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Outline

We will survey a set of related problems that are motivated by the study of
stability questions in fluid flows.

I Linear Stability Analysis, Transient Dynamics, Pseudospectra
– Overview of linear stability analysis
– When transient growth occurs and why it matters
– Pseudospectral analysis for Differential Algebraic Equations

I Lyapunov Inverse Iteration for Bifurcation Detection
– Algorithm for finding bifurcations points in linear ODEs/DAEs due to

[Meerbergen, Spence 2010; Elman, Meerbergen, Spence, Wu 2012; Elman, Wu 2013]

– Requires the solution of a Lyapunov equation at each iteration
– Only possible at scale if Lyapunov solutions have low numerical rank
– Existing bounds suggest these solutions will not have low rank

I Singular Values of Solutions of Lyapunov Equations
– New analysis of Lyapunov solutions with nonnormal coefficients
– Increasing departure from normality can give faster singular value decay
– Interior eigenvalues of (A + A∗)/2 play a key role.



Linear Stability Analysis and Transients



Linear Stability Analysis for Dynamical Systems

Linear Stability Analysis

Consider the autonomous nonlinear system u′(t) = f(u(t)).

I Find a steady state u∗, i.e., f(u∗) = 0.

I Linearize f about this steady state and analyze small perturbations,
u(t) = u∗ + x(t):

x′(t) = u′(t) = f(u∗ + x(t))

= f(u∗) + Ax(t) + O(‖x(t)‖2)

= Ax(t) + O(‖x(t)‖2).

I Ignore higher-order effects, and analyze the linear system x′(t) = Ax(t).
The steady state u∗ is stable provided A is stable: i.e., all its eigenvalues
are in the left half-plane.

But what if the small perturbation x(t) grows
by orders of magnitude before eventually decaying?
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Example: A nonlinear heat equation

An example from [Zworski; Galkowski, 2012]:

For x ∈ [−1, 1] and t ≥ 0 with u(−1, t) = u(1, t) = 0, consider

ut(x , t) = νuxx(x , t)

+
√
νux(x , t) + 1

8
u(x , t) + u(x , t)p

with ν > 0

and p > 1.

The linearization L, an advection–diffusion operator,

Lu = νuxx +
√
νux + 1

8
u

has eigenvalues and eigenfunctions

λn = −1

8
− n2π2ν

4
, un(x) = e−x/(2

√
ν) sin(nπx/2);

see, e.g., [Reddy & Trefethen 1994].

The linearized operator is stable for all ν > 0, but has interesting transients . . . .
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Evolution of a small initial condition

Nonlinear model (blue) and linearization (black)



Transient behavior
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Nonnormal growth feeds the nonlinear instability.



Transient behavior: reduction of the linearized model

The linearization L is stable. So too is any reasonable discretization L.

What happens when we apply model reduction to the discretization, e.g., to
create a surrogate in a design problem?

Apply Arnoldi moment-matching model reduction to the discretization L of
order 100 to generate a k = 10 dimensional model L10 = V∗10LV10.
(This does not guarantee stability, but we will have W (L10) ⊆W (L).)
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Spectral discretization, n = 128 (black) and Arnoldi reduction, k = 10 (red).
[Many Ritz values capture spurious eigenvalues of the discretization of the left.]
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Transient behavior: reduction of the linearized model
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Spectral discretization, n = 128 (black) and Arnoldi reduction, k = 10 (red).



Transient behavior: nonlinear versus linear system
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Nonnormal growth feeds the nonlinear instability.



Transient behavior: stabilized reduction of the linearized model

We can restart the Arnoldi reduction to preserve stability (now matches
moments of a modified problem); [Grimme, Sorensen, Van Dooren 1994;

Jaimoukha, Kasenally 1997]
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Spectral discretization, n = 128 (black) and Arnoldi reduction, k = 10 (red)
after a restart to remove the spurious eigenvalue.

[This effectively pushes Ritz values to the left.]



Transient behavior: stabilized reduction of the linearized model
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Spectral discretization, n = 128 (black) and Arnoldi reduction, k = 10 (red)
after one restart to remove the spurious eigenvalue.

MORAL. Beware of suppressing spurious instabilities: they can give rich
insight into the original problem!
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Tools for Understanding Transient Growth: Eigenvectors

If A is diagonalizable, A = VΛV−1, then one can bound the transient growth in
etA using the condition number of the eigenvector matrix.

Example (Eigenvalue/Eigenvector Bound for Continuous-Time Systems)

‖x(t)‖ = ‖etAx(0)‖ ≤ ‖etA‖‖x(0)‖

≤ ‖VetΛV−1‖‖x(0)‖

≤ κ(V) max
λ∈σ(A)

|etλ|‖x(0)‖,

where κ(V) := ‖V‖‖V−1‖.



Tools for Understanding Transient Growth: Numerical Range

Definition (Numerical Range, a.k.a. Field of Values)

The numerical range of A is the set

W (A) =

{
x∗Ax

x∗x
: ‖x‖ = 1

}
.

d

dt
‖etAx0‖

∣∣∣
t=0

=
d

dt

(
x∗0 etA∗etAx0

)1/2∣∣∣
t=0

=
d

dt

(
x∗0 (I + tA∗)(I + tA)x0

)1/2∣∣∣
t=0

=
1

‖x0‖
x∗0
(A + A∗

2

)
x0

So, the rightmost point in W (A) reveals the maximal slope of ‖etA‖ at t = 0.

Definition (numerical abscissa)

The numerical abscissa is the rightmost in W (A):

ω(A) := max
z∈W (A)

Re z .
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Initial Transient Growth via Numerical Abscissa

A =

[
−1.1 10

0 −1

]
.

eω(A)t

κ(V)e−t



Tools for Understanding Transient Growth: Pseudospectra

[Use the convention that if A does not have a bounded inverse, ‖A−1‖ =∞.]

Theorem

The following three definitions of the ε-pseudospectrum are equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some bounded E with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε};
3. σε(A) = {z ∈ C : z ∈ σ(A) or ‖Av − zv‖ < ε for some unit vector v}.

See, e.g., [Trefethen, E. 2005].
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[Use the convention that if A does not have a bounded inverse, ‖A−1‖ =∞.]

Theorem

The following three definitions of the ε-pseudospectrum are equivalent:

1. σε(A) = {z ∈ C : z ∈ σ(A + E) for some bounded E with ‖E‖ < ε};
2. σε(A) = {z ∈ C : ‖(z − A)−1‖ > 1/ε};
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These different definitions are useful in different contexts:

1. interpreting numerically computed eigenvalues;

2. analyzing matrix behavior/functions of matrices;
computing pseudospectra on a grid in C;

3. proving bounds on a particular σε(A).



Example of Pseudospectra

A =



−1 2

−1
. . .

. . . 2
−1 2

−1

 ∈ C20×20.

Pseudospectra of Toeplitz matrices have been deeply studied [Böttcher et al.].

σε(A) for ε = 10−20, 10−19, . . . , 10−1



Pseudospectral Bounds on the Matrix Exponential

We wish to use pseudospectra to bound ‖etA‖ (cf. Hille–Yosida theory).

Definition

The ε-pseudospectral abscissa is the supremum of the real parts of z ∈ σε(A):

αε(A) := sup
z∈σε(A)

Re z .

Theorem (Upper and Lower Bounds on ‖etA‖)

For any A ∈ C n×n and ε > 0,

‖etA‖ ≤ Lε
2πε

etαε(A),

where Lε denotes the contour length of the boundary of σε(A).

For stable A and any ε > 0,
sup
t≥0
‖etA‖ ≥ αε(A)

ε
.
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Upper Bound on the Matrix Exponential from Pseudospectra

A =


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Lower Bound on the Matrix Exponential from Pseudospectra

A =



−1 2

−1
. . .

. . . 2
−1 2

−1

 ∈ C20×20.

ε = 10−5

ε = 10−1



Nonnormality in the Linearized PDE Example
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Transient growth can feed the nonlinearity; cf. [Trefethen, Trefethen, Reddy,

Driscoll 1993], [Baggett, Driscoll, Trefehen 1995]



Interlude:

Pseudospectra for DAEs



Linear Stability Analysis for Fluid Flows

Pseudospectra/nornormality have provided a compelling tool for analyzing
subcritical transition to turbulence in fluid flows, particularly for classical
problems where the dynamics can be reduced to simple ODEs, e.g.,
Orr–Sommerfeld; e.g., [Butler, Farrell 1992], [Trefethen, Trefethen, Reddy, Driscoll

1993], [Reddy, Schmid, Henningson 1993], [Schmid, Henningson 2001].

More generally, for a given flow regime one needs to:

I Find a steady-state flow (Picard/Newton iterations).

I Linearize the flow about this steady-state to obtain[
M 0
0 0

] [
v′(t)
p′(t)

]
=

[
F C∗

C 0

] [
v(t)
p(t)

]
,

which we write as Bx′(t) = Ax(t).

I Analyze the spectral properties of the pencil (A,B).

I Need a generalization of pseudospectra for matrix pencils.

I For 2d examples we use the IFISS package [Elman, Silvester, Ramage].

See, e.g., [Gunzberger 1989].



Pseudospectra of Matrix Pencils

I Many definitions of pseudospectra of matrix pencils have been proposed:
[Riedel 1994], [Ruhe 1995], [Frayssé, Gueury, Nicoud, Toumazou 1996], etc.

I Further generalizations (polynomial, delay, nonlinear EVPs):
[Tisseur, Higham 2001], [Green, Wagenknecht 2006], [Bindel, Hood 2013].

I Key: We use pseudospectra to analyze dynamics,
rather than perturbations in eigenvalue computations.

I If B is invertible, the ‘right’ approach (cf. [Ruhe 1995]) considers

x′(t) = B−1Ax(t)

and analyzes σε(B−1A) in the correct physical norm.
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Pseudospectra of Matrix Pencils

I When B is singular, as it is when

B =

[
M 0
0 0

]
we must use tools from DAEs to understand transient dynamics
[Cambpell, Meyer 1979], [Kunkel, Mehrmann 2006].

I Simplest case: for invertible A we can write the Schur form

A−1B =
[

U1 U2

] [ G S
0 N

] [
U∗1
U∗2

]
for [U1 U2] unitary, G invertible, and N nilpotent.

I Then the dynamics evolve as

x(t) = U1etG−1

U∗1 x(0)

for initial conditions that satisfy the algebraic constraints, x(0) ∈ Ran(U1).

I To understand the transient dynamics, study σε(G−1) in the right norm.



Pseudospectra of Matrix Pencils

I When B is singular, as it is when

B =

[
M 0
0 0

]
we must use tools from DAEs to understand transient dynamics
[Cambpell, Meyer 1979], [Kunkel, Mehrmann 2006].

I Simplest case: for invertible A we can write the Schur form

A−1B =
[

U1 U2

] [ G S
0 N

] [
U∗1
U∗2

]
for [U1 U2] unitary, G invertible, and N nilpotent.

I Then the dynamics evolve as

x(t) = U1etG−1

U∗1 x(0)

for initial conditions that satisfy the algebraic constraints, x(0) ∈ Ran(U1).

I To understand the transient dynamics, study σε(G−1) in the right norm.



Pseudospectra of Matrix Pencils

I When B is singular, as it is when

B =

[
M 0
0 0

]
we must use tools from DAEs to understand transient dynamics
[Cambpell, Meyer 1979], [Kunkel, Mehrmann 2006].

I Simplest case: for invertible A we can write the Schur form

A−1B =
[

U1 U2

] [ G S
0 N

] [
U∗1
U∗2

]
for [U1 U2] unitary, G invertible, and N nilpotent.

I Then the dynamics evolve as

x(t) = U1etG−1

U∗1 x(0)

for initial conditions that satisfy the algebraic constraints, x(0) ∈ Ran(U1).

I To understand the transient dynamics, study σε(G−1) in the right norm.



Pseudospectra of Matrix Pencils

I When B is singular, as it is when

B =

[
M 0
0 0

]
we must use tools from DAEs to understand transient dynamics
[Cambpell, Meyer 1979], [Kunkel, Mehrmann 2006].

I Simplest case: for invertible A we can write the Schur form

A−1B =
[

U1 U2

] [ G S
0 N

] [
U∗1
U∗2

]
for [U1 U2] unitary, G invertible, and N nilpotent.

I Then the dynamics evolve as

x(t) = U1etG−1

U∗1 x(0)

for initial conditions that satisfy the algebraic constraints, x(0) ∈ Ran(U1).

I To understand the transient dynamics, study σε(G−1) in the right norm.



Pseudospectra for Flow over a Backward Facing Step

0 5 10 15 20 25 30
−2

0

2

(viscosity ν = 1/600)

This is a notorious fluid stability problem; see [Gresho et al. 1993].

To compute pseudospectra σε(G−1):

I Transform coordinates so the vector 2-norm approximates the energy norm
for the PDE.

I Use the implicitly restarted Arnoldi algorithm (ARPACK/eigs) to compute
the portion of G−1 active on the invariant subspace associated with the
1000 smallest magnitude eigenvalues.

I Numerous helpful tools are available: [Cliffe, Garratt, Spence 1994], [Stykel

2008], [Heinkenschloss, Sorensen, Sun 2008].



Pseudospectra for Flow over a Backward Facing Step
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Pseudospectra for Flow over a Backward Facing Step
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Pseudospectra for Flow over a Backward Facing Step
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Singular Values of Solutions

of Lyapunov Equations



Bifurcation Detection

Determine bifurcation points in the parameterized linearized system

x′(t) = (A− ω∆)x(t).

I Assume that A is stable.
I Find the smallest |ω| for which A− ω∆ has an imaginary eigenvalue.

From classical bifurcation theory, this ω can be characterized as the smallest
magnitude eigenvalue of the generalized eigenvalue problem

AX + XA∗ = ω(∆X + X∆∗)

which can be written as
LAX = ωL∆X,

with the Lyapunov operators LA,L∆ : Cn×n → Cn×n given by

LAX = AX + XA∗, L∆X = ∆X + X∆∗.

LA,L∆ : Cn×n → Cn×n can be written in matrix form as n2 × n2 matrices.

The simplest way to find the smallest eigenvalue of the resulting matrix pencil
is inverse iteration, i.e., the power iteration Xk+1 = L−1

A L∆Xk .

There are (at least) two problems with this approach for large n:

I Since LA is an n2 × n2 matrix, this could take up to O(n6) operations;
I We might not even be able to store the dense ‘eigenvector’ X.
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Bifurcation Detection: Lyapunov Inverse Iteration

Find the smallest |ω| such that

LAX = ωL∆X,

for LA,L∆ : Cn×n → Cn×n given by

LAX = AX + XA∗, L∆X = ∆X + X∆∗.

[Meerbergen, Spence, 2010] propose Lyapunov inverse iteration to find ω,
which effectively applies L−1

A by solving a Lyapunov equation at each iteration.

I There exist good O(n3) methods for solving Lyapunov equations
[Bartels, Stewart 1972], [Hammarling 1982].

I These methods still need to store the dense solution X.

I When A is stable, X is (almost always) full rank.

We are particularly interested in bifurcation problems for nonlinear problems
in fluid dynamics [Elman, Meerbergen, Spence, Wu, 2012; Elman, Wu, 2013].



Bifurcation Detection: Lyapunov Inverse Iteration

Find the smallest |ω| such that

LAX = ωL∆X,

for LA,L∆ : Cn×n → Cn×n given by

LAX = AX + XA∗, L∆X = ∆X + X∆∗.

[Meerbergen, Spence, 2010] propose Lyapunov inverse iteration to find ω,
which effectively applies L−1

A by solving a Lyapunov equation at each iteration.

I There exist good O(n3) methods for solving Lyapunov equations
[Bartels, Stewart 1972], [Hammarling 1982].

I These methods still need to store the dense solution X.

I When A is stable, X is (almost always) full rank.

We are particularly interested in bifurcation problems for nonlinear problems
in fluid dynamics [Elman, Meerbergen, Spence, Wu, 2012; Elman, Wu, 2013].



Matrix Equations in Dynamical Systems

Many problems in model reduction, and control/dynamical systems in general,
lead to matrix equations, the most common being the Lyapunov equation.
(See the recent survey on linear matrix equations by [Simoncini].)
Assume that A ∈ Cn×n is stable: all eigenvalues have negative real part.

A X + X A∗ = − B

B∗

Given the n × n matrix A and the n ×m matrix B (m� n),
solve for the square n × n matrix X.

I The solution X is a Hermitian matrix.

I Under mild conditions ((A,B) controllable), X is positive definite.

I Typically X has n2 nonzeros: cannot directly store X for large n.

I When m is small, the singular values of X often decay quickly,
depending on eigenvalues of A (and related quantities)
[Penzl 2000a, 2000b].
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Low Rank Approximations from Iterative Methods

I How do spectral properties of A affect the singular values of X?

I Iterative methods for solving the Lyapunov equation naturally construct
low-rank approximations to X. (Take rank(B) = 1 for simplicity.)
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I How do spectral properties of A affect the singular values of X?

I Iterative methods for solving the Lyapunov equation naturally construct
low-rank approximations to X. (Take rank(B) = 1 for simplicity.)

I Galerkin Projection Methods
[Saad 1990; Simoncini 2007; . . . ]

I Let Kk ⊆ Cn denote some k-dimensional subspace of Cn

e.g., a Krylov subspace, rational Krylov subspace, etc.

I Construct a Hermitian (rank ≤ k) matrix Xk ∈ Cn×n such that

Ran(Xk ) ⊂ Kk .

Equivalently,
Xk := QYkQ∗ ∈ {QZQ∗ : Z ∈ Ck×k},

where the columns of Q ∈ Cn×k form an orthonormal basis for Kk .

I Impose a Galerkin condition in the inner product 〈S,T〉 = tr(T∗S):

0 = 〈AXk + XkA∗ + BB∗,QZQ∗〉,
I which reduces to the k × k Lyapunov equation

(Q∗AQ)Yk + Yk (Q∗AQ)∗ = −(Q∗B)(Q∗B)∗.



Low Rank Approximations from Iterative Methods

I How do spectral properties of A affect the singular values of X?

I Iterative methods for solving the Lyapunov equation naturally construct
low-rank approximations to X. (Take rank(B) = 1 for simplicity.)

I Alternating Direction Implicit (ADI) Methods
[Smith 1968; Wachspress 1988; Penzl 2000a; . . . ]

I Set X0 = 0.

I For k = 0, 1, . . ., set

Xk+1 = Aµk
XkA∗µk

+ Bµk
B∗µk

,

where

Aµk = (A− µk I)−1(A + µk I), Bµk =
√

2|µk |(A− µk I)−1B,

and the shifts {µk} ⊂ C+ are chosen to optimize convergence.

I Generally one wants {−µk} ∈ C− to cover the spectrum of A.

I Extensive theoretical/practical work is devoted to finding best shifts.

I Favorable approximation properties of the shifts must be balanced against
the cost of computing (A− µk I)−1 for many different µk values.
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Bounds on Decay of Singular Values of X

Denote the singular values of X by

s1 ≥ s2 ≥ · · · ≥ sn > 0.

I Let Xk be a rank-k approximation to Xk (e.g., from Galerkin or ADI).
I Any bound on ‖X− Xk‖ becomes a bound on sk+1

by the Schmidt–Mirsky–Eckart–Young theorem:

sk+1 = min
rank(X̂)≤k

‖X− X̂‖ ≤ ‖X− Xk‖.

I Similarly, sk+1 bounds the best performance attainable by any iterative
method that constructs a rank-k approximation Xk . (This is helpful for
understanding if subspaces/shifts are near-optimal.)

I ADI Error Analysis. The error Ek = X− Xk satisfies

Ek = φk(A) X (φk(A))∗, φk(z) :=
k∏

j=1

z + µk

z − µk
.

I Hence we can bound the decay of the singular values of X:

sk+1

s1
≤ ‖Ek‖
‖X‖ ≤ ‖φk(A)‖2.
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Bounds on Decay of Singular Values of X

Since

sk+1

s1
≤ ‖Ek‖
‖X‖ ≤ ‖φk(A)‖2, with φk(z) :=

k∏
j=1

z + µk

z − µk
,

one obtains a bound on singular value decay by bounding ‖φk(A)‖.

I Eigenvalues and eigenvectors. For diagonalizable A = VΛV−1,

‖φk(A)‖ ≤ ‖V‖ ‖V−1‖ max
z∈σ(A)

k∏
j=1

|z + µk |
|z − µk |

,

giving the bound

sk+1

s1
≤ ‖V‖2 ‖V−1‖2 max

z∈σ(A)

k∏
j=1

|z + µk |2

|z − µk |2
,

which can be optimized over the shifts {µ1, . . . , µk} ⊂ C+

[Levenberg & Reichel 1993; Penzl 2000b; Sorensen & Zhou 2002].
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‖X‖ ≤ ‖φk(A)‖2, with φk(z) :=

k∏
j=1

z + µk

z − µk
,

one obtains a bound on singular value decay by bounding ‖φk(A)‖.

I Numerical range. Suppose the field of values

W (A) = {v∗Av : ‖v‖ = 1}

is contained in the open left-half plane. Crouzeix’s Theorem gives

‖φk(A)‖ ≤ C max
z∈W (A)

k∏
j=1

|z + µk |
|z − µk |

,

with Crouzeix’s constant C ∈ [2, 11.08]. Thus
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k∏
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.



Bounds on Decay of Singular Values of X

Since

sk+1

s1
≤ ‖Ek‖
‖X‖ ≤ ‖φk(A)‖2, with φk(z) :=

k∏
j=1

z + µk

z − µk
,

one obtains a bound on singular value decay by bounding ‖φk(A)‖.

I Pseudospectra. Suppose for some ε > 0 the ε-pseudospectrum

σε(A) = {z ∈ C : ‖(zI− A)−1‖ > 1/ε}

is contained in the open left-half plane. Then

‖φk(A)‖ ≤ Lε
2πε

max
z∈σε(A)

k∏
j=1

|z + µk |
|z − µk |

,

where Lε denotes the contour length of the boundary of σε(A). Thus

sk+1

s1
≤ L2

ε

4π2ε2
max

z∈σε(A)

k∏
j=1

|z + µk |2

|z − µk |2

[Levenberg & Reichel 1993; Sabino 2006].



Nonnormality and Singular Values Decay Bounds

Consider this experiment:
Fix the spectrum σ(A) but let the departure of A from normality increase.

I There are many essentially equivalent ways to measure departure from
normality [Grone et al. 1987; Elsner & Paardekooper 1987].

I As the departure of A from normality increases, typically:
– κ(V) increases;
– W (A) gets larger;
– σε(A) gets larger and/or Lε/(2πε) increases.

I All bounds described thus far predict slower decay of singular values of X.
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Nonnormality and Singular Values Decay Bounds

The same is true for bounds derived by entirely different methods.

I [Antoulas, Sorensen, Zhou, 2002] show (for rank(B) = 1),

sk+1

s1
≤ 2(n − k)2‖V‖2‖V−1‖2 ‖A‖ δk+1,

where
δk = − 1

2 Reλk

k−1∏
j=1

|λk − λj |2

|λk + λj |2
,

with the eigenvalues λ1, . . . , λn of A ordered to make δ1 ≥ δ2 ≥ · · · ≥ δn.

I [Truhar & Veselić 2007] derive an alternative to this last bound that involves
‖V‖2‖b̂j‖2, where b̂∗j denotes the jth row of V−1B.

I For the infinite dimensional case, [Grubisic & Kressner 2014] get a bound
that involves ‖V‖2‖V−1‖2, where V is the transformation that
orthogonalizes a Riesz basis of eigenvectors.

I Error bounds for Galerkin projection typically involve some approximation
problem on W (A) that gets increasingly difficult as W (A) gets larger;
see, e.g., [Beckermann 2011; Druskin, Knizhnerman, Simoncini 2011].



An Example from Bifurcation Detection

An example from [Elman, Meerbergen, Spence, Wu, 2012; Elman, Wu, 2013]:

I 2d flow over an backward-facing step, viscosity ν = 1/400, discretized
using Q2–Q1 finite elements via IFISS [Elman, Silvester, Ramage].

I Problem can be recast as a standard Lyapunov inverse iteration problem
(linearize about steady state; map infinite eigenvalues; invert mass matrix).

I The resulting matrix is nondiagonalizable, and has a large numerical range,
but the singular values still decay very rapidly.
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The Connection between W (A) and 1
2(A + A∗)

The Hermitian part of A is 1
2
(A + A∗).

eigenvalues of A: λ1, λ2, . . . , λn

eigenvalues of 1
2
(A + A∗): ωn ≤ ωn−1 ≤ · · · ≤ ω1

Recall that the numerical range W (A) is the set of all Rayleigh quotients:

W (A) = {v∗Av : ‖v‖ = 1}.

Now if z ∈W (A), then

Re z =
z + z∗

2
=

v∗Av + (v∗A∗v)∗

2
= v∗

(A + A∗

2

)
v.

Hence the extreme eigenvalues of 1
2
(A + A∗) dictate the real extent of W (A):

ReW (A) = [ωn, ω1].



The Connection between W (A) and 1
2(A + A∗)

The Hermitian part of A is 1
2
(A + A∗).

eigenvalues of A: λ1, λ2, . . . , λn

eigenvalues of 1
2
(A + A∗): ωn ≤ ωn−1 ≤ · · · ≤ ω1

Recall that the numerical range W (A) is the set of all Rayleigh quotients:

W (A) = {v∗Av : ‖v‖ = 1}.

Now if z ∈W (A), then

Re z =
z + z∗

2
=

v∗Av + (v∗A∗v)∗

2
= v∗

(A + A∗

2

)
v.

Hence the extreme eigenvalues of 1
2
(A + A∗) dictate the real extent of W (A):

ReW (A) = [ωn, ω1].



The Connection Between W (A) and 1
2(A + A∗)

The extreme eigenvalues of 1
2
(A + A∗) dictate the real extent of W (A):

Re W (A) = [ωn, ω1].

-5 -4 -3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

2

3

4

ωn ω1

W (A) computed with Higham’s Test Matrix Toolbox



An Extreme Example Illuminates: No Decay

I What properties of A permit a solution X with no singular value decay?

I No decay =⇒ X is a Hermitian matrix with s1 = · · · = sn, i.e.,

X = ξI

for some real ξ > 0.

I Substituting this X into the Lyapunov equation AX + XA∗ = −BB∗,

1

2

(
A + A∗

)
= − 1

2ξ
BB∗.

I 1
2
(A + A∗) is a negative semidefinite matrix of rank equal to rank(B).

Worst case singular value decay ⇐⇒ ReW (A) = [ωn, 0].

If W (A) extends into the right-half plane, the singular values must decay.
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Solvable Example: Jordan Block

An intriguing example from [Sabino 2006]:

A =

[
−1 α

0 −1

]
, B =

[
t
1

]
.

Increasing α increases the distance of A from normality.

The Lyapunov equation AX + XA∗ = −BB∗ has solution

X =
1

4

[
2t2 + 2αt + α2 α + 2t

α + 2t 2

]
.

Maximizing over all t ∈ IR gives the worst case singular value ‘decay’

s2

s1
=

tr(X)−
√

tr(X)2 − 4 det(X)

tr(X) +
√

tr(X)2 − 4 det(X)
=

{
α2/4, 0 < α ≤ 2;

4/α2, 2 ≤ α.
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A More Nuanced Approach to Decay Bounds

We seek a different kind of decay bound that does a better job of handling
matrices that are far from normal.

If the singular values of X decay slowly, what must be true of A?

I Bound ω1 = max ReW (A) in terms of singular values of X:

ω1 = max
‖v‖=1

v∗(A + A∗)v

2
= max

‖v‖=1

v∗(AE + EA∗)v

2

≤ max
‖v‖=1

v∗(AE + EA∗)v

2

≤ 1
2
‖AE + EA∗‖
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A More Nuanced Approach to Decay Bounds, continued

In summary: for X = s1(I− E),

ω1 ≤ 1
2
‖AE + EA∗‖

≤ ‖A‖ ‖E‖.

Since E = E∗ = I− X/s1,

eigenvalues of E = 1− eigenvalues of X

s1
= 1− sj

s1
,

so
‖E‖ = 1− sn

s1
.

Thus we have bounded the relative size of the last singular value:

sn
s1
≤ 1− ω1

‖A‖ .
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A Family of Decay Bounds

We have only bounded sn/s1 here; more general bounds are possible.

Theorem. Suppose A is a stable matrix with AX + XA∗ = −BB∗.
Let s1 ≥ s2 ≥ · · · ≥ sn denote the singular values of of X,
and ω1 ≥ ω2 ≥ · · · ≥ ωn denote the eigenvalues of 1

2
(A + A∗). Then

sk
s1
− 1− ‖B‖2

2s1‖A‖
≤ ωk

‖A‖ ≤ 1− sn−k+1

s1
,

which includes this bound on the trailing singular values,

sn−k+1

s1
≤ 1− ωk

‖A‖ ,

which gives faster singular value decay as the departure of A from normality
increases. [Baker, E., Sabino, arXiv:1410.8741]



Possible and Impossible W (A)

Corollary. −‖B‖
2

2s1
≤ ω1 ≤

s1 − sn
s1 + sn

‖A‖

Suppose that ‖A‖ = ‖B‖ = s1 = 1 and sn = 1/2.
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Given this data, the two dashed curves are not possible boundaries of W (A),
while the solid curve could be the boundary of W (A).



Summary

sn−k+1

s1
≤ 1− ωk

‖A‖ .

I The bound does not depend on rank(B).

I The departure from normality (as reflected by ωk > 0) plays a very
different role from the previously known bounds.

I The bound is not necessarily sharp. Take α→∞ in the Jordan example:

|A‖ ∼ α, ω1(A) =
α

2
− 1,

so
sn
s1
→ 0 while 1− ω1

‖A‖ ∼
1

2
.

I There is more to understand about the solutions to Lyapunov
(and Sylvester) equations with coefficients that are far from normal.

I The eigenvalues of 1
2
(A + A∗) reveal a great deal! Cf. [Carden, E. 2012].
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