Note on a family of monotone quantum relative entropies

Andreas Deuchert

Department of Mathematics, University of Tübingen

YRS @ Santiago de Chile 24. July 2015

Joint work with Christian Hainzl and Robert Seiringer

• • = • • = •

Definition: Generalized relative entropy

Let $\varphi : [0,1] \to \mathbb{R}$ be a convex function with $\varphi \in \mathcal{C}([0,1]) \cap \mathcal{C}^1((0,1))$. For hermitian matrices A, B with $0 \le A, B \le 1$ define

$$\mathcal{H}_{arphi}(A,B) = \mathsf{Tr}\left[arphi(A) - arphi(B) - arphi'(B)(A-B)
ight].$$

Examples:

- Boltzmann entropy: $\varphi_1(x) = x \ln(x)$,
- Fermionic quasi-free states: $\varphi_2(x) = x \ln(x) + (1-x) \ln(1-x)$,
- Bosonic quasi-free states: $\varphi_3(x) = x \ln(x) (1+x) \ln(1+x)$.

Aim: Find a useful definition of \mathcal{H}_{φ} for bounded non-compact A and B.

くほと くほと くほと

Generalized relative entropy for bounded operators

Definition 1 ([LS]): Assume φ' operator monotone and let $\{P_n\}_{n=1}^{\infty}$ be an increasing sequence of finite-dimensional projections on a separable Hilbert space h with $P_n \to 1$ strongly. For $A, B \in \mathcal{L}(h)$ with $0 \le A, B \le 1$ define

$$\mathcal{H}_{\varphi}(A,B) := \lim_{n \to \infty} \mathcal{H}_{\varphi}(P_n A P_n, P_n B P_n).$$

Theorem 1 ([LS]): Assume φ as above with φ' operator monotone on (0,1). Then the sequence $\mathcal{H}_{\varphi}(P_nAP_n, P_nBP_n)$ possesses a limit in $\mathbb{R}_+ \cup \{+\infty\}$. This limit does not depend on the chosen sequence $\{P_n\}_{n=1}^{\infty}$ and hence $\mathcal{H}_{\varphi}(A, B)$ is well defined.

[LS] M. Lewin, J. Sabin, A Family of Monotone Quantum Relative Entropies, Lett. Math. Phys. **104** (2014), 691-705.

A natural question left open in [LS]

A natural question left open in [LS]: Does

 $\lim_{n\to\infty}\mathcal{H}_{\varphi}(P_nAP_n,P_nBP_n)=\mathrm{Tr}\left[\varphi(A)-\varphi(B)-\varphi'(B)(A-B)\right]$

hold?

- 4 回 ト - 4 回 ト

A natural question left open in [LS]

A natural question left open in [LS]: Does

hold?

 $\lim_{n\to\infty}\mathcal{H}_{\varphi}(P_nAP_n,P_nBP_n)=\mathrm{Tr}\left[\varphi(A)-\varphi(B)-\varphi'(B)(A-B)\right]$

The answer is "in principle yes".

< 回 > < 三 > < 三 >

Limit of the relative entropy

Theorem 3 ([DHS]): Let $\varphi \in C([0,1])$ with φ' operator monotone on (0,1) and take $\{P_n\}_{n=1}^{\infty}$ as before. Then

$$\lim_{n \to \infty} \mathcal{H}_{\varphi}(P_n A P_n, P_n B P_n) = \operatorname{Tr} \left[\varphi(A) - \varphi(B) - \frac{\mathsf{d}}{\mathsf{d}\alpha} \varphi\left(\alpha A + (1 - \alpha)B\right) \Big|_{\alpha = 0} \right].$$

[DHS] A. D., C. Hainzl, R. Seiringer, *Note on a Family of Monotone Quantum Relative Entropies*, arXiv:1502.07205 [math-ph] (2015).

Recovering the original formula

Theorem 4 ([DHS]): Let $\varphi \in C([0,1])$ with φ' operator monotone on (0,1). Assume in addition that (A - B), $\varphi(A) - \varphi(B)$ and $\varphi'(B)(A - B)$ are trace-class. Then

$$\operatorname{Tr}\left[\varphi(A) - \varphi(B) - \frac{\mathsf{d}}{\mathsf{d}\alpha}\varphi(\alpha A + (1-\alpha)B)\Big|_{\alpha=0}\right]$$
$$= \operatorname{Tr}\left[\varphi(A) - \varphi(B) - \varphi'(B)(A-B)\right]$$

holds.

- 4 同 6 4 日 6 4 日 6

A crucial ingredient of the proof

There exists a unique Borel probability measure μ on [-1,1] and a $b\geq 0$ such that

$$\operatorname{Tr}\left[\varphi(A) - \varphi(B) - \frac{\mathrm{d}}{\mathrm{d}\alpha}\varphi(\alpha A + (1-\alpha)B)\Big|_{\alpha=0}\right]$$
$$= 2b \int_{-1}^{1} \int_{0}^{\infty} \operatorname{Tr}\left[R_{\lambda,t}(B)QR_{\lambda,t}(A)QR_{\lambda,t}(B)\right] \mathrm{d}t \mathrm{d}\mu(\lambda),$$

with

$$Q = A - B$$
 and $R_{\lambda,t}(A) = rac{1}{1 + \lambda(1 - 2A) + t}$

Conclusion

- We have computed the limit lim_{n→∞} H_{\varphi}(P_nAP_n, P_nBP_n) for general bounded operators A and B,
- and shown that it equals Tr [φ(A) − φ(B) − φ'(B)(A − B)] for nice enough A and B.

- This makes the generalized relative entropy of Lewin and Sabin easier to use
- and suggest that one should define the generalized relative entropy directly by $\mathcal{H}_{\varphi}(A, B) = \operatorname{Tr} \left[\varphi(A) \varphi(B) \frac{d}{d\alpha} \varphi(\alpha A + (1 \alpha)B) \Big|_{\alpha=0} \right].$

くほと くほと くほと

Thank you for your attention!

A⊒ ▶ < ∃