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.
1
.
The wave equation withDirichlet

boundary conditions

We have now all the
necessary

tools at hand

to continue our discussion of the vibrating
string in Section 3 .

1
.
There we studied the

wave equation

S 25(xit)
= u(xit) in (a) XR+,

u(x ,t) = 0 on Sat] xR+. (1)

We found Heat the functions

Um(xit) = (Ancos(rct) + BuSin(ract) Sii(mx)(2)
are solutions to (1)

.

We also showed heat

if en(xit) and es(xt) are too solutions to (1)
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Teen ze(x,t) = en(x ,+) + e2(X,2) is also a solution

(Superposition principle) . Wine this we concluded

Heat a general solution is very likely of the

form
lit)= (Ancos(cmt) + BuSai (cut) fai (m)-3)

This looks very
mul like a Forier Series . Let's

by to compute the coefficients Am and Bu.

We assume that te following initial conditions
G)

hold with two periodic functions fee" ([at] , RR)
and gee (FOR) :

u(x ,d) = f(x) in [a] x Et=0],

(2+u((x .0) = g(x) in [or] x 5t =03
·

(4)
↑
When we say fee"([] ,

R) is periodic we mean[Heat f(0) =f(π) and Heat is twice times continuously
differentiable when viewed as a function on the circle (See Sech3)

.
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Insation of (4) vito (3) fields

u(x ,0)= Amsui(mx = f (5)

and

Greko)=mBuSi(mx) =f (6)

Let us first have a closer look at (5)
,
whil

looks almost like a Forier series. Here almost

stands for the fact Heatf is defined on the
Literal [OIT] and not on an leval of the

form [h ,2] wil some 10 . Suite the lik.s.

of (5) is given by a Sue
series (odd function

on [TTT]) we extend f to ETTITT as follows

f(x) =& (
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If we now compute te Forier coefficients of

J the resulting Forier series will equalfor
[ii]

.

We know heat

j(x)= amSiiuxa

am= sin(x)f(x)dx
=Si(u)(f(x)
+Smi(mx)f(x)dx

y
=

xxi(my)(f)
Si (ax)f(x)dx

= (mx)f(x)dx (d)
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Accordingly ,
we have (x[at])

f(x)= Ansi(mx e

Am=Sii(mx)f(x) (S)

Next
, we compute the coefficients Bu with the same

strategy. We define

E(x) =[S (0)

on [TTIT] and expand it who a Fowier series :

(x)= amSi(mxi ne
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am=Si(mx)f(x)

=Sin(mx)g() d (11)

We
compare

this exportion for xe[oit] with (6)

and conclude

f(x)= cmBuSi(mx le

Bu=i(ux)g(dele
6

Finally , we riset our findings for Am in (3)

andBu in (12) who the formula for u in

(3) .

We have thes shown the following Here.
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Theorem : Let us conside the wave equation
-

25(xit) = u(xit) in (a) XR+,

? u(x ,t) = 0 on Sat] xR+,

u(x ,d) = f(x) on [0 ,iT] x St = 03,

(arm)(x ,d) = g(x) on [0 .i] x St=03 (13)

with two periodic functions fee" ([O] .R) and

gett (Can],R) .

The solution to (13) reads

lit)= (Ancos(cmt) + BuSei (cut) zai(m) Cl

will

Am=Si(mx)f(x) and

Bu=i(ux)gds
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Remark: It can be showetheat te expaction in

(4) and its first two drivatives wort
.
- and

X converge pointwise .

Example: Let us apply our findings to the

example of a plugged string. For the sakeof
simplicity , we choose C= 1. As initial conditions

we choose (b>0)

E for 02XTTh
g()=h

for

nf(x) I

he -. r wor

I
Th # *



S

and g(x) =0 for all x[ot]. That is , we plug

The string by holding it at height h at x=p and

When let go
without giving any additional velocity

to A
.

From g=0 we know that Bu=o for
all mEN

,
and henv

exit) = [ Amcos(mt)Sui(mx)1

wille

Am=Sii(mx)f(x)dx (d)

=
①

To compute D we first compute
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xdxx
=-

*

xdx + [ex]]

=-)
-

=
it

1

=-1)+ eith (13)

and

=Sedix3
= t (iegie) + v (eiht-eikiz)

·

(20)



Uting (15) and (20) we now compute Q and Q.

D=Siaux)dx

=
=im em

- im 1)+ [im]
-tim)+min)]

= ZiSin (miT/) 2 cos(mitt) (21)

I ↓

F
I

= Sir (mix) = Commerce/csmia) = [ o ifm odd

(1) if m even
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We conclude that

①S if we even

J modd.
(

Moreover,

②
= zu Si(u)dx-si(x)xdx
-

=Ecos(mx)]= -(cos(m)-cos(ml )
-

(1)

=(() - (r))-(mx)xdxes
will
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zi(m)xdxeimim
πk

-(eimim)+ (eim- eim)
- (imimth)- (eimT - gimπ)

=
Zism(mitt =0 -Lisi(miti)

- (2itcos (mit) - i cos(mi)
-

=( 1)a

= -sin(m) -(2() =T()(4)

Insertion of (24) wito (23) fields
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②=(s()-(r()+(

- (2(1)" =Ts()

=(mi

ifi even=See ifm odd (25)

be the last step we insert (22) and (25) into (18),

which gives

ifm even

An =(+) =[ ) modd .

(26)

The solution the wave equation therefore reads

u(xt)= cos((mm)tSi(u(x) (2
↑
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Remark: As a final much ,
we should note an

unsatisfactory aspect of the solution to
his problem,

whit
,
however

, is in the nature of things. Suice

The initial conditionf is nottwice differentiable,
neither is the solution en given by (27). Hence u

is not truly a solution to the rave equation :

whileeexit) does represent the positionof the

plugged shing ,
it does not satisfy the Pro

we set out to solve ! This stateof affairs may
be understand properly only if we realize that
le does solve the equation , but in an appropriate
generalized sense .

A better understanding of
Has phenomenon requires ideas relevant tothe

study of "weak solutions" and the Hurry of
distributions. Boll topics are beyond the scope of
His lecture.



4.2 The bear equation with Neumann

boundaryconditions

The goal ofthis section is to apply the idea

of separation
variables Heat was so successful

for the roave equation to
the heat equation. At

the same time we also will learn how to will

will other boundary conditions. Becauseof this,
we study the heat equation with Neumann

bornday, conditions . It is needless to say
that

Whe same approach also works for DimMlet BCs.

The heat equatio we will study reads

2+z(x,t) = (x2u(x ,+) in (a ,i) XR+

E(xel(x , d) = o on [0.3 x+ (28)
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with some k0.

As in case of the have equation we want to

find all solutions .

We start by looking for

special solutions of the form
u(x ,+) = Y(x)#(H)

.

(2s)

lusation who he first equation in (28) fields

e()(t) = k4(x)[(t)

C= (0)

B0) can be satisfied only if both sides equal
The same constant XER .

In the exercises

you
showed that all solution (2,2) to the problem

S
r"(x) = 24(x)

4(d = 0 = G'(π) (31)
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are of He form

(m(x) = Acos(rux) , AER

im = -m
? wil -No

·

(2)

For these values of i
we now solve

2(t) = k\m[(t)

=> F(t) = #(0)akXmt (33)

We conclude that the functions

Um(xit) = Ancos(mx)gikrit
,
meNo (34)

we all solutions to (201
.

Succe also the heat equation
satisfies the superposition principle we conclude that

a general solution to (25) should be of the form
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exit)= Ancos(mx)eit (35

Let us now add the initial condition ze(x , 0) =f(x)
will some f : [O -R in order to obtain a

unique solation .

As in the caseof
the wave

equation we need to find a way to compute
the coefficients &Am. 3mo for givenf

We need to choose Am S
.
t.

u(x
,
d = [Ancos(mx)f.

Suic cos(mx) is on even function on [FiT] we

define te even extension f of f by

j(x) =58 (37)
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compute the Forier exportionof f and restrict in

to [at] to obtain a series representationf :

f(x) =ancs(m)
will

90==d
and

an=cos(ux)f(x)dx

=cos(x)f(dx
We conclude Heat

f(x)= Ancos(mx) wi

A.= (d ,
Am= (n)f(x)dx .. (40)
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This allows us the conclude that the solution to

We heat equation in (28) subject to the initial

condition x(x .d) = f(x) is given by

exit)= Amcos(ux)
will

A= 8.(d ,
Am= (n)f(x)dx - (41)

That is
,
we obtained a ganal solution to the

heat equation in te same way as we did

for the wave equation .
These two studies taught

us how to treat Diridlet (r(x , +) =0 for xEST)
and Neumann ((x2)(t) = 0 for xET3) boundary
conditions

.
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On the next exercise sheet you
will compute

a concrete example. You will also solve the heat

equation with another boundary condition.



4 .3. The heat equation with Robin boundary
?

Conditions

he this section we conside te heat equation (100)

Ik(xH = (12Ukit) on (0.2) XR+

S u(at) = 0,

(xu)(2,% = - u(2 ,0) (P2)

will mixed Dirichlet and Robin boundary conditions.

As we will see things are a little more complicated

in his case. Please note that te heat equation
in (42) still satisfies the superposition principle .

It therefore makes sense to again look for special
solutions of the form ze(xit = 4(x) #(H) .

In this

case the spatial function H(X) needs to solve
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the eigenvalue equation (compare to p . 17)

4"(x) = x((x) ,

((0) = 0,S
e(2) = - 4(2)

.

(43)

A general solution to (43) is of the form

((x) = c, ekex + cekex

where knih are the two solution to the characteristic

equation
k = 2

.

(44)

As on the exercise sheets one easily choos that
There are no solutions ifo . If i =o all

solutions are of the form axeb and also Key
do not satisfy the boundary conditions* It
remains to consider the case 0 > 7 = -m2 will

(*) (excepting a ,
b

, i = 0
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myo . Using 4(0) = o we conclude that

Y(x) = Asiu(ex) (45)

wil two constants AKER150]
·

Next
, we use the second boundary condition to

solve for le :

Y'(2) = - e(2)

Es Alcos(1k) = - A Sin(2h)

E k = - tan (2k)
.

(46)

Plotting the functions in (46) we can ched that

the solutions are not equally spaced as seen
in earlier problems . Moreover

, we cannot compute
them exactly by hand. Here is a tableof the

first ten solutions to (46) :
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U kn W kn

1 1 .144465 6 8.656622

2 2
.
54345 7 10

.258761

3 4
.
048082

j 11 . 823162

4 5

5.586353 g 13 . 389044

5 7
.
138177 10 14. 855847

If we want to solve (P2) we need to compute these

values umerically .

Let's assume we have done

Heat
,
how can we compute the solution to (40) ?

We can still write the general solution to (40) in

a series expantie of the form (solve ef for
Ito find the time dependence !)

ext)= Ankat sm(kux) . (4)

Let us again impose te initial condition U(xid-f(x)



andby to compute the coefficients Am .

We have

u(x ,d) = AnSi(kux) (48)

Suice te ke are not evenly spaced we cannot simply
apply a Forier expection to compute tem.

But we can do the following. We treat the functions
as basis functions c .

r
.

t
.
The inner product (defined

on real functions

<88) = 8 f(x)g(x)dx (49)

First
,
we need to chec that orthogonality

holds ,
that is

, we
need to show that for

n+m we have

&sin(hux) Sii(kmx)dx +
0

.
(50)
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We have already learned how to compute

integrals of this form (note that kn and km

are notrntegers) ,
and I therefore only state

Kee result :

&Sin (Rux) Sin (Bux) dx

-Sin(zhos(2) -I Si (zhm) cosle

-
= 0

. (51)
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That is
,
the functions Sin(Eux) and Sui (Rmx)

withhtm are othogonal w .
r
.
t

.

Whe inner product

10!

Let us define the numbers

Em = 9 Sikux)dx (52)

We conclude that the function
Ym(x)=Si(k

are an ortkonormal wirit. ( ,
Heat i,

Stoitu) = Sam (53)

We also have :

Theorem: Zet Elanitu)3 be the normalized

(i . e. (Em
,
Ym) = 1) solutions to the equation
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↑ (x) = xf(x) ,

xe [a,b] (54)

with either Diridlet (f(z) = 0 , yesa,b3) ,

Neumann (F(2) = 0 , ye [a ,b]) ,

or Robin bornday
conditions (F(f) = #(7) , yea , 33 , CER) or

mixtures thereo (eg. Divided at y=a and
Neumann at y

= b)
.

Then the functions are
a Schander basis for Riemann integrable Creat
or complex-valued) functions on [a ,

b].

Let's go bac to the problemof finding the

Coefficients for the exportion (EG. (40)

Am Sin (Rux) =f ~

(55)
-

= Am Pm(x)

I (55 holds then we have
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Ame f
=>SAm =rif

I

&Ama =A

Stir

We conclude that

An= Snif)

= Sin(kx)f(dx (

If we insert this choice for An will te values

for kn that have previously been found into
(47) we obtain a solution to the heat equation
in (42) that satisfies the initial condition u(xd) =f().



32

4.4 .
The heat equation with a source
err

he this section we conside the heat equation

22(x ,H = 23u(x ,+) + Q(x) in (a) XR+

S er(x ,t) = 0 on Sa XR+

u(d) =f(x) a [an] x [t =03(58)

wil the source term Q(x)
.

Note that we have chosen

Diridlet boundary conditions .

Let us recall how we solved inhomogeneous

problems earlier ,
e.g ., in case of the transport

equation. The first step was to solve the

homogeneous problem ,
whil gave us what

we called a propagator. Then we usedhe

propagator to write down the solution to the
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inhomogeneous problem (please readthis part

for the transport equation again before you
continue reading this) .

We already solved the homogeneous problem
wil Neumann boundary conditions. To

change the boundary conditions we need
to replace the eigenvalues and eigenfunchus

of the eigenvale problem
e"(x) = x4(x)S 4(d) = 0 = u'(π) (59)

(see page 17) by those of the same problem
will Divi let boundary conditions

Y(d = 0 = 4(π)
.

(60)
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These solution have been computed in Exercise
15

. They read

↑
n
= -u2 wil KEIN

,

In(x) = ASii(ux) with AER
. (61)

The solution to (54) with Q = 0 is therefore given

by
u(t)=AnSii(uxent

with

An=i(ux)f(x)dx ,
(63)

compare with the analysis in Section 4
.

2.

Let us give another interpretation of His .

Let

feR be an integrable function .
We already



introduced the
map
F : R + &(*C) What

maps f to is Fourier coefficients. Here , we
define Fst .

It maps the function f to the

coefficiente [AnJu ,
that is,

5(1)(r) = An will

An=Sri(ux)f(x)dx . (64)

We also define the riverse map
-

by

J-(GAnJu)(x)= Ansi(ux)
. (G

Motivated by (62) , we also define the map

el for If
: (I

,
c) -> l (N , C) .

~

multiplication
operator dr (An) = Ane-ut (66)

Will these definitions at hand ,
we can write
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(62) as follows

u(x ,+) = = = (Mr(5(2)(u)))(x) .

( u(t) = 5 - Mr5f. (67)
-
--

Here we

view le(t) as h initial condition

a vector and This is te propagator .
It is a

Therefore out the live map
Heat reaps

He

X- dependence initial condition to the solution

to (5P) at time to

he the following we denote the propagator by Pr,
Heat B

,

(Prf)(x)=AnSi(uG
This ends Step 1 , we have written (62) in terms of
the propagator Pr
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Next , we recall how we solved the ODE

[x=x (GS)

The solution toke homogeneous problem (b=d)
is

X(t) = eaty Go

and that to the inhomogeneous reads

x(t) = eaty + fa(t-3)bds .

(7)

If we define the propagatorpr by

PrE = eate
,

(2)

(7) can be written as

x(H) = prx + fPrs)bds . (73)

Let's gues a solution to (54) that is inspired



by (3) . We define the function (rector notation ! )
30

u(H = Prf + SPrspds
Es 1(xt)= Ausui(ux)

+I Busin(ux) entSee

wil An= f.Sailux)f(x)dx and
Bu = If Sui(ux(Q(x)dx . (4)

Let's chec thatuxit) is indeed a solution

to (58)
.

We first ches that it satisfies the

first equation in (50) :
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& 22(t)=Austin

+ Busni(ux)+ BuSai(ux()
-

(75)
= Q(x)

· aut=Ansiux]
-

=- Si(ux)

+ Bu [sm(u]e
- (76)
=- Sui(ux)

We conclude that

Grz(x ,t) = 2u(x ,H) +Q(x)(77)

holds
.

Next
, we class te boundary condition :
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↳ e(0 . 4)=Ans
+StBesidents d = A

=0

The same computation Shows r(t) = 0.

Finally ,
we ches that the initial condition is satisfied :

3 u(xd)= Ansmi(ux) (4)

see definition of An

That is
,
the function in (74) is indeed a solution

to (58).
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4
.
5
. Laplace's equation

he this section we show how the technique

of separation of
variables can be used to

solve Laplace's equation .

Suie we do not

have und time left we discuss one concrete

case .

We want to solve the equation
22u(x ,y) + 2y x(x ,y) =0a (a)x(0) (42)

will the boundary condition

u(xd) = o , u(x ,+) = f(x)

ulay) = 0 , u(π,y) = 0(43)

y4 RP
T
-

1 Here es equals f

= 1 Here n equals O

Rs
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If you prefer something even more concrete you

can assume that f(x) = x(π-x).

1 f(x)

I
As before we will first try to find special
solutions of the form Y(F(y) and then

expand a general solution in terms of the

special solutions. Finally ,
we will by to incorporate

the boundary conditions.

Step1 : Let's assume ze(xy) = Y(x)(y) and

risert Reis ansalz zito (42) .

We fand

- (44)
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and we conclude that

= x = -E (45)

holds with some constant MER . For our ansalt

the boundary conditions read

e(((d = 0 , Y()f(π) = f(x) ,

q(dF(y) = 0 ,((9) = 0. (46)

We conclude that(0) = 0 , 4(d = 0 , Y(t) =0.

The remaining boundary condition will be used
later .

Let us solve the equation for 4 :

Y"(x) = x4(x)E 4(d = 0 = q(i) (47)
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From Exercise 15 we know that the solutions

read (Xn , ful with

in = -u , Yn(x) = Ansin(ux) , new
.

(481

What about the equation for ? We use (45)

and the boundary condition F(o) =0 :

E Y"(y)
= n 2((y) ,

(49)
#(0) = 0.

A seen already several times ,
a solution to

He first equation in (49) is of the form

(f) = ce
x

+ax (50)

We want

Fuld = G +a = 0 = G=G
,
(51)

and hence
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F(y)= (e * -e -x)

= Srih(ux) . (52)

That is
, we found the following family of

special solution to (42) :

en(x iy) = An Sin (ux) Sinh (ny) ,
new

.
(53)

Suic the Laplace equation with the boundary
conditions in the regions Kn , Rz .

Rs (see figure
on p . 41) satisfies the superposition principle,

a general solution is of the form

u(x ,y) = Asui(ux)Su(ny)
.

(54)

It remains to incorporate the boundary condition
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in the region Ry .

We require

f(x) = u(x) = Ansii(ux) Sih(u).

= anSi(ux) with anAnsih(n)
. 15

But this is almost a Forier series and we already

encounter this case .

As before we define the odd

extension

j(x) =[0
,

(56)

whil we write as

f(x)= Six n

G = Sui(ux)f(x)dx
-T

=ilu)fdx



We conclude that
47

f(x)= asii (a) will

an=ri(ux)f(x)dx, (58)

and hence
,

AnSri(ux)f(x)dx (59)

he particular , we found that the solution to (42)
subject to the boundary conditions in (43) is

given by (54) with An in (59). This eade our

investigation of the Laplace equation .


