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Superfluidity

Vortex lattice of Fermi gas across the BEC - BCS crossover.

M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, W. Ketterle, Vortices

and superfluidity in a strongly interacting Fermi gas, Nature 435, 1047–1051 (2005)
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Setup: Particles in a constant magnetic field

QB

B = Be3

√
2πB−1

b3

b1

b2

We consider attractively interacting fermionic particle in a weak external magnetic
field |B| � 1.
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Fermionic quasi-free states

States on the fermionic Fock space obeying the Wick theorem are called
quasi-free.

Such states are uniquely determined by their generalized one-particle
density matrix Γ ∈ L

(
L2(R3)⊕ L2(R3)

)
, 0 ≤ Γ ≤ 1, which is of the form

Γ =

(
γ α
α 1− γ

)
.

This, in particular, implies 0 ≤ γ ≤ 1 and αα∗ ≤ γ(1− γ). We assume that
α(x , y) = α(y , x) ⇒ s-wave Cooper pairs (spin-singulett).

Our states are gauge-periodic w.r.t. ΛB =
√

2πB−1Z3, that is, for λ ∈ ΛB

we have

γ(x + λ, y + λ) = e−i
B
2 ·(λ∧(x−y))γ(x , y),

α(x + λ, y + λ) = e−i
B
2 ·(λ∧(x+y))α(x , y).
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The BCS free energy functional

For gauge-periodic BCS states we define the BCS free energy functional by

FBCS
B,T (Γ) = Tr

[(
(−i∇+A)2−µ

)
γ
]
−TS(Γ)− 1

|QB |

∫
QB×R3

V (r)|α(X , r)|2d(X , r),

where

Tr[A] = 1
|QB |TrL2(QB )[1(x ∈ QB)A1(x ∈ QB)], that is, we consider energy

per unit volume, (QB is the unit cell of the lattice ΛB)

A(x) = 1
2 B ∧ x (Vector potential),

µ ∈ R,T ≥ 0 (chemical potential, temperature),

S(Γ) = −Tr[Γ ln(Γ)] (Von Neumann entropy),

r = x − y , X = x+y
2 , and α(X , r) ≡ α(x , y), that is, we express α in

relative- and center-of-mass coordinates.
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Normal state, free energy and superconductivity

The unique minimizer for V = 0 is called normal state and reads

Γ0 =

(
γ0 0
0 1− γ0

)
with γ0 =

1

e((−i∇+A(x))2−µ)/T + 1
.

The BCS free energy is defined by

FBCS(B,T ) = inf
Γ
{FBCS

B,T (Γ)−FBCS
B,T (Γ0)}.

The system is said to be superconducting at temperature T and magnetic
field B if

FBCS(B,T ) < 0.
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Effective models I: Translation-invariant BCS functional

If B = 0 we describe the system by translation-invariant states, that is,

γ(x , y) = γ(x − y) and α(x , y) = α(x − y).

In this case it has been shown that there exists a critical temperature Tc such
that the system is superconducting if T < Tc and in its normal state if T ≥ Tc.

Moreover, Tc can be defined as the unique value of T such that the operator

KT − V (x) =
−∆− µ

tanh
(
−∆−µ

2T

) − V (x)

has 0 as its lowest eigenvalue. The corresponding eigenfunction will be denoted
by α∗.
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Critical temperature in translation-invariant case

B = 0,

Second variation of BCS
functional equals KT − V (x).

2T

µ

KT (p) =
p2 − µ

tanh(p
2−µ
2T )

T

σ(KT − V )

Tc

2Tσess
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Effective models II: The Ginzburg–Landau functional

We call a function Ψ : R3 → C gauge-periodic if for all λ ∈ ΛB we have

Ψ(X + λ) = e−iB·(λ∧X )Ψ(X ).

For such functions and parameters Λ1,Λ2,Λ3 > 0, D ∈ R the Ginzburg–Landau
functional is defined by

EGL
B,D(Ψ) =

1

B2|QB |

∫
QB

(
Λ1|(−i∇+ 2A)Ψ(X )|2 − DBΛ2|Ψ(X )|2 + Λ3|Ψ(X )|4

)
dX .

Its minimal value is the Ginzburg–Landau energy

EGL(D) = inf
Ψ
EGL

B,D(Ψ),

which, by scaling, does not depend on B.

Andreas Deuchert (Mathematics UZH) From BCS to GL Nov 04, 2021 12 / 22



Selected literature

Translation-invariant BCS functional

Hainzl, Hamza, Seiringer, Solovej, The BCS functional for general pair interactions,

CMP 281, 349 (2008)

Hainzl, Seiringer, The Bardeen–Cooper–Schrieffer functional of superconductivity
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Main result part I: Free energy asymptotics

Assumptions:

V radial function with (1 + | · |2)V ∈ L∞(R3),

V such that Tc > 0 in translation-invariant case,

Zero eigenvalue of KTc − V (x) is simple.

Theorem (D., Hainzl, Schaub)

There are constants C > 0 and B0 > 0 such that for all 0 < B ≤ B0, we have

FBCS
B,Tc(1−DB) = B2

(
EGL(D) +R

)
with

−CB 1
12 ≤ R ≤ CB.
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Main result part II: Approximate minimizers

Theorem (continued)

For any approximate minimizer Γ of FBCS
B,T at T = Tc(1− DB) in the sense that

FBCS
B,T (Γ)−FBCS

B,T (Γ0) ≤ B2
(
EGL(D) + ρ

)
holds for some ρ ≥ 0, we have the decomposition

α(X , r) = α∗(r)Ψ(X ) + σ(X , r)

for the Cooper pair wave function α = Γ12. Here, σ satisfies

1

|QB |

∫
QB×R3

|σ(X , r)|2d(X , r) ≤ CB11/6,

α∗ is the zero energy eigenfunction of KTc
− V (x), and Ψ obeys

EGL
B,D(Ψ) ≤ EGL(D) + ρ+ CB1/12.
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Separation of scales

α∗
x+ y

2

x− y

O(
√
B−1)

ψ

O(1)

Ψ approximate minimizer of EGL
B,D

(KTc − V (x))α∗ = 0
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Main result part III: Critical temperature shift

Assumptions: Same as for previous theorem.

Definition: Dc = Λ1 inf σL2
mag(Q1)((−i∇+ e3 ∧ X )2).

Theorem (D., Hainzl, Schaub)

There are constants C > 0 and B0 > 0 such that for all 0 < B ≤ B0 the following
holds:

Let 0 < T0 < Tc. If the temperature satisfies

T0 ≤ T ≤ Tc(1− B(Dc + CB1/2)),

then we have FBCS(B,T ) < 0.

If the temperature satisfies

T ≥ Tc(1− B(Dc − CB1/12)),

then we have FBCS
B,T (Γ)−FBCS

B,T (Γ0) > 0 unless Γ = Γ0.
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Phase Diagram
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Proof strategy in a nutshell

Step 1) Learn to carry out very accurate computation with trial states
(Gibbs states) of the form

Γ∆ =
1

1 + eH∆/T
with H∆ =

(
(−i∇+ A)2 − µ ∆

∆ −(−i∇+ A)2 + µ

)
,

and ∆(X , r) = 2V (r)α∗(r)Ψ(X ). ⇒ Upper bound for free energy and
lower bound for critical temperature.

Step 2) Proof a-priori bound for low energy states close to Tc.

Step 3) For given low energy state Γ, construct Gibbs state Γ∆, estimate
FBCS

B,T (Γ) from below in terms of FBCS
B,T (Γ∆) (this is a highly non-trivial

thing to do), and use step 1 to compute FBCS
B,T (Γ∆). Attention: Regularity

from a-priori bounds not good enough for trial state analysis. Solution:
Introduce cut-off to obtain more regularity (at the price of additional
remainder terms). ⇒ Lower bound for free energy and upper bound for
critical temperature.
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Proof techniques I: Upper bound

Main novelty of our trial state analysis is to write

− Tr0

[
ln
(

1 + e−H∆/T
)
− ln

(
1 + e−H0/T

)]
= Tr0

[
ln

(
cosh

(
H∆

2T

))
− ln

(
cosh

(
H0

2T

))]
,

where

H∆ =

(
(−i∇+ A)2 − µ ∆

∆ −(−i∇+ A)2 + µ

)
,

and use a product expansion of cosh(x).

Extension of the phase approximation method, which has been pioneered
in the framework of linearized BCS theory by Frank, Hainzl and Langmann,
to our nonlinear setting. The approach makes use of the formula

1

z − (−i∇+ A)2 (x , y) = ei
B
2 ·(x∧y)g z

B(x − y).
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Proof techniques II: Lower bound

The main novelty of our work are the following a-priori bounds for low energy
states:

Theorem (Structure of low energy states)

For all D0,D1 ≥ 0, there is a constant B0 > 0 such that for all 0 < B0 ≤ B we
have the following statement: If T − Tc ≥ −D0B and if Γ obeys

FBCS
B,T (Γ)−FBCS

B,T (Γ0) ≤ D1B
2,

then there exist Ψ ∈ H1
mag(QB) and ξ ∈ H1

mag(QB × R3) such that

α(X , r) = Ψ(X )α∗(r) + ξ(X , r),

where

sup
0<B≤B0

‖Ψ‖2
H1

mag(QB ) ≤ C and ‖ξ‖2
H1

mag(QB×R3) ≤ CB2
(
‖Ψ‖2

H1
mag(QB ) + D1

)
.
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