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The model

The Hamiltonian in mean-field (MF) scaling is given by

HN =
N∑
i=1

(−∆i + w(xi )) +
1

N

∑
1≤i<j≤N

v(xi − xj).

At temperature T > 0 the system is described by the free energy and the Gibbs
state

F (T ,N) = −T ln Tr[exp(−HN/T )] and ΓG =
exp(−HN/T )

Tr[exp(−HN/T )]
,

respectively. The traces are taken over permutation symmetric functions. We
have

lim
T→0

F (T ,N) = EN and lim
T→0

ΓG = |ΨN〉〈ΨN |,

where EN denotes the lowest eigenvalue of HN and HNΨN = ENΨN .
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1-pdm and BEC

The one-particle reduced density matrix (1-pdm) of the Gibbs state ΓG can
be defined via its integral kernel

γG(x , y) = N

∫
ΓG(x , q1, ..., qN−1; y , q1, ..., qN−1)d(q1, ..., qN−1).

It is the quantum version of the one-particle marginal of an N-particle
probability distribution.

We say that ΓG displays Bose–Einstein condensation (BEC) iff

lim inf
N→∞

sup
‖φ‖L2(R3)

〈φ, γGφ〉
N

> 0.
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Scales for ideal Bose gas with w(x) = |x |s and s > 0

Critical temperature of ideal gas: Tc(s) = C (s)Nα with α = 2s
6+3s .
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Free energy F0(T ,N) ∼ TN ∼ N1+α

Length scale density condensate: 1

Length scale density thermal cloud: N
α
s
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The interacting problem at T > 0

EH(g) = inf
‖φ‖=1

{
〈φ, (−∆ + w)φ〉+

g

2

∫
R6

|φ(x)|2v(x − y)|φ(y)|2
}

Natural scaling limit:

N →∞
T . Tc(s) ∼ N

2s
6+3s

Ideal gas quantities:

F0(T ,N)

g = limN→∞ N0(T ,N)/N

Theorem (Proved for harmonic trap)

We have
lim

N→∞
N−1

∣∣F (T ,N)− F0(T ,N)− NgEH(g)
∣∣ = 0

as well as
lim

N→∞
N−1

∥∥γG − γid − Ng
∣∣ΦH

g

〉 〈
ΦH

g

∣∣ ∥∥
1

= 0.

Reference:

A. D., R. Seiringer, J. Funct. Anal. 281, Issue 6, (2021)
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Initial datum I: Reference state

We want to construct perturbations of the state

Γ(φ, γ) = W (φ)G (γ)W ∗(φ),

where G (γ) is the unique quasi-free state on the bosonic Fock space F (L2(R3))
with 1-pdm γ that satisfies [N ,G ] = 0. Moreover,

W (φ) = exp(a∗(φ)− a(φ))

is a Weyl transformation that implements the condensate. We call φ the
condensate wave function and γ the 1-pdm of the thermal cloud. The
expected number of particles in the state Γ(φ, γ) equals

TrF [NΓ(φ, γ)] =

∫
R3

|φ(x)|2 dx + TrL2(R3)[γ] = N.
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Initial datum II: Araki–Woods representation

We write G (γ) =
∑∞
α=1 λα|Ψα〉〈Ψα| and define the vector

ΨG (γ) =
∞∑
α=1

√
λαΨα ⊗Ψα ∈ F (L2(R3))⊗F (L2(R3)).

This allows us to write

TrF [AG (γ)] = 〈ΨG (γ), (A⊗ 1) ΨG (γ)〉

for A ∈ B(F ). That is, we have represented G (γ) as a vector state on the
doubled Fock space. Moreover

TrF [AΓ(φ, γ)] = 〈W (φ)⊗W (φ)ΨG (γ), (A⊗ 1)W (φ)⊗W (φ)ΨG (γ)〉.

Reference:

N. Benedikter, V. Jakšić, M. Porta, C. Saffirio, B. Schlein, Comm. Pure Appl.

Math. 69, no. 12, 2250 (2016).
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Initial datum III: Exponential map

Let U : F (L2(R3))⊗F (L2(R3))→ F (L2(R3)⊕ L2(R3)) be the (unitary)

exponential map defined by UΩ⊗ Ω = Ω̃ and

U
(
a(f )⊗ 1

)
U∗ = a(f ⊕ 0) =: a`(f ),

U
(
1⊗ a(f )

)
U∗ = a(0⊕ f ) =: ar (f ).

We also define the Weyl transformation

W(φ) = exp
(
a`(φ) + ar (φ)− h.c.

)
acting on F (L2(R3)⊕ L2(R3)). Then

TrF [P(a, a∗)Γ(φ, γ)] = 〈UΨG(γ),W∗(φ) P(a`, a
∗
` ) W(φ)UΨG(γ)〉.
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Initial datum IV: The perturbed state

With the Bogoliubov transformation

T (γ) = exp

(∫
R6

kγ(x , y)a∗`,xa
∗
r ,y d(x , y)− h.c.

)
,

where kγ(x , y) = arcsinh(
√
γ)(x , y), we can write UΨG(γ) = T (γ)Ω̃, and hence

TrF [P(a, a∗)Γ(φ, γ)] = 〈Ω̃, T ∗(γ)W∗(φ)P(a`, a
∗
` )W(φ)T (γ)Ω̃〉.

The perturbed state Γξ(φ, γ) is defined by

TrF [P(a, a∗)Γξ(φ, γ)] = 〈ξ, T ∗(γ)W∗(φ)P(a`, a
∗
` )W(φ)T (γ)ξ〉

with ξ ∈ F (L2(R3)⊕ L2(R3)).
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Time evolution

We are interested in the solution to the Heisenberg equation

i∂tΓξ,t = [HN , Γξ,t ] with initial datum Γξ,0 = Γξ(φ, γ).

The Hamiltonian of the system is given by

HN =

∫
R3

∇a∗x∇ax dx +
1

2N

∫
R6

v(x − y)a∗xa
∗
yayax dx dy ,

that is, we are interested in a mean-field system. The time-evolved state reads

Γξ,t = exp(−iHN )Γξ(φ, γ) exp(iHN ).

In the doubled Fock space picture this reads

TrF [P(a, a∗)Γξ,t ] =〈ξ, T ∗(γ)W∗(φ) exp(iLNt)P(a`, a
∗
` ) exp(−iLNt)W(φ)T (γ)ξ〉,

where LN = HN,` −HN,r .
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Assumptions

Assumptions (Initial datum)

We assume that the pair (φ, γ) satisfies n(φ, γ) = N and that:

(A) The condensate wave function φ can be written as the product of an
N-dependent constant c(N), which determines the expected number of particles

in the condensate, times an N-independent function φ̃ ∈ L2(R3).

(B) The 1-pdm γ obeys ∫
R6

|γ̂(p, q)|d(p, q) . T 3/2
c (s)

with Tc(s) above, and where γ̂(p, q) denotes the integral kernel of γ in Fourier
space.

(C) The operator norm of γ satisfies

‖γ‖ . Tc(s).
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Main result

Theorem

Let the pair (φ, γ) satisfy the above assumptions with 0 < s ≤ 3/2. The
fluctuation vector ξ is assumed to satisfy 〈ξ, (N` +Nr )

44ξ〉 . 1.

Then the 1-pdm γξ,t of the state Γξ,t satisfies∥∥γξ,t − ei∆tγe−i∆t − |φt〉〈φt |
∥∥

1
.t

√
NT 3/4

c (s),

where ‖ · ‖1 denotes the trace norm. The function φt is the solution to the
time-dependent Hartree equation

i∂tφt(x) =
(
−∆ + N−1v ∗ |φt(x)|2

)
φt(x) with initial datum φ0(x) = φ(x).

Reference:

M. Caporaletti, A. D., B. Schlein, arXiv:2203.17204 [math-ph] (2022)
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Remarks

First result for dynamics of BEC with a macroscopic number of excited
particles.

Obtain an optimal N-dependence for the remainder for our set of initial data
if we choose a slightly more general effective dynamics.

The assumption for ξ with the 44th moment is the worst case scenario
happening for s = 3/2.

There is no reason to believe that the same result should not hold for all
s > 0.

Proof is based on the definition of fluctuation dynamics using the
Hartree–Fock–Bogoliubov (HFB) equations.
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Hartree–Fock–Bogoliubov (HFB) equations

For the triple (φt , γt , αt) consisting of a condensate wave function φt ∈ L2(R3),
a positive trace class operator γt (a 1-pdm), and a pairing function
αt ∈ L2(R6), the HFB equations take the form

i∂tφt =h(γt)φt + k(αφt
t )φt

i∂tγt = [h(γφt
t ), γt ] + k(αφt

t )α∗t − αtk(αφt
t )∗

i∂tαt = [h(γφt
t ), αt ]+ + [k(αφt

t ), γt ]+ + k(αφt
t )

with [A,B]+ = ABT + BAT , γφ = γ + |φ〉〈φ| and αφ = α+ |φ〉〈φ|. Moreover, we
use the notations

h(γ) = −∆ +
1

N
v ∗ ργ +

1

N
v]γ, k(α) =

1

N
v]α,

where v]σ denotes the operator with kernel v(x − y)σ(x , y), and the density
associated with the 1-pdm γ is given by ργ(x) = γ(x , x).
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Effective dynamics on doubled Fock space I

Let the triple (φt , γt , αt) be a solution to the HFB equations with initial
datum (φ, γ, 0) and denote by

Γ
(1)
t =

(
γt αt

αt 1− γt

)
the generalized 1-pdm of associated to (φt , γt , αt). Then there exists an
implementable symplectomorphism Ut s.t.

Γ
(1)
t = U∗t Γ

(1)
0 Ut .

Reference:

V. Bach, S. Breteaux, T. Chen, J. Fröhlich, I. M. Sigal, preprint arXiv:1602.05171

(2018).
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Effective dynamics on doubled Fock space II

Let 〈·〉t be the unique quasi-free state with

〈ax〉t = φt(x), 〈a∗yax〉t − 〈a∗y 〉t〈ax〉t = γt(x , y), and

〈axay 〉t − 〈ax〉t〈ay 〉t = αt(x , y).

If Rt is the Bogoliubov transformation implementing Ut and Tt = RtT (γ), then

〈P(a, a∗)〉t = 〈Ω̃, T ∗t W∗(φt)P(a`, a
∗
` )W(φt)TtΩ̃〉.
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Fluctuation dynamics

The fluctuation dynamics is defined by

Ufluct(t, s) = T ∗t W∗(φt) exp(−iLN(t − s))W(φs)Ts .

It allows us to write the 1-pdm γξ,t of the solution Γξ,t(φ, γ) to the Heisenberg
equation as

γξ,t(x , y) = 〈ξt , T ∗t W∗(φt)a∗`,ya`,xW(φt)Ttξt〉

= φt(x)φt(y) + γt(x , y)

+ terms whose trace-norm can be bounded in terms of 〈ξt ,N ξt〉

with the time-dependent fluctuation vector

ξt = Ufluct(t, 0)ξ.
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