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A gas of quantum mechanical particles
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Background: Bose—Einstein condensation (BEC)

is one of the most
intriguing  phenomena  pre-
dicted by quantum statistical
mechanics.”
Wolfgang Ketterle, Nobel Prize
in Physics in 2001.

Bose gases display wealth of interesting phenomena related
to the , that are notoriously difficult to study
because:

° = Analysis extremely challenging
(in experiments N ~ 10% — 10°),

° = Perturbation theory fails in
interacting many-body quantum systems.
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Above the critical point






At zero temperature



Starting point: the microscopic model

We are interested in a system of bosons captured in the unit torus with
fluctuating particle number. The Hilbert space of the system is therefore
the bosonic Fock space

Z(L2([0,1]) @Lsym [0,1]3).

Here L2,.([0,1]*") denotes the set of all L>-functions that satisfy
W(X1, oy Xiy ooy Xy ooy Xn) = (X1, oy Xy ove, Xiy ooy Xn) V1 <]
The Hamiltonian of the system reads
(o] n 1
i=o@ |8k ¥ )
n=1 | i=1 1<i<j<n

Here v € L' is nonnegative and N denotes the expected particle number.



Creation and annihilation operators

By a;, and a, we denote the creation and annihilation operators on 7
that create and annihilate a particle in the function (,(x) = eP* with
p € 2773, respectively. That is,

(a;wn)(xla ceoy Xpy Xng1) = Sym[‘Pp(XrH—l)\UN(Xla vy Xn)]-
They satisfy the canonical commutation relations (CCR)
[ap, ag] = dp.q, [ap, aq] = 0 = [a;, a].

The Hamiltonian can be written as

1
_ 2 _x ~ * *
Hy = g p-aap + SN E v(p)anspay_paudy
pe2wZ3 p,u,veE2TZ3

with the Fourier coefficients ¥ > 0 of v.



Free energy and Gibbs state

Equilibrium properties of the system are encoded in the free energy

F(B.N) = —% In (Trexp(—B(Hn — p\)) +

at inverse temperature 8 > 0 and the Gibbs state

_ exp(= B — V)
Trexp(—B(Hy — pN))’

Ga,n
The chemical potential p is chosen s.t.
TF[NGﬁ"N] =N

holds.

—-2/3
Parameter regime: N — 0o, B = Kf3c with Bc = & ( N ) and
k € (0, 00).



Bose—Einstein condensation in the ideal gas

Let v = 0 and denote by
No(B, N) = Trlagao Gg,n]

the expected number of particles in the constant function.

It has the aymptotic behavior

B 1 N Bc 3/2 .
1/ N\
=8~ (57)

in the limit N — oco. This behavior persits in the interacting model
(reference on next page)!



Low lying excitation spectrum

e Seiringer, Commun. Math. Phys. (2011)
e Lewin, Nam, Serfaty, Solovej, Commun. Pure Appl. Math. (2015)
e Nam, Seiringer, Arch. Rational Mech. Anal. (2015)

BEC and dependence of critical temperature for BEC on interaction

e D., Seiringer, Yngvason, Commun. Math. Phys. (2019)
e D., Seiringer, Arch. Rational Mech. Anal. (2020)
e D., Seiringer, J. Funct. Anal. (2021)

Derivation of nonlinear Gibbs measures

e Lewin, Nam, Rougerie, Invent. Math. (2021)
e Frohlich, Knowles, Schlein, Sohinger, JAMS (2022)



Theorem 1 (Convergence of Gibbs state)

The Gibbs state Gg y is close (in trace norm) to the state

= /C 12 (2] © GB%(2)g®(2) dz.

on .Z ~ Fy® .F, with the coherent state |z) = exp(zaf + Zag)|<).

Here GB°8(z) is the Gibbs state of the Bogoliubov Hamiltonian

HBB(2) = Z p*asap

pe2rZ3\{0}
No(ﬂ,N) A * k _k =
T Y Wp) (et (/|2 ga, + (212 apan)
pe2rZ3\{0}

and the condensate is described by

g°5¢(2) oc exp(—B(0(0)/(2N) 2[* — =€ |2[?)).



Theorem 2 (Distribution of condensate particle number)

The distribution of the number of particles in the condensate
p(n) = Tr[|n)(n| © 1, Gs ],

h
where 1

m) = —=(3)" [vae).

satisfies
. — No(B, N
lim E pG'bbS(n)—g 7= To\5, ) o(5, ) =0

N— oo N
n=0 B0(0)

with the normal distribution g(x) = (27)~3/2 exp(—x?/2).



Theorem 3 (Two-particle density matrix)

Matrix elements of two-particle density matrix of Gibbs state converge to
that of I'. Selected implications: The variance of the number of particles
in the condensate satisfies

N
Tr[agaoagaoGs,n] — (Tr[aaaoGﬁ,,\,])2 = 6\77(0)(1 + o(1)).

Moreover,
Trlagagapa—pGp,n] = No(B, N)as n(p)(1+ o(1)),
Tr[aya® yapapGpn] = o n(p)(1+ o(1)),

where No(8, N) is the number of particles in the condensate and ag y is
the pairing function of a Bogoliubov Gibbs state.



Theorem 4 (A new abstract correlation inequality)

Let A be self-adoint, let B be symmetric and assume that
B[l < al|Ap[| + blj+||

with 0 < a <1 and b > 0. Assume additionally that exp(—(1 — a)A) is
trace-class and that the state

exp(A + tB) i
Me=——" " "7 gatisfies sup | Tr[Bl¢]| <7
£ Trlexp(A + tB)] te[—1,1] BT

for some constant 7 > 0. Then we have
1
Tr[B2Mo] < nexp(n) + 2 7(([B, A, B])lo)-

This greatly simplifies and generalizes a correlation inequality in Lewin,
Nam, Rougerie, Invent. Math. (2021).



Theorem 5 (An infnite-dimensional version of Stahl’s theorem)

Let A be self-adoint, let B be symmetric and assume that

1B < allAv]l + bl

holds 0 < a < 1 and b > 1. Assume additionally that exp(—(1 — a)A) is
trace-class and define (t € [—1,1])

Z(t) = Trlexp(—(A + tB))].

Then there exists a nonnegative Borel measure 11 such that

Z(t) = /OO e *du(s)

holds.
References (Stahl's theorem f.k.a. BMV conjecture):

e Bessis, Moussa, Villani, J. Math. Phys. (1975)
e Stahl, Acta Math. (2013)



Proof of Correlation inequality with Stahl’s Theorem

By assumption we have (t € [-1,1])
[O:In(Z(t))| = | Tr[BT:]| <n = Z(t) <e"Z(0).

An application of Stahl's theorem shows Z(*)(t) > 0, and hence the
Duhamel-two-point function

1
Z"(t):/ Tr {Be‘(AHB)SBe_(A“B)(l_S) ds
0

is convex! But this implies

1 l
7'0) < / Z'(s)ds < sup Z'(t) < ne"Z(0).
2/ 4 te[—-1,1]

Finally, an application of the Falk—Bruch inequality shows

2 Z'(0)
THBMo] < Zgy + Tr(lIB, AL, BMo).




e Approximation of Gibbs state in trace norm.

Computation of 2-pdm and condensate distribution.

New abstract correlation inequality.

Infinite-dimensional version of Stahl's theorem.



