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The dilute Bose gas, that is, a bosonic system with rare but strong collisions, is one
of the most fundamental and interesting models in quantum statistical mechanics.
Its prominence is mostly due to the occurrence of the Bose–Einstein condensation
(BEC) phase transition and its numerous phenomenological consequences. Trig-
gered by the experimental realization of BEC in ultra cold alkali gases in 1995, see
[1, 5], and by the subsequent experimental progress, in the past two decades there
have been numerous mathematical investigations of dilute Bose gases in different
parameter regimes. I refer to [11, 10, 12, 14, 15, 2, 3, 4, 6, 7, 8, 9] and to references
therein for examples concerning questions in equilibrium statistical mechanics.

In the article I was presenting in my talk in Oberwolfach, we consider a system
of bosons confined to a three-dimensional flat torus Λ with side length L in the
grand canonical ensemble. The Hamiltonian of the system is given by

(1) HN =

∫
Λ

∇a∗x∇axdx+
1

2

∫
Λ2

a∗xa
∗
yvN (d(x, y))ayaxd(x, y)

and acts on a dense domain in the bosonic Fock space. By a∗x, ax I denote the
usual bosonic creation and annihilation operators (actually operator-valued distri-
butions) of a particle at the point x ∈ Λ that satisfy the canonical commutation
relations [ax, a

∗
y] = δ(x − y), [ax, ay] = 0 = [a∗x, a

∗
y]. Here δ(x) is Dirac’s delta

distribution with unit mass at the origin. The interaction potential is of the
form vN (d(x, y)) = N2v(Nd(x, y)) with a nonnegative function v and a parame-
ter N > 0 that we choose as the expected number of particles in the system. By
d(x, y) I denote the distance between x and y in Λ. The scattering length aN of vN ,
which is a combined measure for its range and strength, scales as aN/L ∼ N−1.
This assures that the interaction energy per particle is of the same order as the
spectral gap of the Laplacian in Λ.

The quantity we are interested in is the grand canonical free energy at inverse
temperatue β related to the Hamiltonian HN . It is defined as

(2) F (β,N,L) = − 1

β
ln (Tr[exp(−β(HN − µN ))]) + µN,

where the chemical potential µ is chosen such that the grand canonical Gibbs state

(3) G =
exp(−β(HN − µN ))

Tr[exp(−β(HN − µN ))]

satisfies Tr[NG] = N (N is the particle number operator).
The main result in our article is the following theorem. For the sake of simplicity

I state it only in the special case β = κβc with κ ∈ (1,∞) and the inverse critical
temperature for BEC βc in the ideal gas (condensed phase).
Theorem 1: Assume that the function v : [0,∞) → [0,∞] is nonnegative,
compactly supported, satisfies v(| · |) ∈ L3(Λ), and is strictly positive on a set of
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positive measure. By % = N/L3 we denote the particle density. We consider the
combined limit N →∞, β = κβc with κ ∈ (1,∞). The free energy in (2) satisfies
the upper bound

F (β,N,L) ≤ F+
0 (β,N,L) + 4πaNL

3
(
2%2 − %2

0(β,N,L)
)

+
ln
(
4βaN/L

3
)

2β

− 1

2β

∑
p∈(2π/L)Z3\{0}

[
16πaN%0(β,N,L)

p2
− ln

(
1 +

16πaN%0(β,N,L)

p2

)]
+O(L−2N7/12).(4)

In the above formula F+
0 (β,N,L) denotes the free energy of the non-condensed

particles in the ideal gas with the chemical potential µ0(β,N,L), and %0(β,N,L)
is the related condensate density. The first two terms in (4) had been justified for
the first time for the dilute Bose gas in the thermodynamic limit, see [13, 15]. They
also appeared in [7], where the asymptotics of the canonical free energy in the GP
limit has been established with a remainder of the size o(L−2N) (The aim of this
article was to give a proof of the BEC phase transition.). It is, however, expected
that the canonical and the grand canonical free energies agree on that level of
accuracy. The main novelty of the upper bound in (4) is therefore the appearance
of the last two terms on the r.h.s., which are of the order N2/3 ln(N) and N2/3,
respectively. We highlight that the first two terms in (4) scale as L−2N5/3 and
L−2N , respectively. In the following I briefly discuss the origin of our new terms.

The third term on the r.h.s. of (4) is the free energy of the fluctuations of the
interacting BEC. It originates from the following effective free energy:

FBEC(β,N0, L, aN ) =− 1

β
ln

(∫
C

exp
(
−β
(
4πaNL

−3|z|4 − µ|z|2
))

dz

)
+ µ%0(β,N,L)L3.(5)

Here dz = dxdy/π, where x and y denote the real and imaginary part of the
complex number z, respectively. The chemical potential µ in (5) is chosen such
that the Gibbs distribution

(6) g(z) =
exp

(
−β
(
4πaNL

−3|z|4 − µ|z|2
))∫

C exp (−β (4πaNL−3|z|4 − µ|z|2)) dz

satisfies
∫
C |z|

2g(z)dz = %0(β,N,L)L3 (|z|2 should be interpreted as a particle
number). Under the assumption of Theorem 1 we have

(7) FBEC(β,N0, L, aN ) = 4πaNL
3%2

0 +
ln
(
4βaN/L

3
)

2β
+O

(
L−2 exp

(
−cN1/6

))
.
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In combination with
∫
|z|2g(z)dz = %0L

3, this implies

4πaNL
−3

(∫
C
|z|4g(z)dz −

(∫
C
|z|2g(z)dz

)2
)
− 1

β
S(g) =

ln
(
16βaN/L

3
)

2β

+O
(
L−2 exp

(
−cN1/6

))
,(8)

where S(g) = −
∫
g(z) ln(g(z))dz denotes the classical entropy of g. This explains

my claim about the physical interpretation of the term on the r.h.s. from above.
The last term in (4) is related to the free energy of the Bogoliubov Hamiltonian

(9) HBog =
∑
p6=0

p2a∗pap + 4πaN%0(β,N,L)
∑
p 6=0

(
2a∗pap + a∗pa

∗
−p + apa−p

)
,

which depends on β via %0(β,N,L) (From a physics point of view this Hamiltonian

can be motivated by the c-number substitution a∗0, a0 7→
√
%0(β,N,L)L3.). The

operators a∗p and ap create and annihilate a particle with momentum p ∈ 2πZ3/L,

respectively. To see the relation between HBog and the last term in (4), we note
that

− 1

β
ln Tr exp(−βHBog) =

1

β

∑
p 6=0

ln
(

1− exp
(
−β
√
p2 − µ0

√
p2 − µ0 + 16πaN%0

))
=

1

β

∑
p 6=0

ln
(
1− exp

(
−β(p2 − µ0)

))
+ 8πaNL

3(%− %0)%0

− 1

2β

∑
p 6=0

[
16πaN%0

p2
− ln

(
1 +

16πaN%0

p2

)]
+ o(L−2N2/3).

The first and the second term on the r.h.s. contribute to F+
0 and to the second

term on the r.h.s. of (4), respectively. The third term is the novel contribution in
the second line of (4).
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