Semiclassical approximation and critical temperature shift for weakly interacting trapped bosons

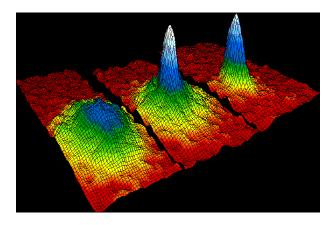
Andreas Deuchert

Institute of Mathematics, University of Zurich (UZH)

Analysis and Applied Mathematics Seminar @ University of Toronto March 12, 2021

Joint work with Robert Seiringer

BEC – An experimental breakthrough



Nobel Prize in Physics 2001: Cornell, Ketterle and Wieman

Schrödinger equation

Fundamental description by **Schrödinger equation:**

$$H_N\Psi_N(x_1,...,x_N) = E_N\Psi_N(x_1,...,x_N),$$

with Hamiltonian

$$H_N = \sum_{i=1}^N \left(-\Delta_i + \frac{x_i^2}{4} \right) + \sum_{1 \le i < j \le N} v_N(x_i - x_j).$$

In experiments: $N = 10^2 - 10^6 \Rightarrow$ Curse of dimensionality.

Behavior of the system at zero temperature (MF case)

Mean-field limit: When $v_N(x) = N^{-1}v(x)$ we have

$$\Psi_{N}(x_{1},...,x_{N})pprox\prod_{i=1}^{N}\Phi^{\mathrm{H}}(x_{i})\quad ext{and}\quad extstyle{E}_{N}pprox NE^{\mathrm{H}},$$

where

$$\mathcal{E}^{\mathrm{H}}(\Phi) = \int_{\mathbb{R}^3} \overline{\Phi(x)} \left(-\Delta_i + \frac{x_i^2}{4} \right) \Phi(x) \, \mathrm{d}x + \frac{1}{2} \int_{\mathbb{R}^6} v(x-y) |\Phi(x)|^2 |\Phi(y)|^2 \, \mathrm{d}(x,y)$$

and Φ^H is the unique minimizer of $\mathcal{E}^H.$

References:

- Lewin, Nam, Rougerie, Adv. Math. 254, 570 (2014)
- Grech, Seiringer, Comm. Math. Phys. 322 (2), 559 (2013)

Behavior of the system at zero temperature (GP case)

Gross–Pitaevskii limit: When $v_N(x) = N^2 v(Nx)$ we have

$$\Psi_{\textit{N}}(\textit{x}_1,...,\textit{x}_{\textit{N}}) pprox \prod_{i=1}^{\textit{N}} \Phi^{\mathrm{GP}}(\textit{x}_i) \quad \text{and} \quad \textit{E}_{\textit{N}} pprox \textit{NE}^{\mathrm{GP}},$$

where

$$\mathcal{E}^{\mathrm{GP}}(\Phi) = \int_{\mathbb{R}^3} \overline{\Phi(x)} \left(-\Delta_i + \frac{x_i^2}{4} \right) \Phi(x) \, \mathrm{d}x + 4\pi a \int_{\mathbb{R}^3} |\Phi(x)|^4 \, \mathrm{d}(x)$$

and $\Phi^{\rm GP}$ is the unique minimizer of $\mathcal{E}^{\rm GP}.$

References:

- Lieb, Seiringer, Yngvason, Phys. Rev. A 61, 043602 (2000)
- Boccato, Brennecke, Cenatiempo, Schlein, Acta Math. 222, 219 (2019)

Free energy and Gibbs variational principle

Let

$$\mathcal{S}_{\textit{N}} = \Big\{ \Gamma \in \mathcal{B}\left(\textit{L}^{2}_{\mathrm{sym}}\left(\mathbb{R}^{3\textit{N}}\right) \right) \, \Big| \, \, \Gamma \geq 0 \,\, \text{and} \,\, \text{Tr} \, \Gamma = 1 \Big\},$$

denote the set of *N*-particle states.

The free energy can be characterized by the Gibbs variational principle

$$F(T,N) = \inf_{\Gamma \in \mathcal{S}_N} \underbrace{\{ \operatorname{Tr} [H_N \Gamma] - TS(\Gamma) \}}_{=\mathcal{F}(\Gamma)} \quad \text{with} \quad \underbrace{S(\Gamma) = -\operatorname{Tr} [\Gamma \ln(\Gamma)]}_{\text{Von Neumann entropy}}.$$

The unique minimizer of \mathcal{F} is the **Gibbs state**

$$G_N = \frac{e^{-H_N/T}}{\mathrm{Tr}\left[e^{-H_N/T}\right]}.$$

1-pdm and BEC

The one-particle reduced density matrix (1-pdm) of an N-particle state $\Gamma_N \in \mathcal{S}_N$ can be defined via its integral kernel

$$\gamma_{\Gamma_N}^{(1)}(x,y) = N \int \Gamma_N(x,q_1,...,q_{N-1};y,q_1,...,q_{N-1}) d(q_1,...,q_{N-1}).$$

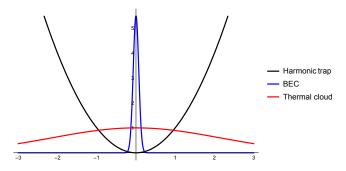
It is the quantum version of the **one-particle marginal** of an *N*-particle probability distribution.

A sequence of states Γ_N (indexed by the particle number) displays **Bose–Einstein** condensation (BEC) if

$$\liminf_{N \to \infty} \sup_{\|\phi\|_{L^2(\mathbb{R}^3)}} \frac{\langle \phi, \gamma_{\Gamma_N}^{(1)} \phi \rangle}{N} > 0.$$

Scales for ideal Bose gas as $N \to \infty$

Critical temperature of ideal gas: $T_c(0) = \left(\frac{N}{\zeta(3)}\right)^{1/3}$.



- Free energy $F(T,N) \sim TN \sim N^{4/3}$
- Length scale density condensate: 1
- Length scale density thermal cloud: $N^{1/6}$

Scales for the interacting model as $N \to \infty$

Hamiltonian:

$$H_N = \sum_{i=1}^N \left(-\Delta_i + \frac{x_i^2}{4} \right) + \frac{1}{N^{2/3}} \sum_{1 \le i < j \le N} v \left(N^{-1/6} (x_i - x_j) \right)$$

Temperature:

$$T \lesssim T_{\rm c}(N) = \left(rac{N}{\zeta(3)}
ight)^{1/3}.$$

Scales for the interacting model as $N \to \infty$

Hamiltonian:

$$H_N = N^{1/3} \left\{ \sum_{i=1}^N \left(-\hbar^2 \Delta_i + \frac{x_i^2}{4} \right) + \frac{1}{N} \sum_{1 \le i < j \le N} v(x_i - x_j) \right\}$$

with $\hbar = N^{-1/3}$.

Temperature:

$$T \lesssim T_{
m c}(N) = \left(rac{N}{\zeta(3)}
ight)^{1/3}.$$

The semiclassical mean-field limit

Hamiltonian:

$$H_N = \sum_{i=1}^{N} \left(-\hbar^2 \Delta_i + \frac{x_i^2}{4} \right) + \frac{1}{N} \sum_{1 \le i < j \le N} v(x_i - x_j)$$

with $\hbar = N^{-1/3}$.

Temperature:

$$\mathcal{T} \lesssim \mathcal{T}_{\mathrm{c}}(1) = \left(rac{1}{\zeta(3)}
ight)^{1/3}.$$

The semiclassical mean-field limit

Hamiltonian:

$$H_N = \sum_{i=1}^N \left(-\hbar^2 \Delta_i + \frac{x_i^2}{4} \right) + \frac{1}{N} \sum_{1 \leq i < j \leq N} v\left(x_i - x_j\right)$$

with $\hbar = N^{-1/3}$.

Temperature:

$$\mathcal{T} \lesssim \mathcal{T}_{
m c}(1) = \left(rac{1}{\zeta(3)}
ight)^{1/3}.$$

Goal: Prove BEC and quantify how the critical temperature depends on the interaction potential v.

Heuristics

MF interaction $v_N(x) = N^{-1}v(x)$ implies

$$\mathsf{Tr}\left[\sum_{1\leq i< j\leq N} v(x_i-x_j) \Gamma_N\right] \approx \frac{1}{2} \int_{\mathbb{R}^6} v(x-y) \varrho_{\Gamma_N}(x) \varrho_{\Gamma_N}(y) \,\mathrm{d}(x,y)$$

where $\varrho_{\Gamma_N}(x) = \gamma_{\Gamma_N}^{(1)}(x,x)$. \Rightarrow Expect that energy can be expressed as a nonlinear function of **1-pdm**.

Semiclassical parameter $-\hbar^2\Delta$ implies that for "nice" functions f:

$$\operatorname{tr}\left[f\left(-\hbar^2\Delta+V(x)\right)\right]=\int_{\mathbb{R}^6}f\left(p^2+V(q)\right)\frac{\mathrm{d}(p,q)}{(2\pi\hbar)^3}+O\left(\hbar^{-2}\right).$$

Effective model: The semiclassical free energy functional

Let $g \in [0,1]$ and $\gamma(p,q) \geq 0$ be such that

$$\int_{\mathbb{R}^6} \gamma(p,q) rac{\mathrm{d}(p,q)}{(2\pi)^3} + g = 1.$$

The semiclassical free energy functional is defined by

$$egin{aligned} \mathcal{F}^{
m sc}(\gamma, oldsymbol{g}) &= \int_{\mathbb{R}^6} \left(oldsymbol{p}^2 + rac{q^2}{4}
ight) \gamma(oldsymbol{p}, oldsymbol{q}) rac{\mathrm{d}(oldsymbol{p}, oldsymbol{q})}{(2\pi)^3} - T \mathcal{S}^{
m sc}(\gamma) \ &+ rac{1}{2} \int_{\mathbb{R}^6} oldsymbol{v}(oldsymbol{q} - oldsymbol{q}') arrho(oldsymbol{q}) arrho(oldsymbol{q}) arrho(oldsymbol{q}') \, \mathrm{d}(oldsymbol{q}, oldsymbol{q}'), \end{aligned}$$

with the density $\varrho(q)=\int_{\mathbb{R}^3}\gamma(p,q)rac{\mathrm{d}p}{(2\pi)^3}+g\,\delta(q)$ and the entropy

$$S^{
m sc}(\gamma) = -\int_{\mathbb{R}^6} \left(\gamma \ln(\gamma) - (1+\gamma) \ln(1+\gamma)
ight) (p,q) rac{\mathrm{d}(p,q)}{(2\pi)^3}.$$

Selected literature

Semiclassical MF limit for fermions

- Fournais, Lewin, Solovej, Calc. Var. Partial Differ. Equ. pp. 57 (2018)
- Lewin, Madsen, Triay, J. Math. Phys. 60, 091901 (2019)

Dynamics of fermions in semiclassical MF limit

- Benedikter, Porta, Schlein, Commun. Math. Phys. 331, 1087 (2014)
- Benedikter, Jaksic, Porta, Saffirio, Schlein, Commun. Pure Appl. Math. 69, 2250 (2014)

Semiclassical MF limit and Gross-Pitaevskii limit for bosons

- Baumgartner, Narnhofer, Thirring, Annals of Physics 150, 373 (1983)
- Deuchert, Seiringer, Yngvason, Commun. Math. Phys. 368, 723 (2019)

Main results (non-technical version)

Theorem (Characterization of BEC and MF shift of $T_{\rm c}$)

The **full quantum mechanical model** displays BEC if and only if the semiclassical free energy functional displays BEC.

Denote by g(T) the condensate fraction of the interacting Gibbs state. Assume that v is replaced by λv with $0 < \lambda \le 1$. Then there exists $\lambda_0 > 0$ such that for all $\lambda \le \lambda_0$ we have the following statements

- There exits a unique critical temperature $T_c(\lambda)$ such that g(T) = 0 for $T \geq T_c(\lambda)$ and g(T) > 0 for $T < T_c(\lambda)$.
- The critical temperature satisfies $T_c(\lambda) = T_c(0) \lambda \Theta + O(\lambda^2)$ with

$$\Theta = \frac{1}{24\pi^3} \int_{\mathbb{R}^6} \gamma_0^2(\boldsymbol{p}, \boldsymbol{x}) \exp\left(\frac{1}{T_{\rm c}(0)} \left(\boldsymbol{p}^2 + \frac{\boldsymbol{x}^2}{4}\right)\right) \left(\boldsymbol{v} * \varrho_0(0) - \boldsymbol{v} * \varrho_0(\boldsymbol{x})\right) \, \mathrm{d}(\boldsymbol{p}, \boldsymbol{x}).$$

1st stage of simplification: Hartree free energy functional

We define the set of 1-pdms

$$\mathcal{D}_{N}^{\mathrm{H}}=\left\{ \gamma\in\mathcal{B}\left(L^{2}\left(\mathbb{R}^{3}\right)\right)\ \middle|\ \gamma\geq0,\ \mathrm{tr}[\gamma]=N\right\} .$$

For an operator $\gamma \in \mathcal{D}_N^{\mathrm{H}}$ the Hartree free energy functional is defined by

$$\mathcal{F}^{\mathrm{H}}(\gamma) = \mathrm{tr}\left[\left(-\hbar^2\Delta + \frac{\mathsf{x}^2}{4} + \frac{1}{2\mathsf{N}}\mathsf{v} * \varrho_{\gamma}\right)\gamma\right] - \mathit{Ts}(\gamma),$$

where $\varrho_{\gamma}(x) = \gamma(x,x)$ and where the **bosonic entropy** is defined by

$$s(\gamma) = -\text{tr}\left[\gamma \ln(\gamma) - (1+\gamma) \ln(1+\gamma)\right].$$

Finally, γ^H denotes the ${\bf unique}~{\bf minimizer}~{\bf of}~{\cal F}^H$ and

$$F^{\mathrm{H}}(T, N) = \mathcal{F}^{\mathrm{H}}(\gamma^{\mathrm{H}})$$
.

Main results: 1st stage of simplification (technical version)

Theorem (Validity of Hartree theory)

In the limit $N\to\infty$ with $T\lesssim T_{\rm c}(0)$ we have

$$\left|F(T,N)-F^{\mathrm{H}}(T,N)\right|\lesssim N^{1/3}.$$

Moreover, for any sequence of states $\Gamma_N \in \mathcal{S}_N$ with 1-pdm γ_N and

$$\left|\mathcal{F}(\Gamma_N) - F^{\mathrm{H}}(T, N)\right| \leq \delta$$

for some $\delta > 0$, we have

$$\left\|\gamma_{\Gamma_N} - \gamma^{\mathrm{H}}\right\|_1 \lesssim N^{5/6} (1+\delta)^{1/4}.$$

Main results: 2nd stage of simplification (technical version)

For a given 1-pdm γ we define the **Husimi function** by

$$m_{\gamma}(p,q) = \left\langle \ell_{p,q}^{\hbar}, \gamma \ell_{p,q}^{\hbar} \right\rangle \quad \text{with} \quad \ell_{p,q}^{\hbar} = \hbar^{-3/4} \ell((x-q)/(\hbar^{1/2})) e^{ipx/\hbar}.$$

Theorem (Validity of the semiclassical approximation)

In the limit $N\to\infty$ with $T\lesssim T_{\rm c}(0)$ we have

$$\left|F^{\mathrm{H}}(T,N)-NF^{\mathrm{sc}}\left(T\right)\right|\lesssim N^{2/3}.$$

Moreover, let $P^{\rm H}$ be the **projection** onto the eigenspace of the **largest** eigenvalue of $\gamma^{\rm H}$ and define $Q^{\rm H}=1-P^{\rm H}$. We then have

$$\begin{split} \left| \textit{N}^{-1} \mathrm{tr} \left[\textit{P}^{\mathrm{H}} \gamma^{\mathrm{H}} \right] - \textit{g}^{\mathrm{sc}} \right| \lesssim \textit{N}^{-1/9 + \sigma} \quad \textit{as well as} \\ \int_{\mathbb{R}^6} \left| \textit{m}_{\textit{Q}^{\mathrm{H}} \gamma^{\mathrm{H}}} (\textit{p}, \textit{x}) - \gamma^{\mathrm{sc}} (\textit{p}, \textit{x}) \right| \, \mathrm{d}(\textit{p}, \textit{x}) \lesssim \textit{N}^{-1/9 + \sigma} \end{split}$$

for any $\sigma > 0$.

Remarks

- Optimal error of bounds for free energies.
- Zero temperature limit included.
- All results remain true if F is minimized over general states on the Fock space with fluctuating particle number. In particular, we have equivalence of ensembles up to the given accuracy.
- Power law traps behaving as $|x|^s$ for $|x| \to \infty$ and some s > 0 can be treated with our approach.

Quantifying coercivity of semiclassical free energy

For $f(x) = x \ln(x) - (1+x) \ln(1+x)$ and two nonnegative functions $a, b \in L^1(\mathbb{R}^6)$ we define the **semiclassical relative entropy**

$$S^{\text{sc}}(a,b) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^6} \left[f(a(p,x)) - f(b(p,x)) - f'(b(p,x)) (a(p,x) - b(p,x)) \right] d(p,x).$$

Lemma (Quantitative coercivity)

There exists a constant C>0 such that for any two nonnegative functions $a,b\in L^1(\mathbb{R}^6)$ we have

$$\mathcal{S}^{\mathrm{sc}}\left(a,b\right) \geq C \frac{\left(\int_{\mathbb{R}^6} \left| a(p,x) - b(p,x) \right| \, \mathrm{d}(p,x) \right)^2}{\int_{\mathbb{R}^6} \left(a(p,x) + b(p,x) \right) \left(1 + b(p,x) \right) \, \mathrm{d}(p,x)}.$$

Quantifying coercivity of quantum free energy

For $f(x) = x \ln(x) - (1+x) \ln(1+x)$ and two nonnegative trace-class operators a, b we define the **bosonic relative entropy**

$$S(a,b) = \operatorname{tr} \bigg[f(a) - f(b) - f'(b) (a-b) \bigg].$$

Lemma (Quantitative coercivity)

There exists a constant C>0 such that for any two nonnegative trace-class operators a,b we have

$$S(a,b) \ge C \frac{(\|a-b\|_1)^2}{\|1+b\|\text{tr}[a+b]}.$$

Equivalence of ensembles for Hartree free energy

For $\Gamma \in \mathcal{S}_N$ we define the **canonical version** of the Hartree free energy by

$$\mathcal{F}^{\mathrm{H,c}}(\Gamma) = \mathsf{Tr}\left[\,\mathrm{d}\Upsilon\left(h + rac{1}{2} v_N * arrho_\Gamma
ight)\Gamma
ight] - \mathit{TS}(\Gamma)$$

and denote

$$F^{\mathrm{H,c}}(T,N) = \inf_{\Gamma \in \mathcal{S}_N} \mathcal{F}^{\mathrm{H,c}}(\Gamma).$$

Lemma (Equivalence of ensembles)

We have the bound

$$F^{\mathrm{H}}(T,N) \leq F^{\mathrm{H,c}}(T,N) \leq F^{\mathrm{H}}(T,N) + T\left(1 + \ln\left(1 + N\right)\right).$$