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Outline

We will survey a set of related problems that are motivated by the study of
stability questions in fluid flows.

» Linear Stability Analysis, Transient Dynamics, Pseudospectra
— Overview of linear stability analysis
— When transient growth occurs and why it matters
— Pseudospectral analysis for Differential Algebraic Equations

» Lyapunov Inverse lteration for Bifurcation Detection
— Algorithm for finding bifurcations points in linear ODEs/DAEs due to
[Meerbergen, Spence 2010; Elman, Meerbergen, Spence, Wu 2012; Elman, Wu 2013]
— Requires the solution of a Lyapunov equation at each iteration
— Only possible at scale if Lyapunov solutions have low numerical rank
— Existing bounds suggest these solutions will not have low rank

» Singular Values of Solutions of Lyapunov Equations
— New analysis of Lyapunov solutions with nonnormal coefficients
— Increasing departure from normality can give faster singular value decay
— Interior eigenvalues of (A + A*)/2 play a key role.



Linear Stability Analysis and Transients



Linear Stability Analysis for Dynamical Systems

Linear Stability Analysis
Consider the autonomous nonlinear system u’(t) = f(u(t)).

> Find a steady state u., i.e., f(u.) = 0.

> Linearize f about this steady state and analyze small perturbations,
u(t) = u, +x(t):

X(t)=u'(t) = fu.+x(t))
= f(u.) + Ax(t) + O(|Ix(t)|])
Ax(t) + O(I[x(t)I[)-

> Ignore higher-order effects, and analyze the linear system x'(t) = Ax(t).
The steady state u, is stable provided A is stable: i.e., all its eigenvalues
are in the left half-plane.



Linear Stability Analysis for Dynamical Systems

Linear Stability Analysis
Consider the autonomous nonlinear system u’(t) = f(u(t)).

> Find a steady state u., i.e., f(u.) = 0.

> Linearize f about this steady state and analyze small perturbations,
u(t) = u, +x(t):

X(t)=u'(t) = fu.+x(t))
= f(u.) + Ax(t) + O(|Ix(t)|])
Ax(t) + O(|Ix(1)[I*)-

> Ignore higher-order effects, and analyze the linear system x'(t) = Ax(t).
The steady state u, is stable provided A is stable: i.e., all its eigenvalues
are in the left half-plane.

But what if the small perturbation x(t) grows
by orders of magnitude before eventually decaying?



Example: A nonlinear heat equation

An example from [Zworski; Galkowski, 2012]:
For x € [-1,1] and t > 0 with u(—1,t) = u(1,t) = 0, consider

ue(x, t) = vuw(x, t)

with v >0
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Example: A nonlinear heat equation

An example from [Zworski; Galkowski, 2012]:
For x € [-1,1] and t > 0 with u(—1,t) = u(1,t) = 0, consider

ue(x, t) = vuw(x, t) + Vrue(x, t) + su(x, t) + u(x, t)°

with v > 0 and p > 1.

The linearization L, an advection—diffusion operator,
Lu = vuy +vuy + éu

has eigenvalues and eigenfunctions

un(x) = e @V sin(nrx/2);

8 4 7
see, e.g., [Reddy & Trefethen 1994].

The linearized operator is stable for all ¥ > 0, but has interesting transients . ...
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Transient behavior
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Linearized system (black) and nonlinear system (dashed blue)

Nonnormal growth feeds the nonlinear instability.



Transient behavior: reduction of the linearized model

The linearization L is stable. So too is any reasonable discretization L.

What happens when we apply model reduction to the discretization, e.g., to
create a surrogate in a design problem?

Apply Arnoldi moment-matching model reduction to the discretization L of
order 100 to generate a k = 10 dimensional model Lo = VijLVyq.
(This does not guarantee stability, but we will have W(Li) € W(L).)



Transient behavior: reduction of the linearized model

The linearization L is stable. So too is any reasonable discretization L.

What happens when we apply model reduction to the discretization, e.g., to
create a surrogate in a design problem?

Apply Arnoldi moment-matching model reduction to the discretization L of
order 100 to generate a k = 10 dimensional model Lo = VijLVyq.
(This does not guarantee stability, but we will have W(Li) € W(L).)
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Spectral discretization, n = 128 (black) and Arnoldi reduction, k = 10 (red).
[Many Ritz values capture spurious eigenvalues of the discretization of the left.]



Transient behavior: reduction of the linearized model
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Spectral discretization, n = 128 (black) and Arnoldi reduction, k = 10 (red).



Transient behavior: nonlinear versus linear system
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Transient behavior: stabilized reduction of the linearized model

We can restart the Arnoldi reduction to preserve stability (now matches
moments of a modified problem); [Grimme, Sorensen, Van Dooren 1994;
Jaimoukha, Kasenally 1997]
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Spectral discretization, n = 128 (black) and Arnoldi reduction, k = 10 (red)
after a restart to remove the spurious eigenvalue.

[This effectively pushes Ritz values to the left.]



Transient behavior:
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Transient behavior: stabilized reduction of the linearized model
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Spectral discretization, n = 128 (black) and Arnoldi reduction, k = 10 (red)
after one restart to remove the spurious eigenvalue.

MORAL. Beware of suppressing spurious instabilities: they can give rich
insight into the original problem!



Tools for Understanding Transient Growth: Eigenvectors

If A is diagonalizable, A = VAV ™!, then one can bound the transient growth in

e® using the condition number of the eigenvector matrix.

Example (Eigenvalue/Eigenvector Bound for Continuous-Time Systems)

Ix(6)] = le®x(O)[ < [[e™|/lIx(0)]|
Ay, —
< ve™VT[Ix(0)]
< RV 2 11x(0)]
< &( )Ag%)le [[1x(0)]]

where k(V) := |[V[||[V7Y].



Tools for Understanding Transient Growth: Numerical Range

Definition (Numerical Range, a.k.a. Field of Values)

The numerical range of A is the set

wm) = {22 i) =1}

X*X

* tA*_tA 1/2
Xp€ € Xo

&le

t=0

|

* * 1/2 1 * A+A*
<x0(| A (1 + tA)xo) ‘t:o = (T)XO

(e}
~

So, the rightmost point in W/(A) reveals the maximal slope of ||e™|| at t = 0.



Tools for Understanding Transient Growth: Numerical Range

Definition (Numerical Range, a.k.a. Field of Values)

The numerical range of A is the set

wm) = {22 i) =1}

X*X

* tA*_tA 1/2
Xp€ € Xo

&le

t=0

|

* * 1/2 1 * A+A*
<x0(| A (1 + tA)xO) ‘t:o = (T)XO

(e}
~

So, the rightmost point in W/(A) reveals the maximal slope of ||e™|| at t = 0.

Definition (numerical abscissa)

The numerical abscissa is the rightmost in W(A):

w(A) ;= max Rez.
zeW(A)



Initial Transient Growth via Numerical Abscissa
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Tools for Understanding Transient Growth: Pseudospectra

[Use the convention that if A does not have a bounded inverse, |A™!|| = oc.]

Theorem
The following three definitions of the e-pseudospectrum are equivalent:

1. 0.(A)={z € C :z € o(A+E) for some bounded E with ||E|| < ¢};
2. 0 (A)={z€ C:|(z—A) >1/e}
3. 0.(A)={z€ C:zeco(A) or|Av — zv| < e for some unit vector v}.

See, e.g., [Trefethen, E. 2005].



Tools for Understanding Transient Growth: Pseudospectra

A =oo]

[Use the convention that if A does not have a bounded inverse, |

Theorem
The following three definitions of the e-pseudospectrum are equivalent:
1. 0.(A)={z € C :z € o(A+E) for some bounded E with ||E|| < ¢};

2. 0 (A)={z€ C:|(z—A) >1/e}
3. 0.(A)={z€ C:zeco(A) or|Av — zv| < e for some unit vector v}.

See, e.g., [Trefethen, E. 2005].

These different definitions are useful in different contexts:

1. interpreting numerically computed eigenvalues;

2. analyzing matrix behavior/functions of matrices;
computing pseudospectra on a grid in C;

3. proving bounds on a particular o-(A).



Example of Pseudospectra

A= ’ c C20><20

-1 2
-1

Pseudospectra of Toeplitz matrices have been deeply studied [Bottcher et al.].

3 25 =2 -15 -1 05 0 05 1

oc(A) for e = 1072010719 ... 107!



Pseudospectral Bounds on the Matrix Exponential

We wish to use pseudospectra to bound ||e™|| (cf. Hille-Yosida theory).
Definition
The e-pseudospectral abscissa is the supremum of the real parts of z € o.(A):

as(A) == esu;:(;A) Re z.



Pseudospectral Bounds on the Matrix Exponential

We wish to use pseudospectra to bound [e™| (cf. Hille-Yosida theory).

Definition
The e-pseudospectral abscissa is the supremum of the real parts of z € o.(A):

as(A) == esu;:(;A) Re z.

Theorem (Upper and Lower Bounds on |e™|))

For any A € C"" and ¢ > 0,
L.

||etA|| < 7eta€(A)

— 27e ’

where L. denotes the contour length of the boundary of o-(A).

For stable A and any € > 0, A a=(A)
sup [le4]] >

t>0 £



Upper Bound on the Matrix Exponential from Pseudospectra
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Lower Bound on the Matrix Exponential from Pseudospectra
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Nonnormality in the Linearized PDE Example

[—] -6

1

Spectrum, pseudospectra, and numerical range (L2 norm, v = 0.02)

Transient growth can feed the nonlinearity; cf. [Trefethen, Trefethen, Reddy,
Driscoll 1993], [Baggett, Driscoll, Trefehen 1995]



Interlude:
Pseudospectra for DAEs



Linear Stability Analysis for Fluid Flows

Pseudospectra/nornormality have provided a compelling tool for analyzing
subcritical transition to turbulence in fluid flows, particularly for classical
problems where the dynamics can be reduced to simple ODEs, e.g.,
Orr—Sommerfeld; e.g., [Butler, Farrell 1992], [Trefethen, Trefethen, Reddy, Driscoll
1993], [Reddy, Schmid, Henningson 1993], [Schmid, Henningson 2001].

More generally, for a given flow regime one needs to:

> Find a steady-state flow (Picard/Newton iterations).

» Linearize the flow about this steady-state to obtain

v oollve]=lc S0

which we write as Bx'(t) = Ax(t).

v

Analyze the spectral properties of the pencil (A, B).

> Need a generalization of pseudospectra for matrix pencils.

v

For 2d examples we use the IFISS package [Elman, Silvester, Ramage].

See, e.g., [Gunzberger 1989)].



Pseudospectra of Matrix Pencils

» Many definitions of pseudospectra of matrix pencils have been proposed:
[Riedel 1994], [Ruhe 1995], [Frayssé, Gueury, Nicoud, Toumazou 1996], etc.

> Further generalizations (polynomial, delay, nonlinear EVPs):
[Tisseur, Higham 2001], [Green, Wagenknecht 2006], [Bindel, Hood 2013].



Pseudospectra of Matrix Pencils

» Many definitions of pseudospectra of matrix pencils have been proposed:
[Riedel 1994], [Ruhe 1995], [Frayssé, Gueury, Nicoud, Toumazou 1996], etc.

> Further generalizations (polynomial, delay, nonlinear EVPs):
[Tisseur, Higham 2001], [Green, Wagenknecht 2006], [Bindel, Hood 2013].

> Key: We use pseudospectra to analyze dynamics,
rather than perturbations in eigenvalue computations.

> If B is invertible, the ‘right’ approach (cf. [Ruhe 1995]) considers
X (t) = B 'Ax(t)

and analyzes o.(B™'A) in the correct physical norm.



Pseudospectra of Matrix Pencils

> When B is singular, as it is when
M 0
*= | o]

we must use tools from DAEs to understand transient dynamics
[Cambpell, Meyer 1979], [Kunkel, Mehrmann 2006].
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» Simplest case: for invertible A we can write the Schur form

A'B=[ U U2][g Ifl][giz]

for [U1 U] unitary, G invertible, and N nilpotent.
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» Then the dynamics evolve as
x(t) = Uze’® " U7x(0)

for initial conditions that satisfy the algebraic constraints, x(0) € Ran(U1).



Pseudospectra of Matrix Pencils

v

When B is singular, as it is when
M 0
*= | o]

we must use tools from DAEs to understand transient dynamics
[Cambpell, Meyer 1979], [Kunkel, Mehrmann 2006].

» Simplest case: for invertible A we can write the Schur form

AB=[ U, U2][g EHB:]

for [U1 U] unitary, G invertible, and N nilpotent.

» Then the dynamics evolve as
x(t) = Uze’® " U7x(0)

for initial conditions that satisfy the algebraic constraints, x(0) € Ran(U1).

» To understand the transient dynamics, study aE(Gfl) in the right norm.



Pseudospectra for Flow over a Backward Facing Step

(viscosity v = 1/600)
This is a notorious fluid stability problem; see [Gresho et al. 1993].

To compute pseudospectra o.(G™*):

» Transform coordinates so the vector 2-norm approximates the energy norm
for the PDE.

» Use the implicitly restarted Arnoldi algorithm (ARPACK/eigs) to compute
the portion of G™! active on the invariant subspace associated with the
1000 smallest magnitude eigenvalues.

> Numerous helpful tools are available: [Cliffe, Garratt, Spence 1994], [Stykel
2008], [Heinkenschloss, Sorensen, Sun 2008].




Pseudospectra for Flow over a Backward Facing Step

0
v=1/100 | -1
\ -2
1r {
|
i -3
i
1]
0.5 |
-4
|
\
or -5
|
f
-6
-0.5 |
gg
;5 -7
_1 L
[ 8
-15 9
-2 L -10
-3 0.5 1




Pseudospectra for Flow over a Backward Facing Step
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Singular Values of Solutions
of Lyapunov Equations



Bifurcation Detection

Determine bifurcation points in the parameterized linearized system
X'(t) = (A — wh)x(t).

> Assume that A is stable.
» Find the smallest |w| for which A — wA has an imaginary eigenvalue.

From classical bifurcation theory, this w can be characterized as the smallest
magnitude eigenvalue of the generalized eigenvalue problem

AX + XA* = w(AX + XAY)
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Bifurcation Detection
From classical bifurcation theory, this w can be characterized as the smallest
magnitude eigenvalue of the generalized eigenvalue problem
AX + XA" = w(AX + XA")

which can be written as
LaX =wlaX,

with the Lyapunov operators La,Lp : C"" — C"*" given by
LaX = AX + XA", LaX = AX + XA".
La, L C™" — C"™" can be written in matrix form as n? x n* matrices.

The simplest way to find the smallest eigenvalue of the resulting matrix pencil
is inverse iteration, i.e., the power iteration Xy = LKILAX;(.
There are (at least) two problems with this approach for large n:

> Since La is an n® x n® matrix, this could take up to O(n®) operations;

» We might not even be able to store the dense ‘eigenvector’ X.



Bifurcation Detection: Lyapunov Inverse lteration

Find the smallest |w| such that
LaX = wLAX,
for La,Lp 1 C™" — C"™*" given by

LaX = AX + XA*,  LaX = AX + XA".

[Meerbergen, Spence, 2010] propose Lyapunov inverse iteration to find w,
which effectively applies L;l by solving a Lyapunov equation at each iteration.



Bifurcation Detection: Lyapunov Inverse lteration

Find the smallest |w| such that
LaX = wLAX,
for La,Lp 1 C™" — C"™*" given by

LaX = AX + XA*,  LaX = AX + XA".

[Meerbergen, Spence, 2010] propose Lyapunov inverse iteration to find w,
which effectively applies L;l by solving a Lyapunov equation at each iteration.

> There exist good O(n*) methods for solving Lyapunov equations
[Bartels, Stewart 1972], [Hammarling 1982].

> These methods still need to store the dense solution X.

» When A is stable, X is (almost always) full rank.

We are particularly interested in bifurcation problems for nonlinear problems
in fluid dynamics [EIman, Meerbergen, Spence, Wu, 2012; Elman, Wu, 2013].



Matrix Equations in Dynamical Systems

Many problems in model reduction, and control /dynamical systems in general,
lead to matrix equations, the most common being the Lyapunov equation.
(See the recent survey on linear matrix equations by [Simoncini].)

Assume that A € C"*" is stable: all eigenvalues have negative real part.

A*

I

Given the n x n matrix A and the n x m matrix B (m < n),

solve for the square n x n matrix X.
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Matrix Equations in Dynamical Systems

Many problems in model reduction, and control /dynamical systems in general,
lead to matrix equations, the most common being the Lyapunov equation.
(See the recent survey on linear matrix equations by [Simoncini].)

Assume that A € C"*" is stable: all eigenvalues have negative real part.

A

Given the n x n matrix A and the n x m matrix B (m < n),
solve for the square n x n matrix X.

> The solution X is a Hermitian matrix.
» Under mild conditions ((A, B) controllable), X is positive definite.
» Typically X has n? nonzeros: cannot directly store X for large n.

» When m is small, the singular values of X often decay quickly,
depending on eigenvalues of A (and related quantities)
[Penzl 2000a, 2000b].



Low Rank Approximations from lterative Methods

» How do spectral properties of A affect the singular values of X?

> lterative methods for solving the Lyapunov equation naturally construct
low-rank approximations to X. (Take rank(B) = 1 for simplicity.)



Low Rank Approximations from lterative Methods

» How do spectral properties of A affect the singular values of X?

> lterative methods for solving the Lyapunov equation naturally construct
low-rank approximations to X. (Take rank(B) = 1 for simplicity.)

» Galerkin Projection Methods
[Saad 1990; Simoncini 2007; .. .]

> Let X, C C” denote some k-dimensional subspace of C”
e.g., a Krylov subspace, rational Krylov subspace, etc.
> Construct a Hermitian (rank < k) matrix X, € C"*" such that
Ran(Xx) C K.
Equivalently,
Xi = QY,Q" € {QZQ* : Z € Ck*K},
where the columns of Q € C"™ ¥ form an orthonormal basis for K.
> Impose a Galerkin condition in the inner product (S, T) = tr(T*S):
0 = (AXy + X(A" + BB*,QZQ"),
> which reduces to the k X k Lyapunov equation

(Q"AQ)Y« + Y(Q*AQ)" = —(Q"B)(Q"B)".



Low Rank Approximations from lterative Methods

» How do spectral properties of A affect the singular values of X?

> lterative methods for solving the Lyapunov equation naturally construct
low-rank approximations to X. (Take rank(B) = 1 for simplicity.)

» Alternating Direction Implicit (ADI) Methods
[Smith 1968; Wachspress 1988; Penzl 2000a; . . .]
> Set Xo = 0.
» For k=0,1,..., set
X1 = AMkaA;k + By, B:k’
where

A, = (A=) YA+ ul), By, = V2[uk|(A — &) 'B,

and the shifts {u,} C C™T are chosen to optimize convergence.



Low Rank Approximations from lterative Methods

» How do spectral properties of A affect the singular values of X?

> lterative methods for solving the Lyapunov equation naturally construct
low-rank approximations to X. (Take rank(B) = 1 for simplicity.)

» Alternating Direction Implicit (ADI) Methods
[Smith 1968; Wachspress 1988; Penzl 2000a; . . .]

> Set Xo = 0.
» For k=0,1,..., set

Xir1 = A, XeAL, +B,, By,
where

Au, = (A =ml) "HA + puel), By, = V/2[ukl(A — ) 'B,
and the shifts {u,} C C™T are chosen to optimize convergence.
> Generally one wants {—pu,} € C~ to cover the spectrum of A.
> Extensive theoretical /practical work is devoted to finding best shifts.

> Favorable approximation properties of the shifts must be balanced against
the cost of computing (A — 7zxl)~! for many different p values.



Bounds on Decay of Singular Values of X

Denote the singular values of X by

s1 >8> 2>5,>0.

> Let Xy be a rank-k approximation to X (e.g., from Galerkin or ADI).
» Any bound on || X — X|| becomes a bound on sii1

by the Schmidt—Mirsky—Eckart—Young theorem:

seir = min [ X=X]| <X = X]-
rank(X) <k

> Similarly, sk+1 bounds the best performance attainable by any iterative

method that constructs a rank-k approximation X,. (This is helpful for

understanding if subspaces/shifts are near-optimal.)
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> Let Xy be a rank-k approximation to X (e.g., from Galerkin or ADI).
» Any bound on || X — X|| becomes a bound on sii1
by the Schmidt—Mirsky—Eckart—Young theorem:
seir = min [ X=X]| <X = X]-
rank(X) <k
> Similarly, sk+1 bounds the best performance attainable by any iterative
method that constructs a rank-k approximation X,. (This is helpful for
understanding if subspaces/shifts are near-optimal.)
» ADI Error Analysis. The error Ex = X — Xy satisfies

Z + [k
z— Tk

Ec= oA X (ax(R)",  aul2) =]



Bounds on Decay of Singular Values of X

Denote the singular values of X by

s1 >8> 2>5,>0.

> Let Xy be a rank-k approximation to X (e.g., from Galerkin or ADI).
» Any bound on || X — X|| becomes a bound on sii1
by the Schmidt—Mirsky—Eckart—Young theorem:
seir = min [ X=X]| <X = X]-
rank(X) <k
> Similarly, sk+1 bounds the best performance attainable by any iterative
method that constructs a rank-k approximation X,. (This is helpful for
understanding if subspaces/shifts are near-optimal.)
» ADI Error Analysis. The error Ex = X — Xy satisfies

Z + [k
z— Tk

Ec= oA X (ax(R)",  aul2) =]

» Hence we can bound the decay of the singular values of X:

k1 _ ||Exll

st~ X

< ll(A)1%.



Bounds on Decay of Singular Values of X

Since

S

< loe(A)P,  with  u(z) =

one obtains a bound on singular value decay by bounding ||¢«(A)]|.

» Eigenvalues and eigenvectors. For diagonalizable A = VAV ™!,

|z + el
|z — fi|’

e (A < VIV ma A)H

giving the bound

k 2

Sk+1 2 —12 \Z + ,uk|
— < V|7 |IV —
s1 H H ” ” zg]oa(ﬁ)_l:! ‘Z — ’uk|2’

which can be optimized over the shifts {u1,...,ux} C C*
[Levenberg & Reichel 1993; Penzl 2000b; Sorensen & Zhou 2002].



Bounds on Decay of Singular Values of X

Since

S

< loe(A)P,  with  u(z) =

one obtains a bound on singular value decay by bounding ||¢«(A)]|.

» Numerical range. Suppose the field of values
W(A) = {v'Av: v|| =1}

is contained in the open left-half plane. Crouzeix's Theorem gives

k(A)]| < C max H |Z+Hk|

zewa)+ 4 |z — ]’

with Crouzeix's constant C € [2,11.08]. Thus

2
Sk+1 <€ max H |Z+Mk|
st zew(a) L+ |z — Tix[?




Bounds on Decay of Singular Values of X

Since

K
st _ ||kl - Z + p

< < ||k , with ok(z) = P —
< I < o) @ =117

one obtains a bound on singular value decay by bounding ||¢«(A)]].

» Pseudospectra. Suppose for some ¢ > 0 the e-pseudospectrum
o-(A)={zeC:|(zl = A) | > 1/e}

is contained in the open left-half plane. Then

|z + el
¢ (Al < 2m .m, H e

where L. denotes the contour length of the boundary of o.(A). Thus

| 2

2
Sl o Le o H|Z+Mk
st 4722 zeo (A) L L |z — Tak|?

[Levenberg & Reichel 1993; Sabino 2006].



Nonnormality and Singular Values Decay Bounds

Consider this experiment:
Fix the spectrum o(A) but let the departure of A from normality increase.

» There are many essentially equivalent ways to measure departure from
normality [Grone et al. 1987; Elsner & Paardekooper 1987].

> As the departure of A from normality increases, typically:
— (V) increases;
— W(A) gets larger;
— o-(A) gets larger and/or L. /(2me) increases.



Nonnormality and Singular Values Decay Bounds

Consider this experiment:
Fix the spectrum o(A) but let the departure of A from normality increase.

» There are many essentially equivalent ways to measure departure from
normality [Grone et al. 1987; Elsner & Paardekooper 1987].

> As the departure of A from normality increases, typically:
— (V) increases;
— W(A) gets larger;
— o-(A) gets larger and/or L. /(2me) increases.

» All bounds described thus far predict slower decay of singular values of X.

k 2
Sk+1 2 |z 4 po|
Skl 1y 1277 Hil
< IVIFIV g T
Sk+1 2 |z 4 ul® Sk+1 L2 <z gl
<C /< = —_
s1 zén\/? H |z — x| s1 T 4m2e? zen;?f(A)jl} |z — fax|?




Nonnormality and Singular Values Decay Bounds

The same is true for bounds derived by entirely different methods.

> [Antoulas, Sorensen, Zhou, 2002] show (for rank(B) = 1),

S _
L <2(n— KPIVIPIV P A Sk,

where ‘/\k,)\,‘2
Ok = ,
k 2Re)\kH\)\k+)\\2

with the eigenvalues A1,..., A\, of A ordered to make d1 > 92 > -+ > 0.

> [Truhar & Vesellc 2007] derive an alternative to this last bound that involves
| , where b* denotes the jth row of V™'B.

> For the infinite dimensional case, [Grubisic & Kressner 2014] get a bound
that involves ||V||?[[V ||, where V is the transformation that
orthogonalizes a Riesz basis of eigenvectors.

> Error bounds for Galerkin projection typically involve some approximation
problem on W(A) that gets increasingly difficult as W/(A) gets larger;
see, e.g., [Beckermann 2011; Druskin, Knizhnerman, Simoncini 2011].



An Example from Bifurcation Detection

An example from [Elman, Meerbergen, Spence, Wu, 2012; Elman, Wu, 2013]:

> 2d flow over an backward-facing step, viscosity v = 1/400, discretized
using Q—Q: finite elements via IFISS [EIman, Silvester, Ramage].

» Problem can be recast as a standard Lyapunov inverse iteration problem
(linearize about steady state; map infinite eigenvalues; invert mass matrix).



An Example from Bifurcation Detection

An example from [Elman, Meerbergen, Spence, Wu, 2012; Elman, Wu, 2013]:

> 2d flow over an backward-facing step, viscosity v = 1/400, discretized
using Q—Q: finite elements via IFISS [EIman, Silvester, Ramage].

» Problem can be recast as a standard Lyapunov inverse iteration problem
(linearize about steady state; map infinite eigenvalues; invert mass matrix).

> The resulting matrix is nondiagonalizable,
3

rightmost
eigenvalues of A




An Example from Bifurcation Detection

An example from [Elman, Meerbergen, Spence, Wu, 2012; Elman, Wu, 2013]:

> 2d flow over an backward-facing step, viscosity v = 1/400, discretized
using Q—Q: finite elements via IFISS [EIman, Silvester, Ramage].

> Problem can be recast as a standard Lyapunov inverse iteration problem
(linearize about steady state; map infinite eigenvalues; invert mass matrix).

» The resulting matrix is nondiagonalizable, and has a large numerical range,
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An Example from Bifurcation Detection

An example from [Elman, Meerbergen, Spence, Wu, 2012; Elman, Wu, 2013]:

> 2d flow over an backward-facing step, viscosity v = 1/400, discretized
using Q—Q: finite elements via IFISS [EIman, Silvester, Ramage].

» Problem can be recast as a standard Lyapunov inverse iteration problem
(linearize about steady state; map infinite eigenvalues; invert mass matrix).

> The resulting matrix is nondiagonalizable, and has a large numerical range,
but the singular values still decay very rapidly.
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The Connection between W/(A) and (A + AY)
The Hermitian part of A is (A + A).

eigenvalues of A: A1, X2, ..., A\,
eigenvalues of 2(A+ A"):  w, <wp1 < <wy

Recall that the numerical range W/(A) is the set of all Rayleigh quotients:

W(A) = {v'Av : |jv|| = 1}.

Now if z € W(A), then

z+z" Vv'Av+ (V' A'v)" A+ A
R = = = .
“fT 2 2 V(=)



The Connection between W/(A) and (A + AY)
The Hermitian part of A is (A + A).

eigenvalues of A: A1, X2, ..., A\,
eigenvalues of 2(A+ A"):  w, <wp1 < <wy

Recall that the numerical range W/(A) is the set of all Rayleigh quotients:

W(A) = {v'Av : |lv|| = 1}.
Now if z € W(A), then

R = =
ez 5 5

z+2z" v Av+ (V' AY)” =V*(A+A*)v‘

Hence the extreme eigenvalues of (A + A*) dictate the real extent of W(A):

ReW(A) = [wn,w1].



The Connection Between W/(A) and 3(A + A)

The extreme eigenvalues of (A + A*) dictate the real extent of W/(A):

Re W(A) = [wp, wi].

W(A) computed with Higham's Test Matrix Toolbox



An Extreme Example llluminates: No Decay

» What properties of A permit a solution X with no singular value decay?



An Extreme Example llluminates: No Decay

v

What properties of A permit a solution X with no singular value decay?

No decay = X is a Hermitian matrix with s = --- = s,, i.e,,
X=¢£l

for some real £ > 0.

Substituting this X into the Lyapunov equation AX + XA* = —BB™,

1 *\ i *
5 (A+A) = —5BB".

3(A + A*) is a negative semidefinite matrix of rank equal to rank(B).



An Extreme Example llluminates: No Decay

v

What properties of A permit a solution X with no singular value decay?

» No decay = X is a Hermitian matrix with s; = --- = s,, i.e,,
X=¢£l

for some real £ > 0.

> Substituting this X into the Lyapunov equation AX + XA" = —BB*,

1 *\ i *
5 (A+A) = —5BB".

» Z(A+ A*) is a negative semidefinite matrix of rank equal to rank(B).

Worst case singular value decay <= Re W(A) = [w;, 0].

If W(A) extends into the right-half plane, the singular values must decay.




Solvable Example: Jordan Block

An intriguing example from [Sabino 2006]:

SEEIEH!

Increasing « increases the distance of A from normality.



Solvable Example: Jordan Block
An intriguing example from [Sabino 2006]:

SEEIEH!

Increasing « increases the distance of A from normality.

The Lyapunov equation AX + XA" = —BB”* has solution

2t + 2at + o®> a+2t
o+ 2t 2

_1
T4

Maximizing over all t € IR gives the worst case singular value ‘decay’

s _ tr(X) tr(X)2 — 4 det(X) { a’/4, 0<a<2;

s1 r(X) 4+ 1/tr(X)2 — 4 det(X) 4/0?, 2< .



Solvable Example: Jordan Block

5 o¢2/47 0<a<2;
B 4/a? 2<q.

S
S1

[0}
2 2 2
1 1 1
0 . 0 . 0 .
1 -1 1
2 -2 2




A More Nuanced Approach to Decay Bounds

We seek a different kind of decay bound that does a better job of handling
matrices that are far from normal.

If the singular values of X decay slowly, what must be true of A?
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» Write X = s1(I — E) for some E = E*, and sub into AX + XA* = —BB™:

A+ A* = (AE + EA") — slBB*.
1



A More Nuanced Approach to Decay Bounds

We seek a different kind of decay bound that does a better job of handling
matrices that are far from normal.

If the singular values of X decay slowly, what must be true of A?

» Write X = s1(I — E) for some E = E*, and sub into AX + XA* = —BB™:

A+ A* = (AE + EA") — slBB*.
1

» Bound w; = maxReW/(A) in terms of singular values of X:

v (A4 A )v v’ (AE+ EA")v  v'BB*v
w; = max ——— = max -
Ivii=1 2 vli=1 2 2s1
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We seek a different kind of decay bound that does a better job of handling
matrices that are far from normal.

If the singular values of X decay slowly, what must be true of A?

> Write X = s1(I — E) for some E = E*, and sub into AX + XA* = —BB™:

A+ A" — (AE + EA) — slBB*.
1

» Bound w; = maxReW(A) in terms of singular values of X:
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A More Nuanced Approach to Decay Bounds

We seek a different kind of decay bound that does a better job of handling
matrices that are far from normal.

If the singular values of X decay slowly, what must be true of A?

> Write X = s1(I — E) for some E = E*, and sub into AX + XA* = —BB™:

A+ A" — (AE + EA) — slBB*.
1

» Bound w; = maxReW(A) in terms of singular values of X:

v (A + A )v v'(AE+ EA")v  v'BB'v
w; = max ————— = max -

fIvi=1 2 lIvi=1 2 251
N——

nonnegative

v*(AE + EA")v
max ——————
llvil=1 2

IN

IN

3IAE+EA"|



A More Nuanced Approach to Decay Bounds, continued

In summary: for X = s (1 — E),

IN

w < L|AE +EA"|

IN

[IA[E]-

Thus we have bounded the relative size of the last singular value:

Sn w1
RUP S [pa
s1 Al




A More Nuanced Approach to Decay Bounds, continued

In summary: for X = s (1 — E),

wi < 1||AE + EA||
< [IALE].
Since E=E" =1—X/s1,

i I f X i
eigenvalues of E = 1—% = 1_?7
1 1

so .

e =1-2.

1

Thus we have bounded the relative size of the last singular value:

Sn w1
RUP S [pa
s1 Al




A Family of Decay Bounds

We have only bounded s,/s: here; more general bounds are possible.

Theorem. Suppose A is a stable matrix with AX + XA* = —BB*.
Let 51 > s > --+ > s, denote the singular values of of X,
and wy > wy > -+ > wj, denote the eigenvalues of J(A + A*). Then

Sk B|* Wk Sn—k+1

s 2sfAl ~ (Al < st

which includes this bound on the trailing singular values,

Spn—k+1 Wk
st [[A[°

which gives faster singular value decay as the departure of A from normality
increases. [Baker, E., Sabino, arXiv:1410.8741]



Possible and Impossible W/(A)

IBIE _, 55
251 ~ s1+ s,

Corollary. —

1Al

Suppose that ||A]| =||B|| =s1 =1 and s, =1/2.

0.6F 1

0.2F

Given this data, the two dashed curves are not possible boundaries of W(A),
while the solid curve could be the boundary of W(A).



Summary

v

v

v

v

v

Sn—k+41 Wk
s Al

The bound does not depend on rank(B).

The departure from normality (as reflected by wy > 0) plays a very
different role from the previously known bounds.

The bound is not necessarily sharp. Take o — oo in the Jordan example:

«
‘A” ~Q, wl(A) = DR 1,
SO 1
Sn . w1
— =0 while 1— — ~ =
s I

There is more to understand about the solutions to Lyapunov
(and Sylvester) equations with coefficients that are far from normal.

The eigenvalues of (A + A") reveal a great deal! Cf. [Carden, E. 2012].
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