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Abstract

We describe a hierarchical basis for the p-version of the finite element method
in two and three dimensions. The corresponding stiffness matrices are shown to
have good sparsity properties and better conditioning than those generated from
existing hierarchical bases.

1 Introduction

The quality of finite element solutions depends on several factors including the size
and shape of the elements, the approximation properties of the space S of the finite
element solution, and the smoothness of the true solution. From a computational view-
point, the choice of a basis is critical to the stability and efficiency of the finite element
procedure. Because of their simplicity, the approximating space S usually consists of
piecewise polynomial functions relative to a partitioning of the problem domain 2 C R",
n=1,2,3, into N-elements €;, j =1,2,... , N. Piecewise polynomial bases are usually
constructed by () transforming €; to a standard element K (Figure 1) by a smooth, one-
to-one mapping y; and (i¢) introducing a basis {¢fl w2, of shape functions for a space of
polynomials IP,(K) of degree not greater than p on K. The shape functions are typically
associated with a mesh entity (e.g., vertex, edge, face, region). The inverse functions
ngﬁi o ,uj_1 defined on 2; must be “pieced” together so that the global approximation on S
has the proper continuity. Second-order problems, for example, require that S C H*.

If 11 is not affine, (]Aﬁz o uj’l will not necessarily be polynomial. Non-affine mappings
are used to represent a curved boundary of the domain € for use, for example, with the
p-version of the finite element method [2], where improved approximate solutions are
obtained by increasing the degree p of IP,(K). In this case, S may not be a subset of the
exact-solution space because U;V:l Q2; # Q. Nevertheless, an optimal order of accuracy
can be achieved if “regular” mappings of degree p [4] are used to represent elements with
curved boundaries [4, 6].
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Figure 1: Reference element K in two (left) and three (right) dimensions.

A hierarchical basis has the property that the basis of degree p + 1 is obtained as
a correction to the degree p basis. The entire basis need not be reconstructed when
the polynomial degree is increased. This property is desirable, if not essential when us-
ing the p-version of the finite element method. Shape functions for a one-dimensional
hierarchical basis are defined as integrals of Legendre polynomials [10] giving them favor-
able orthogonality properties that lead to sparse and well conditioned stiffness matrices.
Shape functions on square and rectangular-parallelepiped elements may be defined as
tensor products of their one-dimensional counterparts to inherit some favorable orthog-
onality properties [1]. This, however, is not the case with shape functions for triangular
and tetrahedral elements [5, 10] where the condition number of the stiffness matrix may
increase exponentially with p. To alleviate this, Carnevali et al. [3], introduced a new
hierarchical basis for triangles and tetrahedra which were constructed so that edge, face,
and region shape functions of degree p are orthogonal to those of degree not exceeding
p— 2, p—3, and p — 4, respectively. This basis provided better conditioning than the
earlier ones, but condition numbers of stiffness matrices still have an exponential growth
with p. Mandel [7, 8] used partial and complete orthogonalizations to construct basis
functions on hexahedral elements that were used to furnish preconditioners to multi-
level domain decomposition algorithms. These greatly reduced the condition numbers of
stiffness matrices for Poisson and linear elasticity problems.

Herein, we introduce new bases for triangles and tetrahedra that have better condi-
tioning than both the Szabé and Babuska [5, 10] and Carnevali et al. [3] bases. The
construction consists of modifying the Szabo-Babuska basis by orthogonalizing shape
functions associated with faces in two dimensions and faces and regions in three dimen-
sions.



2 Hierarchical Shape Functions

2.1 One-Dimensional Shape Functions

The one-dimensional hierarchical basis is defined on the reference “element” K :=
{£| =1 <& < 1}. For p > 1, there are two shape functions associated with vertices at
E=-1,1

1-¢ 1+¢

$(E) = — $(&) = —5 €K, (2.1a)

and p — 1 shape functions associated with the “region” —1 < £ <1

; £
&}(5):,/22;1/13@)(1@ EeEK, i=12...,p—1, (2.1b)

where P;(€) is the Legendre polynomial of degree i.

2.2 Two-Dimensional Shape Functions
The hierarchical basis is defined in terms of barycentric coordinates on the reference

triangle K of Figure 1

_laeo _lageo _
Ly=5(1-¢ vﬁh Ly=5(1+¢ v%L L3_v§. (2.2)

We see that L; has unit value at vertex V; and vanishes on the edge E; opposite to V.
In the sequel, we refer to the Szab6-Babuska [10] basis as the “Szabé basis” and that of
Carnevali et al. [3] as the “Carnefvali basis.”

For p > 1, the Szabd and Carnevali bases have dimension n, = (p+1)(p +2)/2 and
consist of:

e Three vertex shape functions
Q) =L, i=1,2,3 (2.3a)
e 3(p — 1) edge shape functions on edge E;, j = 1,2, 3,

o7 (€,m) = L, Ly,&(L;, Ly,), i=1,2,...,p—1, 51 =4, j»=1+j; mod 3,

(2.3b)
where
8v4i +2
Eilt ty) = ———— Pty — 1), 2.3
(t1,t2) i+ 1) (T2 1) (2-3¢)
for the Szabé basis and
AN TS\ Y
) — v 2.

for the Carnevali basis.



e (p—2)(p—1)/2 face shape functions

¢)1k+7' L1L2L3 fhm (Ll, LQ, Lg), Zk = (k — 3) (k‘ - 2)/2, (236)
r=12,...,k—2, rm+rn=k-3, k=34,...,p,

where
frlm (tl; t27 t3) = Prl (tQ - tl) P,n2 (2t3 - 1) (23f)

for the Szabd basis and

- £5 ()" ()0 (0T

GG 4
o (B(r + 72 +2) — k(k —1)/2)

for the Carnevali basis.

The edge (2.3b,d) and face (2.3e,g) shape functions, respectively, satisfy [3]

1 " N
/K agﬁé Q(L1, Lo)d&dn = /K 325:7 Q(Ly1, Ly)dédn =0, if deg(Q) < deg(¢)”) — 3,
(2.4a)

8q§l
¢

6¢Z

Q(LhLz)d&dn =0, if deg(Q) < deg(¢?) —4,
(2.4b)

Q(L1, Ly)d&dn =

where () is a polynomial.

2.3 Three-Dimensional Shape Functions

The barycentric coordinates on the reference tetrahedron K (Figure 1) expressed in
terms of the Cartesian coordinates &, 7, are

o) )

_n_ ¢
=1 =4 (23)

Like the two-dimensional case, we see that L; = 1 at vertex V; and vanishes on the face
F}; opposite to V. Further let E; be the edge that faces Fy and F}, j = 1,2, 3, have in
common and let edge £, 3 be the edge connecting vertices V; and Vj, j =1, 2, 3.

For p > 1, the Szab6 and Carnevali hierarchical bases have dimension n, = (p+ 1)(p+
2)(p+3)/6 and consist of:



e Four vertex shape functions
GEm ) =L, i=1,234.
e 6(p — 1) edge shape functions on edge E;, j =1,2,...,6
67 (€, C) = Ly L& Ly, Lyy), i =1,2,...,p—1,
where

- f14jmod3, it 1<j<3
= 14 mod4, if 4<j<6’

o J1+(G+ 1) mod3, if 1<5<3
27, if 4<j<6
e 4(p—1)(p — 2)/2 face shape functions on face F}, j = 1,2,3,4,

é?;;]-l—r(&n? C) :leszLjsfhm (Lj17Lj27 sz)? iy = (k - 3)(k - 2)/27
r=1,2,... k=2, ri+ro=k—3, k=3,4,...,p,

where

s1i=14+j7mod4, jo=1+7 mod4, j3=14 j» mod 4.

e (p—1)(p—2)(p — 3)/6 region shape functions

(2.6)

(2.7a)

(2.7b)

(2.7¢)

(2.8a)

(2.8b)

53 (g, 7’], C) — L1L2L3L4 BT17‘2T3 (Ll, LQ, Lg, L4), Zk — (k - 4) (k - 3)(k - 2)/2,

ip+r
r=1,2,...,(k=3)(k—2)/2, r+ro+r;=Fk—4,
k=4,5...,p,

where
By rors (t1, ta, t3, ty) = Py (ta — t1) Pry(2t3 — 1) P, (2t4 — 1)
for the Szabd basis and
Brirars (t1,to, 13, 14) = By ” (1) Bowo (t1 t2) Booy, (1, t2, t3)
for the Carnevali basis with

B%)o(tl) = i(—l)i ! <r;> (rl ;L 1) %t?i,

1=0

—(m 2o () (o 1\ (2m+3 -0, ,
Bgrz)o(thtz):ZZ!(?)(Q. >—( )7522 (t —1)",

i i (2m + 3)!

=0
rs3 .
—(m ST rs+ 1\ 2m+1-9)! . )
B (t1,ta,ts) = )il ( ?) ( 5 )gt;’ (ty +t, —1)%
=0

i i (2m +1)!

(2.9a)

(2.9b)

(2.9¢)

(2.9d)

(2.9e)

(2.9f)



The edge (2.7a,2.3d), face (2.8a,2.3g), and region (2.9a,c-f) shape functions, respec-
tively, satisfy [3]

1 -
/ 822 Q(Ly, Ly, Ly)d€dnd¢ = 0, if deg(Q) < deg(d}) — 3, (2.10a)
K
2. N
K
8;5 Q(Ly, Ly, Lg)dédnd¢ = 0, if deg(Q) < deg(¢>7) — 5, (2.10¢)
K

with similar relations involving 9/0n and 9/0(.

3 Conditioning of the Hierarchical Basis

In order to illustrate the effect of the basis on the conditioning of the stiffness matrix,
consider the bilinear form associated with the Laplacian

Bo.v) = [ Vo-Vuds (3.1)

where V is the gradient operator with respect to &, 1, and, in three dimensions, ( and
dw is a surface element in two dimensions and a volume element in three dimensions.
Let ¥} = {zﬁf}lgignp and ¥ = {T/A)ic}gz‘gnp’ respectively, be the Szabd and Carnevali
hierarchical bases (§2) of degree p on the reference element K (Figure 1). Assume that
the elements of W7 and W, are ordered with their vertex shape functions first, their edge
shape functions second, their face shape functions third, and, in three dimensions, their
element shape functions last.
The local stiffness matrices for the Laplacian operator are

M; - (B( Af’ zﬁ;))lsi’anpa t=s,c, (32)

Further suppose that the shape functions have been rescaled so that M; and M have
unit diagonal entries. Since B is symmetric and non-negative, the eigenvalues \! < A} <
- <\, of My, t = s,c are real and non-negative. We may readily verify that A\] = 0
and \j > 0. As such, we take the condition number of M} as [1]

t

t )\np
k(M) = L t=s,ec, (3.3)
2

and show the growth of k(M) and k(M) with p for p=1,2,... 14 in Figure 2.

Even though the condition number of MJ grows more slowly with p than that of
M, the rate is exponential for both bases. In order to gain insight into the problem,
we partition the basis into subsets with V, £, F, and R denoting sets of vertex, edge,
face, and region shape functions, respectively. We compute condition numbers of various
principal submatrices of the stiffness matrix corresponding to different combinations of
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Figure 2: Condition numbers of My (x) and My (o) vs. p in two (left) and three (right)
dimensions.

Matrix P

VU€ M? |1 1.02e1 | 1.19el | 1.23el | 1.33el | 1.36el | 1.46el | 1.49el | 1.60el
M¢ | 1.01el | 1.01el | 1.01el | 1.01el | 1.01el | 1.01el | 1.01el | 1.01el
VUF | M 3.73 | 1.51el | 6.46el | 3.72e2 | 2.68e3 | 2.18e4 | 1.76e5 | 1.68e6
M¢ 3.00 9.53 | 3.12el | 1.04e2 | 3.50e2 | 1.19e3 | 4.12e3 | 1.43e4
& M 6.19 6.31 7.09 7.24 8.04 8.24 9.34 9.49
M¢ 4.75 4.75 4.75 4.75 4.75 4.75 4.75 4.75
EUF M? | 2.23el | 5.43el | 1.50e2 | 7.04e2 | 3.87e3 | 2.72e4 | 2.17e5 | 1.98e6
ME | 2.45el | 4.68el | 9.43el | 2.65e2 | 8.06e2 | 2.55e3 | 8.20e3 | 2.68e4
F M 3.73 | 1.51el | 6.46el | 3.72e2 | 2.68e3 | 2.18e4 | 1.76ed> | 1.68e6
M¢ 3.00 9.53 | 3.12el | 1.04e2 | 3.50e2 | 1.19e3 | 4.12e3 | 1.43e4
VUEUF | M7 | 2.95el | 5.93el | 1.73e2 | 7.22e2 | 3.96e3 | 2.75e4 | 2.18e5 | 1.99e6
M¢ | 3.06el | 4.92el | 1.07e2 | 2.97e2 | 8.86e2 | 2.75e3 | 8.72e3 | 2.82e4

Table 1: Condition numbers of various submatrices of sz and Mg in two dimensions.



Matrix P
Portions Matrix 5 6 7 8 9 10 11 12
VUé M; 3.84el | 4.25el | 4.72el | 5.00el | 5.52el | 5.90el | 6.70el | 7.23el
M7 2.55el | 2.bbel | 2.55el | 2.55el | 2.55el | 2.55el | 2.55el | 2.55el
VUF M; 7.94el | 5.75e2 | 5.86e3 | 5.93e4 | 6.76e5 | 7.94e6 | 8.59e6 | 2.81e7
Mg 1.84el | 4.88el | 1.48¢e2 | 4.62e2 | 1.44e3 | 4.58e3 | 1.47ed | 4.78e4
VUR M; 3.00el | 8.57e2 | 2.53e4 | 7.64eb | 2.27e7 | 7.00e8 | 2.19¢10 | 7.06ell
M7 3.81 8.27 | 1.89¢el | 3.97el | 7.70el | 1.43e2 | 2.49e2 | 4.18e2
bt M; 1.65el | 2.07el | 2.20el | 2.81el | 2.92el | 4.13el | 4.15el | 5.99el
M; 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22
EUF M; 6.40e2 | 1.61e3 | 1.37e4 | 9.46e4 | 1.04e6 | 1.08e7 | 1.12¢7 | 1.76e7
M7 3.13e2 | 5.29e2 | 8.45e2 | 1.15e3 | 2.33e3 | 6.79e3 | 2.04ed | 6.26e4
EUR M; 4.91el | 1.22e3 | 2.99e4 | 8.67eb | 2.47e7 | 7.51e8 | 1.29e10 | 1.61ell
M; 2.45el | 3.74el | 5.29¢el | 9.60el | 1.84e2 | 3.50e2 | 6.30e2 | 1.08e3
F M; 6.57el | 5.49¢2 | 5.73e3 | 5.91ed | 6.74eb | 7.93e6 | 8.59¢6 | 2.77e7
M7 1.54el | 4.87el | 1.47e2 | 4.62¢2 | 1.44e3 | 4.58e3 | 1.47ed | 4.78e4
FUR M; 1.80e2 | 4.41e3 | 1.03e5 | 2.88e6 | 7.81e7 | 2.30e9 | 2.66e9 | 7.08e9
M; 4.14el | 1.24e2 | 3.04e2 | 9.42e2 | 3.11e3 | 1.06e4 | 3.62e4 | 1.25eb
R M; 3.00el | 8.57e2 | 2.53e4 | 7.64eb | 2.27e7 | 7.00e8 | 2.19¢10 | 7.06ell
M7 3.81 8.27 | 1.89¢el | 3.97el | 7.70el | 1.43e2 | 2.49e2 | 4.18e2
VUEUF M; 7.99¢e2 | 2.66e3 | 1.58e4 | 1.09e5 | 1.06e6 | 1.13e7 | 1.13e7 | 1.78e7
M; 3.99¢e2 | 6.54e2 | 1.05e3 | 1.49e3 | 2.70e3 | 7.11e3 | 2.08¢4 | 6.35e4
VUEUR M; 7.29¢l | 1.23e3 | 3.11e4 | 8.67ed | 2.49e7 | 7.52e8 | 1.29¢10 | 1.62el1
M7 3.66el | 4.46el | 6.80el | 1.17e2 | 2.14e2 | 3.93e2 | 6.93e2 | 1.17e3
VUFUR M; 2.12e2 | 4.43e3 | 1.11eb | 2.88e6 | 8.18e7 | 2.30e9 | 2.67e9 | 7.14e9
M; 4.80el | 1.26e2 | 3.08e2 | 9.43e2 | 3.11e3 | 1.06e4 | 3.62e4 | 1.25eb
EUFUR M; 8.67e2 | 5.97e3 | 1.35eb | 3.53e6 | 9.54e7 | 2.70e9 | 3.03e9 | 9.21e9
M; 5.26e2 | 1.23e3 | 2.75e3 | 6.34e3 | 1.57ed | 4.23e4 | 1.21e5 | 3.59eb
VUEUFUR M; 9.08e2 | 6.10e3 | 1.37e5 | 3.59¢e6 | 9.62e7 | 2.73e9 | 3.04e9 | 2.18el10
M¢ 5.34e2 | 1.32e3 | 3.39e3 | 8.86e3 | 2.34e4 | 6.32e4 | 1.76e5 | 5.03ed

Table 2: Condition numbers of various submatrices of sz and Mg in three dimensions.




these sets of shape functions and present results in Tables 1 and 2 for two- and three-
dimensional problems, respectively. = Examining Table 1, we see that the growth of
the condition number with p is slow except for those submatrices involving face shape
function. Results in Table 2 show a rapid growth of the condition number for submatrices
that involve face or region shape functions. Therefore, the cause of the ill conditioning
is the interaction of the face and region shape functions with themselves and each other.

4 A New hierarchical Basis

In order to reduce the condition number of the stiffness matrix, we reduce the coupling
between the face and region shape functions through orthogonalization. Thus, the new
basis ¥ = {&?}KKW has the vertex and edge shape functions of the Szabé basis ¥,
but the face and, in three dimensions, the region shape functions will satisfy orthogonality
conditions. The construction is developed in §4.1 in two dimensions and in §4.2 in three
dimensions.

4.1 Two-Dimensional Shape Functions

The two-dimensional basis is constructed to have orthogonal face modes with the
Laplacian operator; thus,

Orthogonal face shape functions {é? = 1/3§Lp+i}1<i<nF, ngp = (p—1)(p — 2)/2 are con-
structed from the Szabé face shape functions (2.3e,f) using the Gram-Schmidt process,
which is expressed by the pseudocode shown in Figure 3.

k=1  ol=1L b =B@¢); ¢=aldh
while (£ <np ) {
for (I=1,1<k, ++1){

B = —(2221 aé'B(QZEi, éﬁ?))/bz;

2 _ "k ka2,
¢k_2j:1aj It

}

Figure 3: Pseudocode of the Gram-Schmidt process to generate the orthogonal face shape
functions @7, k =1,2,... ,np.



The orthogonalization process of Figure 3 involves the evaluation of integrals such as

[ [past , oizos
x| 06 05  9dn On

] d&dn, (4.2)

which are difficult by either analytical or numerical means for high values of p. Thus,
instead of (2.3e,f), we found it easier to replace (2.3f) by

Friry(tr, o, t3) = (ta — )™ (263 — 1)™. (4.3)

Even though the two sets of face shape functions (2.3e,f) and (2.3e, 4.3) differ, the
resulting set of orthogonal (normalized) face shape functions can readily be shown to be
identical. The integrals (4.2) using (2.3e, 4.3) can be evaluated explicitly as indicated in
the following lemma.

Lemma 1. Let o, t = 1,2,...,6, be non-negative integers and
f = L?l L;Q Lg:g (L2 + Ll)a4 (L2 — Ll)a5 (2L3 — 1)a6. (44&)
Then
E = / f dng] = (—1)0‘52\/51(&1, Q9, Ol5)[(0lg, Qa1 + Qg +ag + a5 + 1, &6) (44b)
K
where
1 . .
(i, k) = / (1= 1) ¢ (1—20)" dt. (4.4¢)
0
Proof. Using (4.4a,b), we have
E = 2\/5/ LT L5 L§® (Ly + Ly)* (Ly — Ly)*® (203 — 1)** dL1d Ly (4.5a)
T

where T = {(L1,Ly) |0 < L1, 0 < Ly, L1 + Ly < 1}. Using the change of variables
Ly = (1 —x)y, Ly =y, which maps the unit square R = (0,1) x (0,1) onto T, we get

E=(-1)%2V3 /R (1 — ) 2% (1 — 2a)™ p{y@rteetaatosth (1 — y)os (1 — 2y)* } dudy,
(4.5Db)

which evaluates to (4.4b,c). O

As an example, consider the evaluation of the first term in (4.2) with

¢? = LiLoL3(Ly — L) (2Ls — 1), ¢? = L1LyLs(Ls — L) (2L — 1), (4.6a)

10



Transforming to barycentric coordinates, we have

062 008 1 (02 947\ (067 0
of o6 4 \oL, 0L, 0L, 0L,

1 o o
— ZL%(L2 _ L1)11+J1+2(2L3 _ 1)12+Jz 4

ZIJIL%Lng(LQ — Ll)i1+j172(2L3 . 1)i2+j2 n
1 ) y - .
5(21 + ]1)L1L2L§(L2 — Ll)lﬁ-]l (2L3 - 1)12+]27 (46b)

which may be integrated using (4.4).

Each face shape function of degree k < p in ¥ ¥/ or ¥ is an expression of the
form (2.3e). In Table 3, we list the first three polynomials F,,,, for the Szabé, Carnevali,
and the new basis. The polynomials are expressed as functions of x = L, — L; and
y =2L3 — 1. A MAPLFE program to evaluate these functions for arbitrary values of p

using the orthogonalization process of Figure 3 appears in an Appendix to this paper.

[ p|Szabé [ Carnevali [ New H
311 1 1
i —1 @2 +y—3) x
y i@2r—y—3) y+ 1
530 =1 | H(Qe+y)P+2+y—2) |22+ Ly— 4
& 15 (Qe+y)Q2r—y)—7) |wy+3e
=5 |6 (@r—y)’—Qe—y)-3) |V +7w— 5

Table 3: Function F,,,,(L1, Lo, L3) associated with the two-dimensional face shape functions
(2.3e) for the Szabd, Carnevali, and new bases. Polynomials are expressed in terms of x =
LQ—LI andy:2L3—1.

In Figure 4a we show the condition numbers x(M}), t = s, ¢, n, as functions of p with
the stiffness matrix sz corresponding to the Laplacian according to (3.2). Again, the
stiffness matrices have been scaled to have unit diagonal elements. As anticipated, or-
thogonalizing the face shape functions has resulted in a dramatic decrease in the condition
number. In the range 3 < p < 14, the condition number is growing as

K(M}') =~ p(Inp)"® + 16 Inp. (4.7a)

This growth is a consequence of the coupling between the edge and face shape functions.
This coupling can be eliminated by modifying the edge shape functions to be orthogonal

11
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Figure 4: (a) Condition numbers of M} (), Mg (o), and M} (O) vs. p . (b) Condition

p ~
number versus p for the local stiffness matrices M;' (0) and M} (A).

to the face shape functions. Letting \ilz be the resulting basis and ]\Z/;L the corresponding

stiffness matrix, we compare n(]\7[1?) and k(M}'), p=1,2,...,14, in Figure 4b. In the
range 3 < p < 14, we have

H(M;) ~ 5p + 31np. (4.7b)

Unfortunately, the basis \I~lz is no longer hierarchical since the edge and face shape func-
tions have to be orthogonal.

The sparsity, expressed as a percentage of the nonzero entries, of M;, My, M}, and
]\Z/;L is shown as a function of p in Figure 5. Sparsity increases steadily for M, M}
and MI? as p increases and appears to settle at 65% for M. The stiffness matrix M is
less dense than M} as a result of (2.10) while M;} is the most sparse with a density of
approximately 9% when p = 14.

In order to appraise the conditioning of a global stiffness matrix with the choice of
the basis, we consider the nonlinear reaction-diffusion problem

0 1
a—l; —q(1 —u)u® — §Au =0, (z,9)7€Q:=(0,1)x(0,1), t>0, ¢>0, (4.8a)
with initial and Dirichlet boundary conditions specified so that the exact solution is

1
1 +exp<\/g(a:+y) — %t)

This solution represents a wave-like front moving normal to the vector (—1,1) with speed

q/2.
We solved (4.8a) with ¢ = 500 on 0 < ¢ < 0.1 using a uniform mesh of 32 triangles

and a piecewise polynomial basis of (uniform) degrees p =1,2,... ,9. Both the Szab6 ¥,

u(z,y,t) = (4.8b)

12



101

90~

80

0

60~

40

percentage of non zeros

30

20+

101

Figure 5: Percentage of non-zero entries of the local stiffness matrices M (x), My (o), My
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and the new ¥ bases were used. The condition numbers of the system Jacobian matrix
at t = 0.06 are shown as functions of p and the number of degrees of freedom (DOF)
in Figures 6a and b, respectively. They have been computed using the routine GECO
from the LINPACK package. The growth of the condition number has, once again, been
dramatically reduced with the new basis.

4.2 Three-Dimensional Shape Functions

In order to reduce the coupling between face and region shape functions and, con-
sequently, the growth in the condition number of the stiffness matrix, we construct a
hierarchical basis ¥, by (i) using the Szabé vertex and edge shape functions (2.6, 2.7),
(ii) making the face shape functions orthogonal on each face, and (iii) making the re-
gion shape functions orthogonal. The orthogonal face shape functions are extracted from
(2.8) and (4.3) using the Gram-Schmidt process (Figure 3). Region shape functions are
obtained from (2.9) with

\NN\ESS QT wwg wwv - Qw - WHVE Awww - Hvﬂw Aww% - Hvﬂw Aﬁwv

using the Gram-Schmidt procedure.
Based on Lemma2, we only need to construct the new face modes associated with
one face (say face 1). The others can be obtained using obvious transformations.

Lemma 2. Let ¢(Ly, Ly, L3) and (L, Ly, L3) be smooth functions on the reference

13
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Figure 6: Condition number of the system Jacobian matrix of (4.8) versus p (a) and the
degrees of freedom (DOF, b).

tetrahedron K and define

¢1(L1, Lo, L3) = ¢(Lg, L3, Ly),  h1(L1, Lo, L3) = ¢(Ly, L3, Ly), (4.10a)
¢2(L1,L2,L3) = ¢(L3,L4,L1): %(Ll, L2,L3) = 7/)(L3,L4: Ll): (4-10b)
¢3(L1, Lo, L3) = ¢(L4, Ly, L2)7 1/)3(1/1, Lo, L3) = ¢(L4, Ly, L2)7 (4-10(3)
with L;, i = 1,2,3,4, given by (2.5). Then
/ Vo, -V, dédnd¢ = / Vo - Vipdédnd( (4.11)
K K
with gradients computed relative to (&, 1, ().
Proof. Using the chain rule
o _1(o9 9 o_1 (,0 9 9
85 N 2 aLQ 8L1 ’ 87’] N 2\/5 8L3 8L1 aLQ ’
0 1 0 0 0 0
9 _ 9 9 _ 4.12
o 2¢6@am oL, ~ oL, am) (412)

with (4.10), we see that establishing (4.11) is equivalent to proving that

/ (aal(@)al () + 2aa(d)as(th) + ag(@)agwi)) dLydLadLy —

T

/T<6a1(¢)a1(w) + 2a2(d)az (1) + a3(¢)a3(1/))> dLydLydLs, (4.13a)

where

T = {(L1,Ly,L3) |0 < Ly, 0< Ly, 0< L3, Ly + Lo+ L3 <1}, (4.13b)

14



and

_of of _,of of of
wlf) = oL - 2L, alf) = 250 - 2L 2L
as(f) =3 o _or _of 0] (4.13c)

“ 0L, 0L, 0L, 0L
We establish (4.13) with ¢ = 1. Other cases proceed similarly. Thus, using (4.10a),
we have

ai(¢1) = aa—Z(L%L?anl)
as(¢1) = 288—2(L2,L3,L4) — g—Z(L2’L3’L4) (4.14a)
asz(¢p1) = 338—2(L2’L3’ Ly) — aa—[(i(LQ, L3, Ly) — %(LZ’Lg’ Ly).

and
ar(¢r) = g—Z(L%L&LO
az(1) = 2%(L2,L3,L4) - %(LZ,Lg,L4) (4.14b)
as(yy) = 3%(L2,L3,L4) — S—Z(LZ,L3,L4) — aa—lqi(LQ,Lg,L4).

Substituting these into the left side of £4.13a) and introducing the change of variables
X =1Ly, Y = L3, Z= L4, which maps T onto itself, leads to

/T<6a1(¢i)a1 (i) + 2a9(ds)az (1) + a3(¢i)a3(1/)i)> dLdLydL3 =

/T<6a1(¢)01(1/)) + 2a2(p)as(y) + aa(¢>)a3(@/})> dXdYdZ, (4.15a)

which establishes the result. O

In Table 4, we list the first four polynomials F(z,y) and first three polynomials
B(z,y, z) of the new basis on the reference tetrahedra. The face modes are listed for the
face opposite to the vertex at (0,1/v/3, 2\/2/73) Once again, the MAPLFE program for
evaluating these polynomials for arbitrary p appears in the Appendix.

We compute the condition numbers x(M;), t = s,¢,n, p = 1,2,---,10, for local
stiffness matrices le corresponding to the Laplacian operator (3.2) and present the
results in Figure 7. The substantial improvement in the conditioning of M} is clear. In
the range 3 < p <12

k(M) ~ p*(Inp)® +20.9p(In p)*. (4.16)

The percentage of non-zero entries in M7, My, and M;' as a function of p is shown in
Figure 8. As in two dimensions, the percentage of nonzero entries in M7 decreases with
p at about the same rate as M. The percentage of nonzero entries in M, is significantly
lower than both.

15



P Face Modes
3 1
3
4 xZ, Y+ 3
709 73382 903388 765
5 x? + 1425y 12825 Ty + 125 125 13643811. +y* + 1364331 Y — 1364381
3 1065 . 681 2 TI05778 3~ T680037T 2 22840619, _BTAT50683
6 7+ 5028 LY ~ Bo2s L Y+ st 292802364y 1610413002 Y — 16104130020
11188 .3 2 | 3054670 335131
990727 L T Y~ F 3639900 CY T 3639999L>
_ 4846821669 2, 3 3423671118 .2 | 716173321085, 2 _ 10930991439 55006884029
208308582077 L Y T YT T 308308582077 833234328308 Y 416617164154 Y — 333234328308
Region Modes
4 1
T T 2
5 Z, Y + 99 gy + 2z + 3
7 3 3 7 7 20T 640847 503 642
61 2"+ 50+ 52+ a3 TY + 55T 145515” +y°+ 7250 Y T Tas50° T Tass1
173 448 66816 .2 | 1635425, 2 20883436 4562522 1831190
GartY t T2+ 5370 1636651 T 10008039 T Y% T Sis0065Y T 81831557 T 19098937
15524 .2, 41641 ,2 | 654170 2 | 475336 1159624 335332
5025037 T+ 300841Y " T o02523Y% T 27 T 902523Y T 902523 £ T 902523

Table 4: Functions F(z,y) and B(x,y, z) associated with the three-dimensional orthogonal

face modes (2.8a) and region modes (2.9a) of degrees 3 through 6.
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5 Discussion

We indicate how to construct hierarchical bases on triangles and tetrahedra that
have a quadratic growth in the condition number with polynomial degree p. This is
substantially better than the exponential growth associated with the hierarchical bases
of Szab6 and Babuska [10] and Carnevali et al. [3]. The new basis has reasonable sparsity
which decreases as a percentage with increasing p. Stiffness matrices will, however, be
less sparse than those of the Carnevali basis.

The strategy for improving the condition number involves extracting an orthogonal set
of face shape functions in two dimensions and orthogonal face shape functions on each
face and orthogonal region shape functions in three dimensions. The Gram-Schmidt
procedure is relatively straight forward when the proper basis representations (4.3, 4.9)
are used.

6 Appendix

We present a MAPLFE implementation of the pseudocode algorithm shown in Figure
3. This software is available upon request.

The procedure orth_modes () generates the orthogonal face and region modes using
the Gram-Schmidt process. The face modes on the reference triangle and tetrahedra
and the region modes on the reference tetrahedra are constructed by orthogonalizing the
elements of the set

{Li\LyL3(Ly — L1)" (2Ls — 1)] iy + 12 = 0,1,--- }, (6.1)
and
{L1LoLsLy(Ly — Ly)* (2Ls — 1)2(2Ly — 1)®] iy + iy +i5 = 0,1,--- }, (6.2)

respectively. The resulting face and region modes are written as L;LsL3F(x,y) and
LyLyLsLyB(x,y, z) respectively, where x = Ly — Ly, y = 2L3 — 1, 2 = 2L, — 1,

F(z,y) =c11 + 217 + c20y + 03,1352 + c300Y + 03,3y2 4+, (6.3)
and

B(x,y,z) =ciq + €212 + C20y + €232

2 2 2 (6.4)
+ 3127 + 320y + c33Y° + 3402 + C35Y2 + 3627 + -0
The procedure orth_modes() uses a specialized integration procedure E_PROD() to
evaluate integrals of the type (4.2).

orth_modes := proc(p,ent,d,flg)

#p is the order of the basis.

# ent is 2 for face modes and 3 for region modes

#d is 2 for triangular and 3 for tetrahedral basis
# flg if 1 the function F or G gets printed and

18



# if 2 the coefficients c(i,j) get printed
local ps, nF, ix, k, i, j, m, B, c, beta, b, r, tp, F, x, y, z;
ps:=ent+l:
if p < ps then ERROR(‘No Face Or Region Modes To Orthogonalize‘); fi:
nF:=binomial(p-1,ent): # Number of internal modes
# Generate the exponents r, s, and t.
ix:=array(l..nF,1..3): k:=1:
for i from ps to p do

for j from O to i-ps do

if ent=2 then

ix[k,1]:=i-j-ps: ix[k,2]:=j: ix[k,3]:=0: k:=k+1:

else
for m from 0 to i-j-ps do

ix[k,1]:=i-j-m-ps: ix[k,2] :=m: ix[k,3]:=j: k:=k+1:

od:

fi:

od:
od:

# Compute the scalar products of the monomial face modes
B:=array(l..nF,1..nF):
for j from 1 to nF do
for i from 1 to j do
B[j,i]l:=E_PROD(ix[i,1],ix[i,2],ix[i,3],ix[j,1]1,ix[j,2],ix[j,3],ent,d):
B[i,jl:=B[j,i]:
od;
od;
# Orthogonalize
beta:=array(l..nF): c:=array(l..nF,1..nF): b:=array(l..nF):
betal[1]:=1: cl1,1] :=betall]l: b[1]:=B[1,1]:
for k from 2 to nF do
for r from 1 to k-1 do
tp:=0:
for j from 1 to r do  tp:=tp+cl[r,jl*B[k,jl: od:
betalr] :=simplify( -tp/blr] ):
od:
clk,k]:=1:
for j from 1 to k-1 do
clk,jl:=0:
for r from j to k-1 do  clk,jl:=cl[k,jl+betalr]l*c[r,jl: od:
od:

b[k]:=0:
for j from 1 to k do
tp:=0:

for i from 1 to k do  tp:=tp+clk,i]*B[i,j]l: od:
blk]:=blkl+clk,jl*tp:
od:
od:
# Output the orthogonal face modes to the file out_modes
if flg=1 then
F:=array(1l..nF):
for j from 1 to nF do
Fljl:=x"ix[j,11*y"ix[j,2]*z"ix[j,3]:
for i from 1 to j-1 do
F[jl:=F[jl+c[j,il*x"ix[i,1]*y ~ix[i,2]*=z"ix[i,3]:
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od:
od:
fi:
appendto(‘out_modes‘); k:=0:
for i from ps to p do

lprint (° p=1);
for j from 1 to binomial(i-2,ent-1) do
k:=k+1:

if flg=1 then
lprint(k,F[k]);
elif flg=2 then
for m from 1 to k do  lprint(‘c[‘,k,‘,¢,m,‘] =‘,clk,m],‘:);
fi:
od:
lprint (‘¢ “);
od:
writeto(terminal);
end:

E_PROD := proc(il, i2, i3, ji1, j2, j3, ent, d)

local L, bl, phi, psi, a, b, i, f, q, r, s, t, u, v;

L:= array(1..4):

#The blending function

bl:= L[1]1*L[2]*L[3]: if ent=3 then bl:= bl*L[4]: fi:
#The functions and their partial derivatives
phi:=blx(L[2]-L[1]) ~i1*(2*L[3]-1)~i2*(2+L[4]-1)"13:
psi:=bl*x(L[2]-L[1])~j1*(2+L[3]-1) ~j2*(2xL[4]-1)"j3:

a:= array(l..4): b:= array(l..4):

for i from 1 to 4 do alil:=diff(phi,L[i]): bl[i]:=diff (psi,L[i]):

f:= (d*al1]-a[2]-al[3]-a[4])*b[1]+(d*a[2]-a[3]-a[4]-al1])*b[2]:
f:=f+(d*al[3]-al4]-al1]l-a[2])*b[3]+(d*al[4]-al1]l-a[2]-a[3]1)*b[4]:
q:= convert( expand(f) , list ); wv:= O:
for i from 1 to nops(q) do
r:=degree(q[i],L[1]): s:=degree(q[i],L[2]):
t:=degree(ql[il,L[3]): wu:=degree(q[i],L[4]):
vi=v+lcoeff (q[i])*r!*s!x*t!*u!/(r+s+t+u+d)!:
od:
RETURN (v/ (5-d)) ;
end:

References

od:

od:

[1] 1. Babuska, M. Griebel and J. Pitkidranta, The Problem of Selecting the Shape Func-
tions for a p-Type Finite Element, Int. J. Num. Meth. Engng, Vol. 28, (1989),

pp-1891-1908.

2] 1. Babuska and M. Suri, The p- and h-p Versions of the Finite Element Method. An
Overview, Comp. Meth. in Appl. Mech. and Engng., 80 (1990) pp.5-26.

20



(3] P. Carnevali, R. B. Morris, Y. Tsuji and G. Taylor, New Basis Functions and Com-
putational Procedures for p-Version Finite Element Analysis, Int. J. Num. Meth.
Engng, 36, (1993), pp.3759-3779.

[4] P. G. Ciarlet, P. A. Raviart, Interpolation Theory Over Curved Elements, with Ap-
plications to Finite Element Methods, Comp. Meth. in Appl. Mech. and Engng, 1
(1972), pp.217-249.

[5] H. Kardestuncer and D. H. Noorie, Finite Element Handbook, McGraw-Hill, New
York, 1987.

(6] M. Lenoir, Optimal Isoparametric Finite Elements and Error Estimates for Domains
Involving Curved Boundaries, STAM J. Numer. Anal., 3 (1986), pp.562-580.

(7] J. Mandel, Two-Level Domain Decomposition Preconditioning for the p-Version Fi-
nite Elemenmt Method in Three Dimensions, Int. J. Numer. Meths. Engng., 29
(1990) 1095-1108.

(8] J. Mandel, Hierarchical Preconditioning and Partial Orthogonalization for the p-
Version Finite Element Method, Chapter 7 in T.F. Chan, R. Glowinski, J. Periaux,
and O.B. Widlund, Eds., Third. Int. Symp. on Domain Decomposition Methods for
Partial Differential Equations, STAM, Philadelphi, 1990, 141-156

9] M. R. Spiegel, Mathematical Handbook of Formulas and Tables, McGraw-Hill, New
York, 1999.

[10] B. Szabé and 1. Babuska, Introduction to Finite Element Analysis, John Wiley and
Sons, New York, 1989.

21



