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Abstract

We describe a hierarchical basis for the p-version of the �nite element method

in two and three dimensions. The corresponding sti�ness matrices are shown to

have good sparsity properties and better conditioning than those generated from

existing hierarchical bases.

1 Introduction

The quality of �nite element solutions depends on several factors including the size
and shape of the elements, the approximation properties of the space S of the �nite
element solution, and the smoothness of the true solution. From a computational view-
point, the choice of a basis is critical to the stability and e�ciency of the �nite element
procedure. Because of their simplicity, the approximating space S usually consists of
piecewise polynomial functions relative to a partitioning of the problem domain 
 � <n,
n = 1; 2; 3, into N -elements 
j, j = 1; 2; : : : ; N . Piecewise polynomial bases are usually
constructed by (i) transforming 
j to a standard element K (Figure 1) by a smooth, one-

to-one mapping �j and (ii) introducing a basis f�̂ignpi=1 of shape functions for a space of
polynomials IPp(K) of degree not greater than p on K. The shape functions are typically
associated with a mesh entity (e.g., vertex, edge, face, region). The inverse functions
�̂i � ��1j de�ned on 
j must be \pieced" together so that the global approximation on S
has the proper continuity. Second-order problems, for example, require that S � H1.

If �j is not a�ne, �̂i � ��1j will not necessarily be polynomial. Non-a�ne mappings
are used to represent a curved boundary of the domain 
 for use, for example, with the
p-version of the �nite element method [2], where improved approximate solutions are
obtained by increasing the degree p of IPp(K). In this case, S may not be a subset of the

exact-solution space because
SN

j=1
j 6= 
. Nevertheless, an optimal order of accuracy
can be achieved if \regular" mappings of degree p [4] are used to represent elements with
curved boundaries [4, 6].
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Figure 1: Reference element K in two (left) and three (right) dimensions.

A hierarchical basis has the property that the basis of degree p + 1 is obtained as
a correction to the degree p basis. The entire basis need not be reconstructed when
the polynomial degree is increased. This property is desirable, if not essential when us-
ing the p-version of the �nite element method. Shape functions for a one-dimensional
hierarchical basis are de�ned as integrals of Legendre polynomials [10] giving them favor-
able orthogonality properties that lead to sparse and well conditioned sti�ness matrices.
Shape functions on square and rectangular-parallelepiped elements may be de�ned as
tensor products of their one-dimensional counterparts to inherit some favorable orthog-
onality properties [1]. This, however, is not the case with shape functions for triangular
and tetrahedral elements [5, 10] where the condition number of the sti�ness matrix may
increase exponentially with p. To alleviate this, Carnevali et al. [3], introduced a new
hierarchical basis for triangles and tetrahedra which were constructed so that edge, face,
and region shape functions of degree p are orthogonal to those of degree not exceeding
p � 2, p � 3, and p � 4, respectively. This basis provided better conditioning than the
earlier ones, but condition numbers of sti�ness matrices still have an exponential growth
with p. Mandel [7, 8] used partial and complete orthogonalizations to construct basis
functions on hexahedral elements that were used to furnish preconditioners to multi-
level domain decomposition algorithms. These greatly reduced the condition numbers of
sti�ness matrices for Poisson and linear elasticity problems.

Herein, we introduce new bases for triangles and tetrahedra that have better condi-
tioning than both the Szab�o and Babu�ska [5, 10] and Carnevali et al. [3] bases. The
construction consists of modifying the Szab�o-Babu�ska basis by orthogonalizing shape
functions associated with faces in two dimensions and faces and regions in three dimen-
sions.
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2 Hierarchical Shape Functions

2.1 One-Dimensional Shape Functions

The one-dimensional hierarchical basis is de�ned on the reference \element" K :=
f� j � 1 � � � 1g. For p � 1, there are two shape functions associated with vertices at
� = �1; 1

�̂01(�) =
1� �

2
; �̂02(�) =

1 + �

2
; � 2 K; (2.1a)

and p� 1 shape functions associated with the \region" �1 < � < 1

�̂1i (�) =

r
2i+ 1

2

Z �

�1

Pi(t)dt; � 2 K; i = 1; 2; : : : ; p� 1; (2.1b)

where Pi(�) is the Legendre polynomial of degree i.

2.2 Two-Dimensional Shape Functions

The hierarchical basis is de�ned in terms of barycentric coordinates on the reference
triangle K of Figure 1

L1 =
1

2
(1� � � �p

3
); L2 =

1

2
(1 + � � �p

3
); L3 =

�p
3
: (2.2)

We see that Lj has unit value at vertex Vj and vanishes on the edge Ej opposite to Vj.
In the sequel, we refer to the Szab�o-Babu�ska [10] basis as the \Szab�o basis" and that of
Carnevali et al. [3] as the \Carnefvali basis."

For p � 1, the Szab�o and Carnevali bases have dimension np = (p + 1)(p + 2)=2 and
consist of:

� Three vertex shape functions

�̂0i (�; �) = Li; i = 1; 2; 3: (2.3a)

� 3(p� 1) edge shape functions on edge Ej, j = 1; 2; 3,

�̂1;ji (�; �) = Lj1Lj2Ei(Lj1 ; Lj2); i = 1; 2; : : : ; p� 1; j1 = j; j2 = 1 + j1 mod 3;
(2.3b)

where

Ei(t1; t2) = �8
p
4i+ 2

i(i+ 1)
P

0

i (t2 � t1); (2.3c)

for the Szab�o basis and

Ei(t1; t2) =
iX

k=0

(�1)k
k + 1

�
i

k

��
i+ 1

k

�
tk1 t

i�k
2 (2.3d)

for the Carnevali basis.
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� (p� 2)(p� 1)=2 face shape functions

�̂2ik+r =L1L2L3 Fr1r2(L1; L2; L3); ik = (k � 3)(k � 2)=2; (2.3e)

r = 1; 2; : : : ; k � 2; r1 + r2 = k � 3; k = 3; 4; : : : ; p;

where

Fr1r2(t1; t2; t3) = Pr1(t2 � t1)Pr2(2t3 � 1): (2.3f)

for the Szab�o basis and

Fr1r2(t1; t2; t3) =
r2X
i=0

r1X
j=0

�
�1

2

�i+j �
r1
j

��
r1 + 1

j

��
r2
i

��
r2 + 1

i

�

� i! j! (i+ j)! tr1�j1 tr2�i2Qi+j
k=1(k(r1 + r2 + 2)� k(k � 1)=2)

(2.3g)

for the Carnevali basis.

The edge (2.3b,d) and face (2.3e,g) shape functions, respectively, satisfy [3]

Z
K

@�̂1;ji
@�

Q(L1; L2)d�d� =

Z
K

@�̂1;ji
@�

Q(L1; L2)d�d� = 0; if deg(Q) � deg(�̂1;ji )� 3;

(2.4a)Z
K

@�̂2i
@�

Q(L1; L2)d�d� =

Z
K

@�̂2i
@�

Q(L1; L2)d�d� = 0; if deg(Q) � deg(�̂2i )� 4;

(2.4b)

where Q is a polynomial.

2.3 Three-Dimensional Shape Functions

The barycentric coordinates on the reference tetrahedron K (Figure 1) expressed in
terms of the Cartesian coordinates �; �; � are

L1 =
1

2

�
1� � � �p

3
� �p

6

�
; L2 =

1

2

�
1 + � � �p

3
� �p

6

�
;

L3 =
�p
3
� �

2
p
6
; L4 =

1

2

r
3

2
�: (2.5)

Like the two-dimensional case, we see that Lj = 1 at vertex Vj and vanishes on the face
Fj opposite to Vj. Further let Ej be the edge that faces F4 and Fj, j = 1; 2; 3, have in
common and let edge Ej+3 be the edge connecting vertices V4 and Vj, j = 1; 2; 3.

For p � 1, the Szab�o and Carnevali hierarchical bases have dimension np = (p+1)(p+
2)(p+ 3)=6 and consist of:
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� Four vertex shape functions

�̂0i (�; �; �) = Li; i = 1; 2; 3; 4: (2.6)

� 6(p� 1) edge shape functions on edge Ej, j = 1; 2; : : : ; 6

�̂1;ji (�; �; �) = Lj1Lj2Ei(Lj1; Lj2); i = 1; 2; : : : ; p� 1; (2.7a)

where

j1 =

(
1 + j mod 3; if 1 � j � 3

1 + j mod 4; if 4 � j � 6
; (2.7b)

j2 =

(
1 + (j + 1) mod 3; if 1 � j � 3

4; if 4 � j � 6
: (2.7c)

� 4(p� 1)(p� 2)=2 face shape functions on face Fj, j = 1; 2; 3; 4,

�̂2;jik+r(�; �; �) =Lj1Lj2Lj3Fr1r2(Lj1 ; Lj2; Lj3); ik = (k � 3)(k � 2)=2; (2.8a)

r = 1; 2; : : : ; k � 2; r1 + r2 = k � 3; k = 3; 4; : : : ; p;

where

j1 = 1 + j mod 4; j2 = 1 + j1 mod 4; j3 = 1 + j2 mod 4: (2.8b)

� (p� 1)(p� 2)(p� 3)=6 region shape functions

�̂3ik+r(�; �; �) =L1L2L3L4 Br1r2r3(L1; L2; L3; L4); ik = (k � 4)(k � 3)(k � 2)=2;

r = 1; 2; : : : ; (k � 3)(k � 2)=2; r1 + r2 + r3 = k � 4; (2.9a)

k = 4; 5; : : : ; p;

where

Br1r2r3(t1; t2; t3; t4) = Pr1(t2 � t1)Pr2(2t3 � 1)Pr3(2t4 � 1) (2.9b)

for the Szab�o basis and

Br1r2r3(t1; t2; t3; t4) = Br1+r2+r2
r100 (t1)Br2+r3

0r20 (t1; t2)Br3

00r3(t1; t2; t3) (2.9c)

for the Carnevali basis with

B(m)

r100(t1) =
r1X
i=0

(�1)i i!
�
r1
i

��
r1 + 1

i

�
(2m+ 5� i)!

(2m + 5)!
tr1�i1 ; (2.9d)

B(m)

0r20(t1; t2) =
r2X
i=0

i!

�
r2
i

��
r2 + 1

i

�
(2m+ 3� i)!

(2m+ 3)!
tr2�i2 (t1 � 1)i; (2.9e)

B(m)

00r3(t1; t2; t3) =
r3X
i=0

i!

�
r3
i

��
r3 + 1

i

�
(2m+ 1� i)!

(2m+ 1)!
tr3�i3 (t2 + t1 � 1)i: (2.9f)
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The edge (2.7a,2.3d), face (2.8a,2.3g), and region (2.9a,c-f) shape functions, respec-
tively, satisfy [3]

Z
K

@�̂1;ji
@�

Q(L1; L2; L3)d�d�d� = 0; if deg(Q) � deg(�̂1;ji )� 3; (2.10a)

Z
K

@�̂2;ji
@�

Q(L1; L2; L3)d�d�d� = 0; if deg(Q) � deg(�̂2;ji )� 4; (2.10b)

Z
K

@�̂3i
@�

Q(L1; L2; L3)d�d�d� = 0; if deg(Q) � deg(�̂3;ji )� 5; (2.10c)

with similar relations involving @=@� and @=@�.

3 Conditioning of the Hierarchical Basis

In order to illustrate the e�ect of the basis on the conditioning of the sti�ness matrix,
consider the bilinear form associated with the Laplacian

B(�;  ) =

Z
K

r� � r d! (3.1)

where r is the gradient operator with respect to �, �, and, in three dimensions, � and
d! is a surface element in two dimensions and a volume element in three dimensions.
Let 	s

p =
�
 ̂s
i

	
1�i�np

and 	
c
p =

�
 ̂c
i

	
1�i�np

, respectively, be the Szab�o and Carnevali

hierarchical bases (x2) of degree p on the reference element K (Figure 1). Assume that
the elements of 	s

p and 	
c
p are ordered with their vertex shape functions �rst, their edge

shape functions second, their face shape functions third, and, in three dimensions, their
element shape functions last.

The local sti�ness matrices for the Laplacian operator are

M t
p =

�
B( ̂t

i ;  ̂
t
j)
�
1�i;j�np

; t = s; c; (3.2)

Further suppose that the shape functions have been rescaled so that M s
p and M c

p have
unit diagonal entries. Since B is symmetric and non-negative, the eigenvalues �t1 � �t2 �
� � � � �tnp of M

t
p, t = s; c are real and non-negative. We may readily verify that �t1 = 0

and �t2 > 0. As such, we take the condition number of M t
p as [1]

�(M t
p) =

�tnp
�t2

; t = s; c; (3.3)

and show the growth of �(M s
p ) and �(M

c
p) with p for p = 1; 2; : : : ; 14 in Figure 2.

Even though the condition number of M c
p grows more slowly with p than that of

M s
p , the rate is exponential for both bases. In order to gain insight into the problem,

we partition the basis into subsets with V, E , F , and R denoting sets of vertex, edge,
face, and region shape functions, respectively. We compute condition numbers of various
principal submatrices of the sti�ness matrix corresponding to di�erent combinations of
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Figure 2: Condition numbers of M s
p (�) and M c

p (�) vs. p in two (left) and three (right)
dimensions.

Matrix p
V [ E M s

p 1.02e1 1.19e1 1.23e1 1.33e1 1.36e1 1.46e1 1.49e1 1.60e1
M c

p 1.01e1 1.01e1 1.01e1 1.01e1 1.01e1 1.01e1 1.01e1 1.01e1
V [ F M s

p 3.73 1.51e1 6.46e1 3.72e2 2.68e3 2.18e4 1.76e5 1.68e6
M c

p 3.00 9.53 3.12e1 1.04e2 3.50e2 1.19e3 4.12e3 1.43e4
E M s

p 6.19 6.31 7.09 7.24 8.04 8.24 9.34 9.49
M c

p 4.75 4.75 4.75 4.75 4.75 4.75 4.75 4.75
E [ F M s

p 2.23e1 5.43e1 1.50e2 7.04e2 3.87e3 2.72e4 2.17e5 1.98e6
M c

p 2.45e1 4.68e1 9.43e1 2.65e2 8.06e2 2.55e3 8.20e3 2.68e4
F M s

p 3.73 1.51e1 6.46e1 3.72e2 2.68e3 2.18e4 1.76e5 1.68e6
M c

p 3.00 9.53 3.12e1 1.04e2 3.50e2 1.19e3 4.12e3 1.43e4
V [ E [ F M s

p 2.95e1 5.93e1 1.73e2 7.22e2 3.96e3 2.75e4 2.18e5 1.99e6
M c

p 3.06e1 4.92e1 1.07e2 2.97e2 8.86e2 2.75e3 8.72e3 2.82e4

Table 1: Condition numbers of various submatrices of M s
p and M c

p in two dimensions.
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Matrix p
Portions Matrix 5 6 7 8 9 10 11 12
V [ E M s

p 3.84e1 4.25e1 4.72e1 5.00e1 5.52e1 5.90e1 6.70e1 7.23e1
M c

p 2.55e1 2.55e1 2.55e1 2.55e1 2.55e1 2.55e1 2.55e1 2.55e1
V [ F M s

p 7.94e1 5.75e2 5.86e3 5.93e4 6.76e5 7.94e6 8.59e6 2.81e7
M c

p 1.84e1 4.88e1 1.48e2 4.62e2 1.44e3 4.58e3 1.47e4 4.78e4
V [ R M s

p 3.00e1 8.57e2 2.53e4 7.64e5 2.27e7 7.00e8 2.19e10 7.06e11
M c

p 3.81 8.27 1.89e1 3.97e1 7.70e1 1.43e2 2.49e2 4.18e2
E M s

p 1.65e1 2.07e1 2.20e1 2.81e1 2.92e1 4.13e1 4.15e1 5.99e1
M c

p 8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22
E [ F M s

p 6.40e2 1.61e3 1.37e4 9.46e4 1.04e6 1.08e7 1.12e7 1.76e7
M c

p 3.13e2 5.29e2 8.45e2 1.15e3 2.33e3 6.79e3 2.04e4 6.26e4
E [ R M s

p 4.91e1 1.22e3 2.99e4 8.67e5 2.47e7 7.51e8 1.29e10 1.61e11
M c

p 2.45e1 3.74e1 5.29e1 9.60e1 1.84e2 3.50e2 6.30e2 1.08e3
F M s

p 6.57e1 5.49e2 5.73e3 5.91e4 6.74e5 7.93e6 8.59e6 2.77e7
M c

p 1.54e1 4.87e1 1.47e2 4.62e2 1.44e3 4.58e3 1.47e4 4.78e4
F [R M s

p 1.80e2 4.41e3 1.03e5 2.88e6 7.81e7 2.30e9 2.66e9 7.08e9
M c

p 4.14e1 1.24e2 3.04e2 9.42e2 3.11e3 1.06e4 3.62e4 1.25e5
R M s

p 3.00e1 8.57e2 2.53e4 7.64e5 2.27e7 7.00e8 2.19e10 7.06e11
M c

p 3.81 8.27 1.89e1 3.97e1 7.70e1 1.43e2 2.49e2 4.18e2
V [ E [ F M s

p 7.99e2 2.66e3 1.58e4 1.09e5 1.06e6 1.13e7 1.13e7 1.78e7
M c

p 3.99e2 6.54e2 1.05e3 1.49e3 2.70e3 7.11e3 2.08e4 6.35e4
V [ E [ R M s

p 7.29e1 1.23e3 3.11e4 8.67e5 2.49e7 7.52e8 1.29e10 1.62e11
M c

p 3.66e1 4.46e1 6.80e1 1.17e2 2.14e2 3.93e2 6.93e2 1.17e3
V [ F [ R M s

p 2.12e2 4.43e3 1.11e5 2.88e6 8.18e7 2.30e9 2.67e9 7.14e9
M c

p 4.80e1 1.26e2 3.08e2 9.43e2 3.11e3 1.06e4 3.62e4 1.25e5
E [ F [R M s

p 8.67e2 5.97e3 1.35e5 3.53e6 9.54e7 2.70e9 3.03e9 9.21e9
M c

p 5.26e2 1.23e3 2.75e3 6.34e3 1.57e4 4.23e4 1.21e5 3.59e5
V [ E [ F [R M s

p 9.08e2 6.10e3 1.37e5 3.59e6 9.62e7 2.73e9 3.04e9 2.18e10
M c

p 5.34e2 1.32e3 3.39e3 8.86e3 2.34e4 6.32e4 1.76e5 5.03e5

Table 2: Condition numbers of various submatrices of M s
p and M c

p in three dimensions.
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these sets of shape functions and present results in Tables 1 and 2 for two- and three-
dimensional problems, respectively. Examining Table 1, we see that the growth of
the condition number with p is slow except for those submatrices involving face shape
function. Results in Table 2 show a rapid growth of the condition number for submatrices
that involve face or region shape functions. Therefore, the cause of the ill conditioning
is the interaction of the face and region shape functions with themselves and each other.

4 A New hierarchical Basis

In order to reduce the condition number of the sti�ness matrix, we reduce the coupling
between the face and region shape functions through orthogonalization. Thus, the new
basis 	n

p =
�
 ̂n
i

	
1�i�np

has the vertex and edge shape functions of the Szab�o basis 	s
p,

but the face and, in three dimensions, the region shape functions will satisfy orthogonality
conditions. The construction is developed in x4.1 in two dimensions and in x4.2 in three
dimensions.

4.1 Two-Dimensional Shape Functions

The two-dimensional basis is constructed to have orthogonal face modes with the
Laplacian operator; thus,

B( ̂n
i ;  ̂

n
j ) = �ij; 3p < i; j � np: (4.1)

Orthogonal face shape functions
�
�̂2i :=  ̂n

3p+i

	
1�i�nF

, nF = (p � 1)(p � 2)=2 are con-

structed from the Szab�o face shape functions (2.3e,f) using the Gram-Schmidt process,
which is expressed by the pseudocode shown in Figure 3.

k = 1; �1
1 = 1; b1 = B('̂2

1; '̂
2
1); �̂21 = �1

1�̂
2
1;

while ( k � nF ) f
for ( l = 1, l < k, + + l )f

�l = ��Pl

j=1 �
l
jB(�̂

2
k; �̂

2
j)
�
=bl;

g
for ( j = 1, j < k, + + j )f

�k
j =

Pk�1
l=j �l�

l
j;

g
�k
k = 1;

bk =
Pk

j=1 �
k
j

Pk

i=1 �
k
iB(�̂

2
i ; �̂

2
j);

�̂2k =
Pk

j=1 �
k
j �̂

2
j ;

g

Figure 3: Pseudocode of the Gram-Schmidt process to generate the orthogonal face shape
functions �̂2k, k = 1; 2; : : : ; nF .
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The orthogonalization process of Figure 3 involves the evaluation of integrals such as

Z
K

"
@�̂2i
@�

@�̂2j
@�

+
@�̂2i
@�

@�̂2j
@�

#
d�d�; (4.2)

which are di�cult by either analytical or numerical means for high values of p. Thus,
instead of (2.3e,f), we found it easier to replace (2.3f) by

Fr1r2(t1; t2; t3) = (t2 � t1)
r1 (2t3 � 1)r2: (4.3)

Even though the two sets of face shape functions (2.3e,f) and (2.3e, 4.3) di�er, the
resulting set of orthogonal (normalized) face shape functions can readily be shown to be
identical. The integrals (4.2) using (2.3e, 4.3) can be evaluated explicitly as indicated in
the following lemma.

Lemma 1. Let �i, i = 1; 2; : : : ; 6, be non-negative integers and

f = L�1
1 L�2

2 L�3
3 (L2 + L1)

�4 (L2 � L1)
�5 (2L3 � 1)�6 : (4.4a)

Then

E :=

Z
K

f d�d� = (�1)�52
p
3 I(�1; �2; �5)I(�3; �1 + �2 + �4 + �5 + 1; �6) (4.4b)

where

I(i; j; k) :=

Z 1

0

(1� t)i tj (1� 2t)k dt: (4.4c)

Proof. Using (4.4a,b), we have

E = 2
p
3

Z
T

L�1
1 L�2

2 L�3
3 (L2 + L1)

�4 (L2 � L1)
�5 (2L3 � 1)�6 dL1dL2 (4.5a)

where T = f(L1; L2) j 0 � L1; 0 � L2; L1 + L2 � 1g. Using the change of variables
L1 = (1� x)y; L2 = xy, which maps the unit square R = (0; 1)� (0; 1) onto T , we get

E = (�1)�52
p
3

Z
R

(1� x)�1 x�2 (1� 2x)�5
	�
y�1+�2+�4+�5+1 (1� y)�3 (1� 2y)�6

	
dxdy;

(4.5b)

which evaluates to (4.4b,c).

As an example, consider the evaluation of the �rst term in (4.2) with

�̂2i = L1L2L3(L2 � L1)
i1(2L3 � 1)i2; �̂2j = L1L2L3(L2 � L1)

j1(2L3 � 1)j2: (4.6a)

10



Transforming to barycentric coordinates, we have

@�̂2i
@�

@�̂2j
@�

=
1

4

 
@�̂2i
@L2

� @�̂2i
@L1

!  
@�̂2j
@L2

� @�̂2j
@L1

!

=
1

4
L2
3(L2 � L1)

i1+j1+2(2L3 � 1)i2+j2 +

i1j1L
2
1L

2
2L

2
3(L2 � L1)

i1+j1�2(2L3 � 1)i2+j2 +

1

2
(i1 + j1)L1L2L

2
3(L2 � L1)

i1+j1(2L3 � 1)i2+j2; (4.6b)

which may be integrated using (4.4).
Each face shape function of degree k � p in 	

s
p, 	

c
p, or 	

n
p is an expression of the

form (2.3e). In Table 3, we list the �rst three polynomials Fr1r2 for the Szab�o, Carnevali,
and the new basis. The polynomials are expressed as functions of x = L2 � L1 and
y = 2L3 � 1. A MAPLE program to evaluate these functions for arbitrary values of p
using the orthogonalization process of Figure 3 appears in an Appendix to this paper.

p Szab�o Carnevali New

3 1 1 1

4 x �1
4

�
2x+ y � 1

3

�
x

y 1
4

�
2x� y � 1

3

�
y + 1

3

5 3
2
x2 � 1

2
1
16

�
(2x+ y)2 + 2x+ y � 2

7

�
x2 + 1

14
y � 1

14

xy � 1
16

�
(2x + y)(2x� y)� 1

7

�
xy + 3

7
x

3
2
y2 � 1

2
1
16

�
(2x� y)2 � (2x� y)� 2

7

�
y2 + 4

7
y � 1

21

Table 3: Function Fr1r2(L1; L2; L3) associated with the two-dimensional face shape functions
(2.3e) for the Szab�o, Carnevali, and new bases. Polynomials are expressed in terms of x =
L2 � L1 and y = 2L3 � 1.

In Figure 4a we show the condition numbers �(M t
p), t = s; c; n, as functions of p with

the sti�ness matrix M t
p corresponding to the Laplacian according to (3.2). Again, the

sti�ness matrices have been scaled to have unit diagonal elements. As anticipated, or-
thogonalizing the face shape functions has resulted in a dramatic decrease in the condition
number. In the range 3 � p � 14, the condition number is growing as

�(Mn
p ) � p(ln p)1:8 + 16 ln p: (4.7a)

This growth is a consequence of the coupling between the edge and face shape functions.
This coupling can be eliminated by modifying the edge shape functions to be orthogonal

11
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Figure 4: (a) Condition numbers of M s
p (�), M c

p (�), and Mn
p (�) vs. p . (b) Condition

number versus p for the local sti�ness matrices Mn
p (�) and ~Mn

p (4).

to the face shape functions. Letting ~	
n

p be the resulting basis and ~Mn
p the corresponding

sti�ness matrix, we compare �( ~Mn
p ) and �(M

n
p ), p = 1; 2; : : : ; 14, in Figure 4b. In the

range 3 � p � 14, we have

�( ~Mn
p ) � 5p+ 3 ln p: (4.7b)

Unfortunately, the basis ~	
n

p is no longer hierarchical since the edge and face shape func-
tions have to be orthogonal.

The sparsity, expressed as a percentage of the nonzero entries, of M s
p , M

c
p , M

n
p , and

~Mn
p is shown as a function of p in Figure 5. Sparsity increases steadily for M c

p , M
n
p

and ~Mn
p as p increases and appears to settle at 65% for M s

p . The sti�ness matrix M c
p is

less dense than Mn
p as a result of (2.10) while ~Mn

p is the most sparse with a density of
approximately 9% when p = 14.

In order to appraise the conditioning of a global sti�ness matrix with the choice of
the basis, we consider the nonlinear reaction-di�usion problem

@u

@t
� q(1� u)u2 � 1

2
�u = 0; (x; y)T 2 
 := (0; 1)� (0; 1); t > 0; q > 0; (4.8a)

with initial and Dirichlet boundary conditions speci�ed so that the exact solution is

u(x; y; t) =
1

1 + exp
�p

q

2
(x + y)� q

2
t
� : (4.8b)

This solution represents a wave-like front moving normal to the vector (�1; 1) with speedp
q=2.
We solved (4.8a) with q = 500 on 0 < t � 0:1 using a uniform mesh of 32 triangles

and a piecewise polynomial basis of (uniform) degrees p = 1; 2; : : : ; 9. Both the Szab�o	s
p
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Figure 6: Condition number of the system Jacobian matrix of (4.8) versus p (a) and the
degrees of freedom (DOF, b).

tetrahedron K and de�ne

�1(L1; L2; L3) = �(L2; L3; L4);  1(L1; L2; L3) =  (L2; L3; L4); (4.10a)

�2(L1; L2; L3) = �(L3; L4; L1);  2(L1; L2; L3) =  (L3; L4; L1); (4.10b)

�3(L1; L2; L3) = �(L4; L1; L2);  3(L1; L2; L3) =  (L4; L1; L2); (4.10c)

with Li, i = 1; 2; 3; 4, given by (2.5). ThenZ
K

r�i � r i d�d�d� =

Z
K

r� � r d�d�d� (4.11)

with gradients computed relative to (�; �; �).

Proof. Using the chain rule

@

@�
=

1

2

�
@

@L2
� @

@L1

�
;

@

@�
=

1

2
p
3

�
2
@

@L3
� @

@L1
� @

@L2

�
;

@

@�
=

1

2
p
6

�
3
@

@L4

� @

@L1

� @

@L2

� @

@L3

�
(4.12)

with (4.10), we see that establishing (4.11) is equivalent to proving thatZ
T̂

�
6a1(�i)a1( i) + 2a2(�i)a2( i) + a3(�i)a3( i)

�
dL1dL2dL3 =Z

T̂

�
6a1(�)a1( ) + 2a2(�)a2( ) + a3(�)a3( )

�
dL1dL2dL3; (4.13a)

where

T̂ = f(L1; L2; L3) j 0 � L1; 0 � L2; 0 � L3; L1 + L2 + L3 � 1g ; (4.13b)
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and

a1(f) =
@f

@L2
� @f

@L1
; a2(f) = 2

@f

@L3
� @f

@L1
� @f

@L2
;

a3(f) = 3
@f

@L4

� @f

@L1

� @f

@L2

� @f

@L3

: (4.13c)

We establish (4.13) with i = 1. Other cases proceed similarly. Thus, using (4.10a),
we have

a1(�1) =
@�

@L1
(L2; L3; L4)

a2(�1) = 2
@�

@L2

(L2; L3; L4)� @�

@L1

(L2; L3; L4) (4.14a)

a3(�1) = 3
@�

@L3

(L2; L3; L4)� @�

@L1

(L2; L3; L4)� @�

@L2

(L2; L3; L4):

and

a1( 1) =
@ 

@L1

(L2; L3; L4)

a2( 1) = 2
@ 

@L2

(L2; L3; L4)� @ 

@L1

(L2; L3; L4) (4.14b)

a3( 1) = 3
@ 

@L3

(L2; L3; L4)� @ 

@L1

(L2; L3; L4)� @ 

@L2

(L2; L3; L4):

Substituting these into the left side of (4.13a) and introducing the change of variables
X = L2, Y = L3, Z = L4, which maps T̂ onto itself, leads toZ

T̂

�
6a1(�i)a1( i) + 2a2(�i)a2( i) + a3(�i)a3( i)

�
dL1dL2dL3 =Z

T̂

�
6a1(�)a1( ) + 2a2(�)a2( ) + a3(�)a3( )

�
dXdY dZ; (4.15a)

which establishes the result.

In Table 4, we list the �rst four polynomials F(x; y) and �rst three polynomials
B(x; y; z) of the new basis on the reference tetrahedra. The face modes are listed for the
face opposite to the vertex at (0; 1=

p
3; 2
p
2=3). Once again, the MAPLE program for

evaluating these polynomials for arbitrary p appears in the Appendix.
We compute the condition numbers �(M t

p), t = s; c; n, p = 1; 2; � � � ; 10, for local
sti�ness matrices M t

p corresponding to the Laplacian operator (3.2) and present the
results in Figure 7. The substantial improvement in the conditioning of Mn

p is clear. In
the range 3 � p � 12

�(Mn
p ) � p2(ln p)3 + 20:9p(ln p)2: (4.16)

The percentage of non-zero entries in M s
p , M

c
p , and M

n
p as a function of p is shown in

Figure 8. As in two dimensions, the percentage of nonzero entries in Mn
p decreases with

p at about the same rate as M s
p . The percentage of nonzero entries in M

c
p is signi�cantly

lower than both.
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p Face Modes
3 1

4 x, y + 3
8

5 x2 + 89
1425

y � 709
12825

, xy + 59
125
x, 23382

1364381
x2 + y2 + 903388

1364381
y � 4165

1364381

6 x3 + 1065
6028

xy � 681
6028

x, x2y + 1495778
2711133

x2 + 16800371
292802364

y2 � 22840619
1610413002

y � 374750683
16104130020

11188
992727

x3 + xy2 + 3054670
3639999

xy + 335131
3639999

x,

� 4846821669
208308582077

x2y + y3 � 3423671118
208308582077

x2 + 716173321035
833234328308

y2 � 10930991439
416617164154

y � 55006884029
833234328308

Region Modes
4 1

5 x, y + 1
2
, 1

3
y + z + 2

3

6 x2 + 3
50
y + 3

50
z + 7

825
, xy + 14

25
x, 201

14551
x2 + y2 + 640847

727550
y + 603

727550
z + 1642

14551
,

173
627
xy + xz + 448

627
x, � 66816

1636631
x2 + 1635425

4909893
y2 + yz + 20883436

24549465
y + 4562522

8183155
z + 1831190

4909893
,

� 15524
902523

x2 + 41641
300841

y2 + 654170
902523

yz + z2 + 475336
902523

y + 1159624
902523

z + 335332
902523

Table 4: Functions F(x; y) and B(x; y; z) associated with the three-dimensional orthogonal
face modes (2.8a) and region modes (2.9a) of degrees 3 through 6.

16



10
0

10
1

10
0

10
2

10
4

10
6

10
8

10
10

p

condition number

F
igu

re
7:

C
ondition

num
b
ers

of
M

sp
(�),

M
cp
(�),

and
M

np
(
�
)
vs.

p

2
4

6
8

10
12

30 40 50 60 70 80 90

100

110

p

percentage of non zeros

F
igu

re
8:

P
ercentage

of
non-zero

entries
of

the
lo
cal

sti�
ness

m
atrices

M
sp
(�),

M
cp
(�),

and
M

np
(
�
).

17



5 Discussion

We indicate how to construct hierarchical bases on triangles and tetrahedra that
have a quadratic growth in the condition number with polynomial degree p. This is
substantially better than the exponential growth associated with the hierarchical bases
of Szab�o and Babu�ska [10] and Carnevali et al. [3]. The new basis has reasonable sparsity
which decreases as a percentage with increasing p. Sti�ness matrices will, however, be
less sparse than those of the Carnevali basis.

The strategy for improving the condition number involves extracting an orthogonal set
of face shape functions in two dimensions and orthogonal face shape functions on each
face and orthogonal region shape functions in three dimensions. The Gram-Schmidt
procedure is relatively straight forward when the proper basis representations (4.3, 4.9)
are used.

6 Appendix

We present a MAPLE implementation of the pseudocode algorithm shown in Figure
3. This software is available upon request.

The procedure orth_modes() generates the orthogonal face and region modes using
the Gram-Schmidt process. The face modes on the reference triangle and tetrahedra
and the region modes on the reference tetrahedra are constructed by orthogonalizing the
elements of the set�

L1L2L3(L2 � L1)
i1(2L3 � 1)i2j i1 + i2 = 0; 1; � � �	 ; (6.1)

and �
L1L2L3L4(L2 � L1)

i1(2L3 � 1)i2(2L4 � 1)i3 j i1 + i2 + i3 = 0; 1; � � �	 ; (6.2)

respectively. The resulting face and region modes are written as L1L2L3F(x; y) and
L1L2L3L4B(x; y; z) respectively, where x = L2 � L1, y = 2L3 � 1, z = 2L4 � 1,

F(x; y) = c1;1 + c2;1x + c2;2y + c3;1x
2 + c3;2xy + c3;3y

2 + � � � ; (6.3)

and

B(x; y; z) = c1;1 + c2;1x+ c2;2y + c2;3z

+ c3;1x
2 + c3;2xy + c3;3y

2 + c3;4xz + c3;5yz + c3;6z
2 + � � � : (6.4)

The procedure orth_modes() uses a specialized integration procedure E_PROD() to
evaluate integrals of the type (4.2).

orth_modes := proc(p,ent,d,flg)

# p is the order of the basis.

# ent is 2 for face modes and 3 for region modes

# d is 2 for triangular and 3 for tetrahedral basis

# flg if 1 the function F or G gets printed and

18



# if 2 the coefficients c(i,j) get printed

local ps, nF, ix, k, i, j, m, B, c, beta, b, r, tp, F, x, y, z;

ps:=ent+1:

if p < ps then ERROR(`No Face Or Region Modes To Orthogonalize`); fi:

nF:=binomial(p-1,ent): # Number of internal modes

# Generate the exponents r, s, and t.

ix:=array(1..nF,1..3): k:=1:

for i from ps to p do

for j from 0 to i-ps do

if ent=2 then

ix[k,1]:=i-j-ps: ix[k,2]:=j: ix[k,3]:=0: k:=k+1:

else

for m from 0 to i-j-ps do

ix[k,1]:=i-j-m-ps: ix[k,2]:=m: ix[k,3]:=j: k:=k+1:

od:

fi:

od:

od:

# Compute the scalar products of the monomial face modes

B:=array(1..nF,1..nF):

for j from 1 to nF do

for i from 1 to j do

B[j,i]:=E_PROD(ix[i,1],ix[i,2],ix[i,3],ix[j,1],ix[j,2],ix[j,3],ent,d):

B[i,j]:=B[j,i]:

od;

od;

# Orthogonalize

beta:=array(1..nF): c:=array(1..nF,1..nF): b:=array(1..nF):

beta[1]:=1: c[1,1]:=beta[1]: b[1]:=B[1,1]:

for k from 2 to nF do

for r from 1 to k-1 do

tp:=0:

for j from 1 to r do tp:=tp+c[r,j]*B[k,j]: od:

beta[r]:=simplify( -tp/b[r] ):

od:

c[k,k]:=1:

for j from 1 to k-1 do

c[k,j]:=0:

for r from j to k-1 do c[k,j]:=c[k,j]+beta[r]*c[r,j]: od:

od:

b[k]:=0:

for j from 1 to k do

tp:=0:

for i from 1 to k do tp:=tp+c[k,i]*B[i,j]: od:

b[k]:=b[k]+c[k,j]*tp:

od:

od:

# Output the orthogonal face modes to the file out_modes

if flg=1 then

F:=array(1..nF):

for j from 1 to nF do

F[j]:=x^ix[j,1]*y^ix[j,2]*z^ix[j,3]:

for i from 1 to j-1 do

F[j]:=F[j]+c[j,i]*x^ix[i,1]*y^ix[i,2]*z^ix[i,3]:
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od:

od:

fi:

appendto(`out_modes`); k:=0:

for i from ps to p do

lprint(`==================== p =`,i);

for j from 1 to binomial(i-2,ent-1) do

k:=k+1:

if flg=1 then

lprint(k,F[k]);

elif flg=2 then

for m from 1 to k do lprint(`c[`,k,`,`,m,`] =`,c[k,m],`:`); od:

fi:

od:

lprint(` `);

od:

writeto(terminal);

end:

E_PROD := proc(i1, i2, i3, j1, j2, j3, ent, d)

local L, bl, phi, psi, a, b, i, f, q, r, s, t, u, v;

L:= array(1..4):

#The blending function

bl:= L[1]*L[2]*L[3]: if ent=3 then bl:= bl*L[4]: fi:

#The functions and their partial derivatives

phi:=bl*(L[2]-L[1])^i1*(2*L[3]-1)^i2*(2*L[4]-1)^i3:

psi:=bl*(L[2]-L[1])^j1*(2*L[3]-1)^j2*(2*L[4]-1)^j3:

a:= array(1..4): b:= array(1..4):

for i from 1 to 4 do a[i]:=diff(phi,L[i]): b[i]:=diff(psi,L[i]): od:

f:= (d*a[1]-a[2]-a[3]-a[4])*b[1]+(d*a[2]-a[3]-a[4]-a[1])*b[2]:

f:=f+(d*a[3]-a[4]-a[1]-a[2])*b[3]+(d*a[4]-a[1]-a[2]-a[3])*b[4]:

q:= convert( expand(f) , list ); v:= 0:

for i from 1 to nops(q) do

r:=degree(q[i],L[1]): s:=degree(q[i],L[2]):

t:=degree(q[i],L[3]): u:=degree(q[i],L[4]):

v:=v+lcoeff(q[i])*r!*s!*t!*u!/(r+s+t+u+d)!:

od:

RETURN(v/(5-d));

end:
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