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Mathematical setup

We consider bosons moving in Zd .

• Bosonic Fock space:

F (L2(Zd)) =
∞⊕
n=0

L2sym(Zdn).

• Creation and annihilation operators a∗x and ax of a particle at x ∈ Zd

satisfy CCR:

[ax , a
∗
y ] = δxy , [ax , ay ] = 0 = [a∗x , a

∗
y ].

• Field operators: For f ∈ ℓ2(Zd) we define

Φ(f ) = a(f ) + a∗(f ), a∗(f ) =
∑
x∈Zd

a∗x f (x).



Dynamics of finite many-particle

We are interested in dynamics generated by the Hamiltonian

H = −
∑

x,y∈Zd

d(x,y)=1

(a∗xay + a∗yax) +
∑

x,y∈Zd

v(x , y)a∗xa
∗
yaxay .

Existence of the Schrödinger dynamics ψ(t) = e−iHtψ0 for finitely many

particles follows from the self-adjointness of H.

In case of infinitely many degrees of freedom we need to consider the

Heisenberg dynamics

A(t) = e iHtAe−iHt

on a suitabel C∗-algebra of observables encoding some sort of locality.

States on this C∗-algebra replace wave functions.
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Quantum spin systems vs. bosonic lattics systems

Quantum spin systems and fermionic lattice systems:

• finite-dimensional Hilbert space on each lattice site,

• bounded operators (matrices) describe local observables,

• the closure of the algebra of local observables in operator norm

(quasi-local observables) is a natural C∗-algebra of observables,

• this C∗-algebra is invariant under physically interesting dynamics

(Lieb–Robinson bounds).

Bosonic lattics systems:

• infinite-dimensional Hilbert space on each lattice site,

• unbounded operators describe local observables,

• to obtain a C∗-algebra one needs to consider bounded functions of

local observables,

• infinite energies lead to nonlocal dynamics.



C ∗ algebraic formalism for bosons

• Weyl algebra [1]: not invariant under interacting dynamics in Rd

(even with finitely many degrees of freedom)

• Greens functions [2,3]: approach gives limited information about

dynamics in Rd

• Resolvent algebra [4,5]: for finitely many degrees of freedom

invariant under dynamics in Rd

• Extension of resolvent algebra [6,7]: invariant under dynamics in Rd

with infinitely many degrees of freedom (not quasi-local)
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Resolvent algebra following Buchholz

• The resolvent algebra is the C∗-algebra generated by 1 and

R(f , z) = (Φ(f )− z)−1 with f ∈ ℓ2fin(Zd), Im(z) ̸= 0.

• The gauge invariant resolvent algebra Rinv is the subalgebra of all

operators A that satisfy e iNtAe−iNt = A for all t ∈ R.

• The Buchholz algebra B consists of all B ∈ L(F ) s.t. for all n ∈ N
there is a A ∈ Rinv with

B1N≤n = A1N≤n.

• Example: The operator sin(Nx), x ∈ Zd is in B but not in Rinv.

Proposition (D., Lampart, Lemm 2025)

For all t ∈ R the map A 7→ τt(A) = e iHtAe−iHt defines a

∗-automorphism on B.



Lack of continuity due to lack of lokality

• For d = 1 consider

i∂tψt(x) = −∆ψt(x) with ψ0(x) = δx,0.

Then ψt(x) = I|x|(2it) with the modified Bessel function I|x|(2it).

• For fixed x ∈ Z the set of times t such that ψt(x) = 0 holds is

countable.

• For x ∈ Z and a function f : N0 → R such that limn→∞ f (n) exists,

we define the state

γ(f (Nx)) = lim
m→∞

1

m!
⟨Ω, am0 f (Nx)(a

∗
0)

mΩ⟩

with the vacuum vector Ω.

• We have (t such that ψt(x) ̸= 0)

γ

(
e i dΓ(−∆)t 1

1 + Nx
e−i dΓ(−∆)t

)
= 0 ̸= 1 = γ

(
1

1 + Nx

)
.



Lieb–Robinson bounds (simple 5 page proof!)

Theorem (D., Lampart, Lemm 2025)

Assume that p > 2d + 2 and M > 0, R > 0. ∀ϵ > 0 ∃ m0 ∈ N s.t.

∀m ≥ m0, X ⊂ Zd with diam(X ) ≤ R, states γ on Rinv satisfying

sup
x∈Zd

γ((1 + Nx)
p) ≤ M,

we have for all A,B ∈ Rinv, supp(A) ⊂ X

sup
|t|≤T

∣∣∣γ ((τt(A)− τ
X [m]
t (A)

)
B
)∣∣∣ ≤ ϵ∥A∥ ∥B∥.
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Consequence I: continuous dynamics in GNS representation

Theorem (D., Lampart, Lemm 2025)

Let γ be a state on B, which satisfies γ(τt(A)) = γ(e iHtAe−iHt) = γ(A)

for all A ∈ Rinv and

sup
x∈Zd

γ((1 + Nx)
p) <∞.

Let (Hγ , πγ ,Ωγ) be the GNS representation of Rinv.

Then there exists a unique strongly continuous unitary group Uγ(t) on

Hγ so that for all A,B ∈ Rinv

⟨Uγ(t)πγ(A)Ωγ , πγ(B)Ωγ⟩ = γ(τt(A)B).
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Consequence II: existence of KMS states

Theorem (D., Lampart, Lemm 2025)

Assume that the state

γΛ = Z−1
Λ Tr[Ae−β(HΛ−µΛNΛ) ⊗ |ΩΛc⟩⟨ΩΛc |]

satisfies

sup
Λ⋐Zd

sup
x∈Λ

γΛ((1 + Nx)
p) <∞

with some p > 2d + 2. Then any weak-∗ accumulation point of {γΛ}Λ
satifies the KMS condition

γ(τt(A)B) = F (t), γ(Bτt(A)) = F (t − iβ)

for all A,B ∈ Rinv and a function F that is analytic in the strip

−β < Im(z) < 0.
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Summary

• Simple proof of invariance of Buchholz algebra under interacting

dynamics for bosonic lattice systems

• Simplified proof of Lieb–Robinson bounds

• Continuous dynamics in GNS representation of resolvent algebra for

invariant states satisfying local moment bounds

• Existence of KMS states


