

SETTING THE STAGE... VIEWPOINT

 Context of justification ('world of proofs'): model manipulation (mathematics, mathematical physics) versus

 Context of discovery/explanation: modeling as a decision process, abstraction (engineering physics)

SETTING THE STAGE... VIEWPOINT

- Herein focus on reduction by
 - making well-based initial modeling decisions
 - structured approach
 - variable categorization based on physical properties
 - tools/notation that support modeling decisions
 - INSIGHT in physical behavior
- Mathematical result still open for further reduction!

Workshop on model order reduction of transport-dominanted phenomena

SETTING THE STAGE... TERMINOLOGY

- Ideal concepts ('storage', 'transformation', etc.): mental pictures
- Communication: depicting imaginary concepts into visible images – ideal 'elements'
- Potential confusion of
 - ideal elements with tangible components
 - topological structure with spatial (geometrical) structure

(see Walter Lewin's lecture about Faraday versus Kirchhoff:

part 1: http://www.youtube.com/watch?v=eqjl-qRy71w&NR=1,

part 2: http://www.youtube.com/watch?v=1bUWcy8HwpM&feature=related

Workshop on model order reduction of transport-dominanted phenomena

EXAMPLE: FARADAY'S LAW

$$\oint_C E \cdot dl = -\frac{d}{dt} \iint_S B \cdot dA$$

$$\oint_C E \cdot dl + \frac{d}{dt} \iint_S B \cdot dA = 0$$

- Physicists: dB/dt = 0 for Kirchhoff's voltage law to hold (geometrical interpretation)
- Electrical engineers, graph theoreticians: $d\lambda/dt$ is a voltage (topological interpretation of the quasistationary situation)

$$\frac{d\lambda}{dt} = n\frac{d\Phi}{dt} = n\frac{d}{dt}\iint_{S} BdA$$

• i.o.w.: topological structure is NOT EQUAL TO geometrical structure (Lewin's confusion)

'LUMPED' VERSUS 'DISTRIBUTED'

- Ideal elements are conceptual 'lumps'
- Distributed system models treat configuration space in a continuous way but

still use conceptually 'lumped' concepts(!):

- various balance equations (momentum, mass, etc.)
- dissipation relations
- etc.
- All conceptually separated...

Workshop on model order reduction of transport-dominanted phenomena

PREREQUISITES

- Basic physical concepts: e.g. quantities for which a conservation principle holds (momentum, charge, etc.)
- Physical interaction implies energy exchange == power ('through' conceptual ports)
 - even information exchange requires low power: back effect is (made) negligible (e.g. sensor & amplifier)
- Eulerian vs. Lagrangian coordinates ('view point')
- Legendre transforms
- Basics of (ir-)reversible thermodynamics

Workshop on model order reduction of transport-dominanted phenomena

'PITCH' OF POINTS TO MAKE

- separation between configuration and energy states: more insight
- system boundary definitions may be mixed: Eulerian vs Lagrangian
- concept of energy density (material of spatial) synonymous with first degree homogeneous energy function of all possible extensive states in principle
- energy-based modeling approach/notation:
 - automatically satisfies fundamental principles of physics when all grammar rules are obeyed
 - systematic approach to the dynamic behavior of all properties that may be *convected* in principle (e.g. momentum, electric charge, etc.);
- generalized thermodynamic framework of variables more general than Hamiltonian (generalized mechanical) framework:
 - some domains have no dual storage

Workshop on model order reduction of transport-dominanted phenomena

transport-dominanted phenomena

Berlin, May 19th, 2015

• Difference is used to find the entropy production, power continuous structure not made explicit, except for instantaneous Carnot engines (1-junction for entropy flow)

power continuous structure now made explicit

$$\underline{\underline{S}} \longrightarrow \underline{\underline{C}}$$
 $\underline{\underline{S}}$
 $\underline{\underline{RS}}$

• simplified picture, containing the same information...

Berlin, May 19th, 2015

CONFIGURATION INFLUENCE ON ENERGETIC STRUCTURE

 can 'become' an additional energy state: geometric parameter in storage relation results in a force

$$F(q,x) = \frac{\partial E(q,x)}{\partial x}$$

- examples: LVDT, electret microphone, relay, (ideal) gas etc. (MP C)
- cycles allow transduction
- changes of causality correspond to Legendre transforms!! (relation to dissipation)
- can modulate an energy relation
 - examples: crank-slider mechanism, etc. (MTF)
- can switch a contact (or behavior)

ENERGY AS STARTING POINT

- Energy
 - $E = E(q) = E(q_1, ..., q_i, ...q_n)$
 - Homogeneous function of set of extensive state variables
- In ('generalized') mechanics: Hamiltonian

-
$$E = H(\underline{q}, \underline{p}) = H(q_1, ..., q_i, ..., q_k, p_1, ..., p_i, ..., p_k)$$

- In thermodynamics of 'simple' systems: internal energy

 - $E = U(\underline{q}) = U(V, S, N)$ $\text{ more species: } E = U(\underline{q}) = U(V, S, \underline{N}) =$

$$=U(V,S,N_1,...,N_i,...,N_m)=$$

$$=U\left(V,S,N_{1},...,N_{i},...,N_{m-1},N\right)$$

ENERGY-BASED MODEL FORMULATION

- **Energy and power: domain independent concepts**
- An energy function of a set of k conserved states q: $E(q_1,...q_i,...q_k)$
- Result in a power:

$$P = \frac{dE(q_1, ..., q_i, ..., q_k)}{dt} = \sum_{i=1}^k \frac{\partial E(q_1, ..., q_i, ..., q_k)}{\partial q_i} \frac{dq_i}{dt} = \sum_{i=1}^k e_i f_i$$

- where $f_i=\frac{dq_i}{dt}$ is an equilibrium-establishing variable or *flow* and $e_i\left(q_1,...q_i,...q_k\right)=\frac{\partial E\left(q_1,...q_i,...q_k\right)}{\partial q_i}$ is an
- equilibrium-determining variable or effort
- This distinction is lost in a Hamiltonian framework!

ENERGY-BASED MODELING APPROACH

 Note that a balance equation for a conserved, extensive state

$$\frac{dq}{dt} = \sum \varepsilon f$$

with $\varepsilon = \pm 1$ depending on direction w.r.t. positive orientation

May now be written as

$$\sum \varepsilon f = 0$$

GENERALIZED THERMODYNAMIC FRAMEWORK OF VARIABLES

f	е	$q = \int f dt$
flow	effort	generalized state
		$q = \int i dt$
	•-	3
current	voitage	charge
и	i	$\lambda = \int u dt$
voltage	current	magnetic flux linkage
		g.
	fs	$S = \int f_{S} dt$
tomporet	-	• =
•	• •	entropy
ure	flow	
Ш	f_N	$N = \int f_{N} dt$
•		number of moles
		number of moles
potentiai	TIOW	
	i current	

GENERALIZED THERMODYNAMIC FRAMEWORK OF VARIABLES

	f flow	e effort	$q = \int f dt$ generalized state
elastic/potential translation	v velocity	F force	x = ∫ vdt _displacement
kinetic translation	F force	v velocity	$p = \int F dt$ momentum
elastic/potential rotation	ω angular velocity	T torque	$\theta = \int \omega dt$ angular displacement
kinetic rotation	T torque	ω angular velocity	$b = \int T dt$ angular momentum
elastic hydraulic	arphi volume flow	<i>p</i> pressure	$V = \int \varphi dt$ volume
kinetic hydraulic	p pressure	arphi volume flow	$\Gamma = \int p dt$ momentum of a flow tube

MECHANICAL FRAMEWORK OF VARIABLES

	f flow	e effort	$q = \int f dt$ generalized	$p = \int e dt$ generalized
			displacement	momentum
electromagnetic	<i>i</i> current	<i>u</i> voltage	$q=\int i\mathrm{d}t$ charge	$\lambda = \int u dt$ magnetic flux linkage
mechanical translation	<i>v</i> velocity	F force	$x = \int v dt$ displacement	$p = \int F dt$ momentum
mechanical rotation	ω angular velocity	<i>T</i> torque	$ heta = \int \omega \mathrm{d}t$ angular displacement	$b = \int T dt$ angular momentum
hydraulic	arphi volume flow	<i>p</i> pressure	$V=\int arphi$ d t volume	$\Gamma = \int p dt$ momentum of a flow tube

SYNTHESIS OF MECHANICAL & THERMODYNAMIC FRAMEWORK

Mechanics:	Thermodynamics:			
Two types of storage	One type of storage			
Oscillatory behavior (damped): C-I(-R)	Only relaxation behavior: C-R			
Split domains (therm.) and couple by SGY (mech.):				
C-SGY-C				

GENERALIZED THERMODYNAMIC FRAMEWORK

UNRESOLVED ISSUE?

- What is analog to what?
 - Mass and coil or mass and capacitor?
 - Spring and capacitor or spring and coil?
- Long debates since mid thirties...

PHYSICAL MEANING OF THE SYMPLECTIC GYRATOR

- Electrical network (q,λ) :
 - —Only if quasi-stationary (non-radiating),
 Maxwell's equations reduce to:

–Dualizing effect!

PHYSICAL MEANING OF THE SYMPLECTIC GYRATOR

- Mechanical (x,p)
 - -Only when in inertial frames, i.e. when Newton's 2nd law holds:

'SPECIAL' STATES

Position/displacement

- has a dual nature:
 - energy state (related to a conservation or symmetry principle like all other states)
 - configuration state

Matter

- convects all matter-bound properties (not 'available volume'!)
- conjugate intensity depends on other intensities (Gibbs-Duhem)
- boundary criterion

Volume

boundary criterion

Entropy

can be 'locally' produced & is only 'locally' conserved (conceptual separation!)

SYSTEM (BOUNDARY) DEFINITION

- Open (thermodynamic) systems
- **dN** = **0** (d*m*=*MdN*=*0*) : 'Lagrangian coordinates', material boundary criterion:

N not a state

 dV = 0 (Adx=0): 'Eulerian coordinates' (control volume, spatial boundary criterion):

V not a state

- Almost always mixed boundaries:
 N and V remain states for system under study!
- Tangible system: globally Lagrangian, locally Eulerian
- Network of subsystems: globally Eulerian, locally Lagrangian (e.g. network of elastic tubes)

EXAMPLE: FLUID SUPPLY SYSTEM COMPONENT LEVEL

EXAMPLE: FLUID SUPPLY SYSTEM CONCEPTUAL ELEMENTS

EXAMPLE: FLUID SUPPLY SYSTEM

EXAMPLE: FLUID SUPPLY SYSTEM

EXAMPLE: ELECTRIC MOTOR

- Most dominant: power transduction
- But also possible:
 - Multiport energy storage (magnetic, kinetic, thermal), necessarily reversible (cycle process is always required!), linear decomposition results in a transducer and 1-ports
 - Separate (conceptual!): irreversible transduction,
 electrical resistance and mechanical friction
 - etc.

Workshop on model order reduction of transport-dominanted phenomena

Berlin, May 19th, 2015

EXAMPLE: FLUID LINE

- Dominant: fluid resistance
- 1) If relatively long and narrow: fluid inertia
 - Conceptual structure: common flow, summation of pressure drops, not separated in space!
- 2) Compressibility:
 - Several segments (R,I,C)
 - Normal modes
- 3) Compressible fluid, convecting momentum and entropy (also charge, flux,...): conceptual structure
- 4) Elastic tube wall: mixed boundaries

TRANSPORT IN ENGINEERING SYSTEMS

- System boundary: globally Lagrangian (commonly at rest), locally Eulerian (commonly closed)
- Tangible subsystem boundaries (components): globally Eulerian (network w.r.t. system boundary), locally Lagrangian (components have fixed neighbors, exceptions require bookkeeping, while major system structure is maintained)
- Conceptual (abstract) subsystem boundaries: structure is based on distinction between basic dynamic behaviors and not based on material or spatial criteria

Workshop on model order reduction of transport-dominanted phenomena

Berlin, May 19th, 2015

'ENERGY DENSITY' IMPLIES A FIRST DEGREE HOMOGENEOUS ENERGY

 Conserved energy has to be a homogeneous function of conserved states:

$$E(\mathbf{q}, m, V): \quad \left(\frac{1}{m}\right)^n E\left(\frac{\mathbf{q}}{m}, 1, \frac{V}{m}\right) = \left(\frac{1}{m}\right)^{n=1} E\left(\frac{\mathbf{q}}{m}, 1, \frac{V}{m}\right) = \varepsilon_m \left(\frac{\mathbf{q}}{m}, V\right)$$

$$E(\mathbf{q}, m, V): \left(\frac{1}{V}\right)^n E\left(\frac{\mathbf{q}}{V}, \frac{m}{V}, 1\right) = \left(\frac{1}{V}\right)^{n-1} E\left(\frac{\mathbf{q}}{V}, \rho, 1\right) = \varepsilon_V\left(\frac{\mathbf{q}}{N}, \rho\right)$$

- Convection requires that addition of subsystems means interaction-free addition of extensive states and addition of (extensive) energy:
- n=1 in principle (if all states are considered!)

FIRST DEGREE HOMOGENEOUS ENERGY

- Generalized Gibbs' relation: $E(\mathbf{q}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial E}{\partial q_i} q_i^{n=1} \sum_{i=1}^{n} e_i q_i^{n}$
- First degree homogeneous energy implies zero degree constitutive relations (intensity!):

$$e_{i}(\alpha \mathbf{q}) = \frac{\partial E(\alpha \mathbf{q})}{\partial \alpha q_{i}} = \frac{\alpha \partial E(\mathbf{q})}{\alpha \partial q_{i}} = \frac{\partial E(\mathbf{q})}{\partial q_{i}} = \alpha^{0} e_{i}(\mathbf{q})$$

$$\sum_{i=1}^k q_i d \frac{\partial E}{\partial q_i} = \sum_{i=1}^k q_i de_i = 0 \qquad k-1 \text{ independent intensities}$$

 One-port storage cannot exist in principle, unless constant states are considered parameters

GENERALIZING GIBBS AND GIBBS-DUHEM

$$u = Ts - pv + \sum_{i=1}^{m-1} \mu_i \frac{N_i}{N} + \mu^{tot}$$
 (Gibbs)

$$0 = sdT - vdp + \sum_{i=1}^{m-1} \frac{N_i}{N} d\mu_i + d\mu^{tot}$$
 (Gibbs-Duhem)

$$u = Ts - pv + \sum_{i=1}^{m-1} \mu_i \frac{N_i}{N} + \mu^{tot} + v \frac{\overline{p}}{N} + e_i \frac{q_i}{N}$$
 (Generalized Gibbs)

$$0 = sdT - vdp + \sum_{i=1}^{m-1} \frac{N_i}{N} d\mu_i + d\mu^{tot} + \frac{\overline{p}}{N} dv + \frac{q_i}{N} de_i \quad \text{(Generalized Gibbs-Duhem)}$$

CONJUGATE FLOW RELATIONS

$$\left(\frac{\mathrm{d}S}{\mathrm{d}t}\right)_{convected} = \left(\frac{S}{N}\right)\frac{\mathrm{d}N}{\mathrm{d}t}; \quad \left(\frac{\mathrm{d}N_i}{\mathrm{d}t}\right)_{convected} = \left(\frac{N_i}{N}\right)\frac{\mathrm{d}N}{\mathrm{d}t}; \quad \left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_{convected} = 0!$$

$$\left(\frac{\mathrm{d}q_{i}}{\mathrm{d}t}\right)_{convected} = \left(\frac{q_{i}}{N}\right)\frac{\mathrm{d}N}{\mathrm{d}t}; \qquad \left(\frac{\mathrm{d}\overline{p}}{\mathrm{d}t}\right)_{convected} = \left(\frac{\overline{p}}{N}\right)\frac{\mathrm{d}N}{\mathrm{d}t}; \qquad \left(\frac{\mathrm{d}N_{i}}{\mathrm{d}t}\right)_{convected} = \left(\frac{N_{i}}{N}\right)\frac{\mathrm{d}N}{\mathrm{d}t}$$

$$\left(\frac{\mathrm{d}S}{\mathrm{d}t}\right)_{convected} = \left(\frac{S}{N}\right)\frac{\mathrm{d}N}{\mathrm{d}t}; \qquad \left(\frac{\mathrm{d}V}{\mathrm{d}t}\right)_{convected} = 0!$$

Same specific quantities are 'weighting factors'

52

PART OF A TUBE NETWORK

(V not a convected property)

$$d_{axial} N \neq 0$$

(flexible tube, local changes)

Workshop on model order reduction of transport-dominanted phenomena

GENERIC PICTURE: MASS/MATERIAL FLOW

locally Lagrangian boundary (dN = 0; e.g. elastic tube wall)

globally Eulerian boundary (dV = 0)

flows of convected properties

Total energy 'flow':
$$(e+pv)\frac{dN}{dt}+p\left(-\frac{dV}{dt}\right)=\frac{dE}{dt}$$

but the specific enthalpy h can**not** serve as an equilibrium-determining variable

GENERIC PICTURE: SPLIT OUT FLOWS

GENERIC PICTURE: NO 'SLIP'

Berlin, May 19th, 2015

Workshop on model order reduction of transport-dominanted phenomena

GENERIC PICTURE: WITH 'SLIP' OF CONVECTED PROPERTIES

GENERIC PICTURE: MOMENTUM CONVECTION

flow of convected momentum (P)

SIMPLIFIED: MOMENTUM CONVECTION, RIGID TUBE WALL

Just qualitative, numbers have no meaning!

Berlin, May 19th, 2015

Workshop on model order reduction of transport-dominanted phenomena

NON-MINIMUM PHASE RESPONSE

CONCLUSIONS

- separation between configuration and energy states: more insight
- system boundary definitions may be mixed: Eulerian vs Lagrangian
- concept of energy *density* (material of spatial) synonymous with first degree homogeneous energy function of all possible extensive states *in principle*
- energy-based modeling approach:
 - automatically satisfies fundamental principles of physics when all grammar rules are obeyed
 - systematic approach to the dynamic behavior of all properties that may be convected in principle (e.g. momentum, electric charge, etc.);
- generalized thermodynamic framework of variables more general than Hamiltonian (generalized mechanical) framework:
 - some domains have no dual storage

Workshop on model order reduction of transport-dominanted phenomena

Berlin, May 19th, 2015