Hood Finite Elements

@ Leads to 21,390 velocity degrees of freedom (x1),
@ and 2,777 pressure degrees of freedom (x»).
@ Solved at Rey = 60 (1 = 1/Re)

Borggaard and Gugercin Interpolatory Model Reduction for Flow Control



IntModRed Set-up TangIntDAE AvoidProj Results

Numerical Results: One-cylinder Case

@ Recall ny = 21390 and n, = 2777
@ We reduce the order to r = 60 using interpolatory projection.

Singular Value Plot of G (s) and G(s)

10 T T T ¢
—Gi(s)

- - - Gtilde(s)

I1G (o)l

‘
10 10 10° 10 10 10
freq (rad/sec)

@ Relative £, error = 1.5406 x 10~°
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IntModRed Results

Functional Gains

@ For this Rey, the full-model has two unstable poles.

@ These unstable poles are captured very accurately.
Aunsibie(G(S)) © 5.248019596820730 x 102 +17.672028760928972 x 10~
Aunsiable(G(S)) © 5.248030491505502 x 102 + 1 7.672029050490372 x 10~

@ Solve the reduced LQR problem and compute the functional gains:

gains X gains Y
068 =

X . 000692
S > oy <0.005
- é0002 3
= E Eo.ooa

00w | 3
g =0003
—=-0.005 3

000473~

Figure : Horizontal (left) and Vertical (right) Components
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IntModRed Results

Open Loop Simulation
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IntModRed Results

Closed Loop: From t = 20
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IntModRed Set-up TangIntDAE AvoidProj Results

Two-cylinder case

T A TAVAvAYs v AVAVAVAVAVAVAVAYA YAVAVAVAVAY
R ORI
IR KRS RIRKIKK.
SORERIRRRX AVavavs

o AR YAVAY

RO

R e S T VAVAVATAY
e AT AVA AN S VAVAVAVATAYA

A BRI ISR XIS

R AR

%
%
5 K>
i A VL VAV AVAVAVAVLVAS

Figure : Discretization by Taylor-Hood Finite Elements

@ Leads to 132476 velocity degrees of freedom (x1),
@ and 16691 pressure degrees of freedom (Xz).
@ Solved at Rey = 60 (1u = 1/Re)
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IntModRed Set-up TangIntDAE AvoidProj Results

Model Reduction for the Two-cylinder Case

@ Recall ny = 132476 and n, = 16691, n = ny + no = 149167.
@ We reduce the order to r = 150 using interpolatory projection.

—G(s)
- - -Giilde(s)

Singular Values of G(s) and G(s)
T T T

= | | | | |
10 = = =) = T

@ Relative £, error = 6.3980 x 106



IntModRed

Functional Gain

@ Unstable poles are, once again, captured very accurately.
Aunsiabie(G(8)) 1 3.973912561638801 x 1072 + 1 7.498560362688469 x 10~

Aunstabie(G(S)) 1 3.973912526082657 x 102 + 1 7.498560367601876 x 10~

@ Solve the reduced LQR problem and compute the functional gains:

Figure : Horizontal (left) and Vertical (right) Components
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IntModRed Results

Open Loop Simulation
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IntModRed Results

Closed Loop: Controlled from t = 100
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IntModRed

Control Inputs

Set-up TangIntDAE AvoidProj Results
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IntModRed Set-up TangIntDAE AvoidProj Results

Two-cylinder case

T A TAVAvAYs v AVAVAVAVAVAVAVAYA YAVAVAVAVAY
R ORI
IR KRS RIRKIKK.
SORERIRRRX AVavavs

o AR YAVAY

RO

R e S T VAVAVATAY
e AT AVA AN S VAVAVAVATAYA

A BRI ISR XIS

R AR

%
%
5 K>
i A VL VAV AVAVAVAVLVAS

Figure : Discretization by Taylor-Hood Finite Elements

@ Leads to 299338 velocity degrees of freedom (x1),
@ and 37714 pressure degrees of freedom (Xz).
@ Solved at Rey = 100 (1 = 1/Re)
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IntModRed Set-up TangIntDAE AvoidProj Results

Model Reduction for the Two-cylinder Case

@ Recall ny = 299338 and n, = 37714, n = ny + no = 337052.
@ We reduce the order to r = 170 using interpolatory projection.

Singular Value Plots of G(s) and G(s)

—G(s)

- - - Gild
10 £ ilde(s) ||

5
freq (rad/sec)

@ Relative £, error = 1.5154 x 10~°
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IntModRed et-up TangIntDAE AvoidProj Results

Unstable Poles

@ For Rey = 100, the full-model has seven unstable poles.

@ The unstable poles of the reduced model é(s):

1.245178576584041 x 10~" +£:7.507209792650027 x 10~
3.195053261722973 x 1072 +18.505319185007424 x 10"
8.325502142822423 x 1073 +17.314950149341377 x 10"
2.580915637572443 x 102

@ Accurate to 5 significant digits
@ Unstable poles are, once again, captured accurately.

@ We follow similarly and solve the reduced LQR problem.
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IntModRed Results

Convergence of Gain with Model Size

Figure : Gain h} for Figure : Gain h] for Figure : Gain h} for
r=120 r=140 r=170
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IntModRed Results

Open Loop Simulation: disturbance for t € (0, 27)
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IntModRed Results

Closed loop from t = 10
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Nonlinear Bilinear QuadinState Results

Nonlinear dynamical systems

@ x(t) = Ax(t) + f(x(t),u(t)), y(t) = Cx(t)

@ The most common and a rather effective approach:
Proper Orthogonal Decomposition (POD)

@ Pick your favorite input u(t), run the systemfromt=0to {n =T
and construct a snapshot matrix:

X =[x(t), x(k), ,...,x(ty)] € RN

@ Compute the SVD of X: X = UxZ"
@ Choose V as the leading r columns of U.

@ X, (1) = VTAVX (1) + VTE(Vx,(£),u(t)),  y,(t) = CVx,.(t)

Borggaard and Gugercin Interpolatory Model Reduction for Flow Control



Nonlinear Bilinear QuadinState Results

@ Input-dependent reduced-order model.
@ The reduced-model is usually only as good as the information in X.

@ For linear dynamics, u(t) did not enter into the model reduction
step.

@ Can we mimic the linear case for some special cases?

@ How to extend the idea of transfer function to the nonlinear
setting?

Borggaard and Gugercin Interpolatory Model Reduction for Flow Control



Nonlinear Bilinear QuadinState Results

Bilinear Systems

[ x(t)= Ax(t) + Nx(t)u(t) + bu(t)
° C'{y(r): cTx(t) T

where AN € R™" b,c € R", u(t) € R and x(t) € R".

@ The output y(t) has the Volterra series representation

:Z/ /hkh,..., U(t—ty—to—---—t) - u(t—ti) diy - - - dty,
0 0

k=1

where hy(ti, ..., t) = cTeANert—N ... NeAtb.

@ Llhk(t,. .., t)] = Hk(s1,82,...,8k)
= CT(Skl — A)_1N(Sk_1| — A)_1N v N(S1| — A)_1b.
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Nonlinear Bilinear QuadinState Results

Model Reduction in the Petrov-Galerkin Framework

@ Given
¢ x(t) = Ax(t) + Nx(t)u(t) + bu(t)
' = c’x(1t)
of dimension n.
@ Forr <« n, find

¢ { x:(t) = Ax,(t)+ Nx,(t)u(t) + bu(t)
Loyt = @M x(t)

such that y,(t) =~ y(t)

@ Define ¢, via the projected equations:

f x:(t)= WTAVX,(t) + WTNVx,(t)u(t) + WTbu(t)
C"{ yr(t) = eTVx.(t)
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Nonlinear Bilinear QuadinState Results

What to interpolate

@ Construct V and W so that

Hi(o1,012,...,01,. k) = Hk(o1,012,...,01,.. k)

77777

for k =1,...,N. [Phillips, 2002], [Bai and Skoogh, 2006], [Breiten
and Damm, 2009].

= The leading N subsystems of H(s) interpolates those of H(s).
@ Optimal H. reduction for bilinear systems: [Benner/Breiten,11]: B-IRKA
e Input-independent optimal model reduction for a nonlinear system.
e Significantly more accurate approximations than the subsystem

interpolation methods and better performance than bilinear
balanced truncation.

@ Interpolate the infinite-Volterra series, not just the subsystems:
[Flagg/G.,15]:

e Solve bilinear Sylvester equations
o B-IRKA interpolates the infinite-Volterra series.
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Nonlinear Bilinear QuadinState Results

Quadratic-in-State Nonlinearity

@ Consider the 1D Burgers equation over [0, 1] x [0, ].

vi(x, ) + v(x, t) - ve(X, ) = v - vix(X, 1),
v(0,t) = u(t), vx(1,1) =0, v(x,0) = wp(x) =0

@ A finite difference discretization yields

x(t) = Ax(t) + H (x(t) @ x(t)) + Nx(t)u(t) + bu(t)
y(t) =e"x(t)

where )
ANcR™ HeR™™ b,cecR"

@ In our tests, we took » = 0.02 and n = 1500.
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Nonlinear Bilinear QuadinState Results

Reduced Order Model (ROM)

@ Construct
X(t) = AX(t) + H(X(t) ® X(t)) + NX(t)u(t) + bu(t)
y(t) =eTx(1)
via projection
A=VTAV, H=V'H(V®V), N=V'NV
b=V'b, ¢=V'c

@ Subsystem interpolation: [Gu,11], [Benner/Breiten,15]

@ Here, we will use optimal interpolation subspaces from the
linearized model.

@ [Beattie/G.,11] @nd [Chaturantabut/Beattie/G.,13] for reducing nonlinear
port-Hamiltonian systems.
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Nonlinear Bilinear QuadinState Results

Test Description

We test the technique against several input functions and various
values of ry and ry.

@ First, we generate ROMs using POD and one-sided IRKA.
@ Next we picked r, =7,...,10.

@ For each r,,, we calculated a ROM for each of
ry=(r—rw),...,(r—1).

@ For each ROM, the output error was calculated.
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Nonlinear Bilinear QuadinState Results

Error plots for u(t) = cos(xt)
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Nonlinear Bilinear QuadinState Results

Output plot for uy(t) with ryy =7

IRKA V+W Galerkin (r=15, rv=8, rw=7)
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Nonlinear Bilinear QuadinState Results

Error plots for ux(t) = 2sin(w

IRKA V+W Error Comparison for Control uz(t)
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Nonlinear Bilinear QuadinState Results

Output plots for ux(t) = 2sin(nt) with ry =7

IRKA V+W Galerkin (r=15, rv=8, rw=7)
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Nonlinear Bilinear QuadinState Results

Plot of control function us(t)
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Nonlinear Bilinear QuadinState Results

Error plots for us(t)

IRKA V+W Error Comparison for Control ua(t)
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Nonlinear Bilinear QuadinState Results

Output plots for us(t)

IRKA V+W Galerkin (r=15, rv=8, rw=7)
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Conc
Conclusions and Future Work

@ Interpolatory model reduction for DAEs combined with LQR
design for flow control

@ Computationally efficient framework
@ Unstable poles captured accurately

@ Incorporating optimal linear subspaces into reducing nonlinear
models

@ Establish the connection to rational Krylov methods for eigenvalue
problems.

@ Test the performance for higher Reynolds numbers.

@ Choice of C
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Conc
Index-2 example: Oseen equations

@ Data from [Heinkenschloss et al.,08]

@ Discretizied the Oseen equations: describing the flow of a viscous
and incompressible fluid in a domain Q € R? representing
a channel with a backward facing step.

@ Eqf, Ay € R5520x5520 A AT ¢ RS520x761 B, ¢ 55206
B, c R76'%6 G, c R2550 G, ¢ k2761 and D = 0.

@ Reduced to order r = 20 using interpolatory H, method for
index-2 DAEs.

@ Also compared with balanced truncation
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Conc

@ Compare the full and reduced model for the input selections
u;(t) =sin(6it) fori=1,...,6

Output 1 for u‘(t) =sin(6it) 107 Errorin Output 1 for u‘(() =sin(6it)
X
1
0
1 L L L L L L
0 02 0.4 0.6 0.8 1 1.2 1.4 16 -1 ] > 3 4 5 5
Output 2 for u(t) =sin(6 i 1) 107 Errorin Output 2 for ui(t) =sin(6it)
400 - : : 1F
o Ful
200 : H2
o 0
-200f
0 0.2 0.4 0.6 0.8 1 1.2 14 16 -1 " n 3 p - 5
time (s) 0 1 2 3 4 5 6
time (s)

Figure : Oseen equation: (left) time domain response for u;(t) = sin(6it);
(right) error in time domain response for u;(t) = sin(6it).
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