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The homogeneous Bose gas in experiments

Figure: A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, Z. Hadzibabic,
Phys. Rev. Lett. 110, 200406 (2013)

Also possible: 2d Bose gas, 2d and 3d Fermi gases.
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The ideal Bose gas

Consider the ideal Bose gas on [0, L]3 with periodic boundary conditions.
The expected number of particles in the grand canonical ensemble is
given by

N =
∑

p∈ 2π
L
Z3

1

exp ((p2 − µ) /T )− 1
.

Here µ(T ,N, L) and T denote the chemical potential and the
temperature.

The expected number of particles in the Bose-Einstein condensate
(BEC) N0(T ,N, L) = [e−µ/T − 1]−1 is, as N →∞, to leading order given
by

N0(T ,N, L)

N
'

[
1−

(
T

Tc

)3/2
]

+

with Tc = 4π

(
N/L3

ζ(3/2)

)2/3

.
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The Hamiltonian of the interacting model

Hamiltonian with Gross-Pitaevskii scaling:

HN =
N∑
i=1

−∆i +
∑

1≤i<j≤N
L−2N2v (N|xi − xj |/L) .

Here ∆ is the Laplacian on [0, L]3 with periodic boundary conditions and
v ≥ 0 such that scattering length is finite.

The scattering length aN of L−2N2v (N|x |/L) behaves as

aN ∼ LN−1 ⇒ aN � %−1/3.
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Free energy and Gibbs variational principle

The free energy of the gas is given by

F (T ,N, L) = −T ln
(

Tr
[
e−HN/T

])
,

where the trace is taken over functions that are symmetric under an
exchange of the coordinates.

Gibbs variation principle: Let

SN =
{

Γ ∈ L
(
L2
sym

(
R3N

)) ∣∣∣ 0 ≤ Γ ≤ 1 and Tr Γ = 1
}
,

then

F (T ,N, L) = inf
Γ∈SN

{Tr [HNΓ]− TS(Γ)}︸ ︷︷ ︸
=F(Γ)

with S(Γ) = −Tr [Γ ln(Γ)] .
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1-pdm and Bose-Einstein condensation

The one-particle reduced density matrix (1-pdm) of a state Γ ∈ SN
can be defined via its integral kernel by

γ(x , y) = Tr
[
a∗yaxΓ

]
.

Here a∗x and ax denote the usual creation and annihilation operators.
Equivalently, this kernel can be defined by

γ(x , y) = N

∫
R3(N−1)

Γ(x , q1, ..., qN−1; y , q1, ..., qN−1)d(q1, ..., qN−1).

A sequence of states ΓN ∈ SN with 1-pdms γN is said to show
Bose-Einstein condensation (BEC) if

lim inf
N→∞

sup
‖φ‖=1

〈φ, γNφ〉
N

> 0.
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Mathematical literature on dilute Bose gases, T = 0

Ground state asymptotics of dilute Bose gas in thermodynamic
limit: Dyson ’57 (Upper bound hard spheres), Lieb, Yngvason ’98
(Lower bound), Lieb, Seiringer, Yngvason ’00 (General upper bound)

LHY formula: Yau, Yin ’09 (Upper bound), Fournais, Solovej ’19
(Lower bound)

Ground state asymptotics in GP limit: Lieb, Seiringer, Yngvason
’00, Lieb, Seiringer ’02, Boccato, Brennecke, Cenatiempo, Schlein
’17, ’18

GP limit of rotating Bose gas: Lieb, Seiringer ’06, Nam, Rougerie,
Seiringer ’16

Bogoliubov theory in GP scaling: Boccato, Brennecke,
Cenatiempo, Schlein ’18

Dynamics of BEC in GP limit: Erdös, Schlein, Yau ’09 and ’10,
Pickl ’15, Benedikter, de Oliveira, Schlein ’15
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Mathematical literature on dilute Bose gases, T > 0

Results in thermodynamic limit:

Free energy asymptotics of dilute Bose gas in thermodynamic limit:
Seiringer ’08 (Lower bound)

Free energy asymptotics of dilute Bose gas in thermodynamic limit:
Yin ’10 (Upper bound)

Free energy of quasi-free states in d = 2, 3 and critical temperatures:
Napiórkowski, Reuvers, Solovej ’18, +Fournais ’19

Results in GP limit:

Free energy asymptotics and prove of BEC for trapped gas in GP
limit: Deuchert, Seiringer, Yngvason ’18
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Theorem: Part 1 (Asymptotics of free energy)

Assumptions:

v a nonnegative, radial and measurable function which is integrable
outside some finite ball (⇔ aN <∞)

Limit: N →∞, T . Tc and aN ∼ LN−1

Notation:

F0(T ,N, L) ∼ L3T 5/2 ∼ L−2N5/3 the free energy of the ideal gas

%0(T ,N, L) = N0(T ,N, L)/L3 expected density of particles in
condensate of ideal Bose gas

We have

F (T ,N, L) = F0(T ,N, L) + 4πaNL
3
(

2%2 − %0 (T ,N, L)2
)

(1 + o(1)) .

Note that 4πaNL
3%2 ∼ L−2N.
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Theorem: Part 2 (Asymptotics of 1-pdm)

Notation:

State ΓN with 1-pdm γN and free energy F(ΓN)

γN,0 denotes 1-pdm of the non-interacting canonical Gibbs state

For any sequence of approximate minimizers ΓN of the free energy in
the sense

FN(ΓN) = F0(T ,N, L) + 4πaNL
3
(
2%2 − %0(T ,N, L)2

)
(1 + o(1))

we have
‖γN − γN,0‖1 = o(N).
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Remarks

Result for 1-pdm implies BEC in the form

lim
N→∞

sup
‖φ‖=1

〈φ, γNφ〉
N

=

[
1−

(
T

Tc

)3/2
]

+

with critical temperature Tc of the ideal gas.

Quantities related to the ideal gas, that is, N0(T ,N, L), γN,0 and
F0(T ,N, L), can be replaced by their grand canonical versions.

Uniformity in temperature as long as T ≤ CTc for some C > 0.

Treatment of Dirichlet boundary conditions possible.
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Ingredients of the proof

Upper bound: Much simpler proof than in thermodynamic limit
(Yin ’10) possible because the system in the GP scaling is much more
dilute (5 vs. 55 pages).

Lower bound: Adaption of the proof of the lower bound in the
thermodynamic limit (Seiringer ’08) with an error of the same size.

Asymptotics of 1-pdm and BEC: C-number substitution with
general state instead of interacting Gibbs state, novel bound for
bosonic relative entropy, Griffith argument to detect condensate.
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And now some more details concerning
the proof...
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Proof of upper bound: the trial state

Let

ΓG =
e−H

0
N/T

Tr
[
e−H

0
N/T
] =

∞∑
α=1

λα|Ψα〉〈Ψα|

be the canonical Gibbs state of the ideal gas. Denote by f (|x |) the
solution to the zero energy scattering equation

−∆f (|x |) + 1
2vN(|x |)f (|x |) = 0 with lim

|x |→∞
f (|x |) = 1

and define fb(r) = f (r)/f (b) if r < b and fb(r) = 1 otherwise. Let
F (x1, ..., xN) =

∏
1≤i<j≤N fb(|xi − xj |). The trial state is given by

Γ̃G =
∞∑
α=1

λα
|FΨα〉〈FΨα|
〈FΨα,FΨα〉

.
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Proof of lower bound: coherent states

Pick pc > 0 and let M = #{p ∈ 2π
L Z3||p| < pc}. For a vector z ∈ CM

define the coherent state

|z〉 = exp

 ∑
|p|<pc

zpa
∗
p − zpap

 |vac〉.

We have ap|z〉 = zp|z〉 if |p| < pc. For a second quantized operator, e.g.
N =

∑
p a
∗
pap, the lower and upper symbols are defined by

Ns(z) := 〈z ,Nz〉 =
∑
|p|<pc

|zp|2 +
∑
|p|≥pc

a∗pap and

N =

∫
CM

|z〉〈z | ⊗ Ns(z)dz , ⇒ Ns(z) =
∑
|p|<pc

(
|zp|2 − 1

)
+
∑
|p|≥pc

a∗pap,

respectively. Here zp = xp + iyp and dz =
∏
|p|<pc

dxp dyp
π .
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The c-number substitution

Denote by H the second quantized Hamiltonian

H =
∑
p

(
p2 − µ

)
a∗pap +

1

2L3

∑
p,k,`

v̂N(p)a∗k+pa
∗
`−paka`.

For the grand-canonical partition function one has the Berezin-Lieb
inequality∫

CM

Tr> exp (−Hs(z)/T ) dz ≤ Tr exp (−H/T )

≤
∫
CM

Tr> exp (−Hs(z)/T ) dz .

(Berezin ’72, Lieb ’73).
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The c-number substitution with a general state: part 1

For a given state Γ on the Fock space define the state Γz and the
classical probability distribution ζΓ by

Γz =
〈z , Γz〉

Tr>〈z , Γz〉
and ζΓ(z) = Tr>〈z , Γz〉,

respectively.

Lemma

The entropy of Γ is bounded by

S(Γ) ≤
∫
CM

S(Γz)ζΓ(z) dz −
∫
CM

ln (ζΓ(z)) ζΓ(z) dz .
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c-number substitution with a general state: part 2

For the free energy of a state Γ ∈ SN the Lemma implies

Tr [HNΓ]−TS(Γ) ≥ µN +

∫
CM

{Tr [Hs(z)Γz ]− TS(Γz)} ζΓ(z)dz −TS(ζΓ)

where

S(ζΓ) = −
∫
CM

ln (ζΓ(z)) ζΓ(z) dz

is the entropy of the classical distribution ζΓ.
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What about the asymptotics of the
one-particle density matrix?
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Asymptotics of thermal cloud: part 1

Let ΓN be a sequence of of approximate minimizers in the sense that

Tr [HNΓN ]− TS(ΓN) = F0(β,N, L) + 4πaNL
3
(
2%2 − %2

0

)
(1 + o(1))

we have ∫
CM

S (γz , γ̃0) ζΓ(z) dz ≤ o
(
N1/3

)
where

S(a, b) = Tr
[
σ(a)− σ(b)− σ′(b)(a− b)

]
with σ(x) = x ln(x)− (1 + x) ln(1 + x) denotes the bosonic relative
entropy.
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Asymptotics of thermal cloud: part 2

Lemma

There exists a constant C > 0 such that for any two nonnegative
trace-class operators γ, γ0 we have

S(γ, γ0) ≥ C
‖γ − γ0‖2

1

‖1 + γ0‖Tr [γ + γ0]
.

With the Lemma and the bound from the previous slide one concludes

‖1 (−∆ ≥ pc) (γ − γ0)1 (−∆ ≥ pc) ‖1 ≤ o(N).
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The condensate

Prove lower bound with HN replaced by

Hλ
N = HN + λ

N∑
i=1

|Φ〉〈Φ|i ,

where Φ(x) = L−3/2. The lower bound then reads

Tr
[
Hλ
NΓ
]
−TS(Γ) ≥ F0(T ,N, L, λ)+4πaNL

3
(
2%2 − %0(T ,N, L)2

)
−o(N/L2)

and we conclude

〈Φ, γΦ〉 ≥ F0(T ,N, L, λ)− F0(T ,N, L, 0)

λ
− L3aN%

2o(1)

λ
.

⇒ ‖1 (−∆ < pc) (γ − γ0)1 (−∆ < pc) ‖1 ≤ o(N).
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Thank you for your attention!
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