
-2.Relationbetween BCS and Ginzburgandam is

Recory~
-

The Ginzburg-Landau funcional reads

Ex(π) = (10)fi0+2A() 4) P+ MW() (F(x)M
a

Qa
-D12(f(x)( + 13 (f(x) /

* Jdx (51)

will 10
,1 ,

13 0 ; D . 127R ,
and -Hig(Q) =

[8EL(a) (TcB(v) f = 8 for all VeaR ,
Il Fir+ZA)Ell2 +8] and

I

ES(D) = if [Ep(f)(FEHmag(a)] .

(52)

The 6L functional has been introduced by Ginzburg
and Landau in 1950 as a phenomenological heory

of superconductivity , see

[SL] U . Ginzburg ,
L

.

Landau
,
On the heavy of super-

conductivity , zh . Eksp .

Teor
. Fiz

.

20 (1950) , 1064-1082.

A relation between the microscopic BCStheory and
Mee macoscopic 67 Merry was established by Gor'kow



2
-

in 1959 in 15

[Gor.] L
.

P
.
Gor'kov

, licoscopic derivation of the Ginz-

burg-Landon equations in the theory of superconductivity,

Z
.
h

. Eksp .
Tear . Fiz .

36 (1959)
.

He showed that ,
close to the critical temperature , where

the order parametes are expected to be small
,
6L

Merry arises When the free energy is expandedhn

powers of the gap function
x(xiy) = 2V(x-])2(x ,3)

.

The first mathematically rigorous proof of his relation
was given in

[FHSS 2012] R .

L
.

Frank
,
C

.

Hainzl
,
R

. Seiniger , J .P.

Solovej , llicoscopic derivationof Gizburg-Landau
Meory , J. Amer . Makk .

Soc
.

25 (2012) ,
667-713

.

The authors showed that in the
presence of weak and



3
-

macroscopic external fields ,
the macroscopic variations of

15

the Cooper pait have function of the system are correctly

described by 62 Merry if te temperature is close to the

critical temperature ofUn sample in an appropriate
sense. The precise setup is as follows :

(FigU#ScoreperSeegmsal: it⑲
⑲

Och1

Cratio between macroscopic
--

~ is (large box and microscopic length scale)
notation Q - Qu
T

=) External fields : PW((x) , hA(hx) , art (fattice constant)
·

of Temperature : T = To (1-LiD) with DER
.

b non-technical terms
,
the main mult in [FHSS 2017]

is :



~e
as

le o

#
4 Lif 15. infE()- = 4(y30r + of)D (53)

free energy of normal
State

of The Cooper pair wave function < of any approximate
minimizing state ↑of the BCS functional is of the

form

2(x ,y) = 42x(x-y)4(H) + l . 0 .

(54)
-

related to XX
translation invariant approximate minimizer

problem I 6) functional

Later
,
the same mathematical framework has been

used in

[FHSS 2016] R .

L
.

Frank
,
C

.

Hanzl
,
R

. Seiniger , J .P.

Solovej, The external field dependence ofUe BCS

artical temperature ,
Commun

.
Math

. Phys .

342 (2016)
,

189-216.



50

to show that the BCS critical temperature shift caused 15

by the external fields
is of the form

T(k) = Ta(vtch) + 0(k) .
(55)

Critical temperature of the translation
invariant model

Her Da denotes a critical parameter coming from
linearized 67 Merry .

The main restriction in these works is that only
periodic magnetic vector potentials are considered ,

whic implies zero magnetic flux through the faces of
Un mit cell .This can be seen with an application

If Stokes Ucorem :

Stokes terran

↓ ↓
line integral

fB(x) . n(x) dx S
-

= A( .d TQ, rotA(x) IQ -->
y-↓ orientation
-

-=
O

. C /

↓ u(x) I d
X

·
use

&
periodical (56)



E
An important step towards an extentions of he

15

Mults in [FHSS 2016] to the case of magnetic
fields with a non-zero flax through the wit

cell has been provided in

[FHL 2015] R .

L
.

Frank
,
C

.
Hainzl

,
E
. Langmann ,

The BCS critical temperature in a weak homogeneous

magnetic field , J. Spectr . Theory 9 (2018) ,
1005-1062

.

There the problem of computing the BCS entical
temperature shift in the presence of a weak homo-

geneous magnetic field has been considered with in

linearized BCS heory. The paper contains several

important technical advances.

Recently, the results in [FHSS 2012
, 2016] have

been extended in

[DHM 2023] A .
D., C.

Hanzl , M .

O. Maier
, Microscopic

derivation of Gizburg - Landau theory and the BCS



critical temperature shift in a weak homogeneous 74j

magnetic field , Prob .
Mate

. Phys. 4 (1) (2023) , 105086

to the case of a constant magnetic field and in

[DHM20233] A .
D., C.

Hanzl , M .

O. Maier
, Microscopic

derivation of Gizburg - Landau theory and the BCS
critical temperature shift for general external fields ,
Calc. Wor. Partial Differ . Equ .

62
,
203 (2023)

to te case of general external electic and magnetic
fields (with nonzero flax through te mult cell) .

The main novelty of these two works are a- priori
estimates for low-energy states that include a

constant magnetic field. The main difference between

the systeceus with and without a constant magnetic

field is that the components of the magnetic momentum

operator -10+A(x) do not commute while hub is

We case for the unal momentum operator -it
While inhe latter case one can apply tools from



gFowier analysis , they are not available in the -

15

former case. We will discuss this issue in more

detail later .

* precise mathematical statement relating the BCs and
The GL functionals is provided in Theorems [and 3
below. Before we state them ,

we utroduce the BCS

free zergy

↑
BCS

(hiD) = inf [ En(P) -Julto) 1 ↑ admissible 3
.

E

BCS functional will hA((x) ,
l t0(kx)

as external potentials and with

T = Tc(1-GD) , DeR .

(5z)

The rigenfunction corresponding to ter lowest agen-
value of Kic + U (in the following I ount the sub-

script b) will be devoted by <xi . e.

(Ki+U) <x = 0 .

(58)



S
-For Theorems 2 and 3 to hold

,
we need he 15

following too assumptions.

Assumption 1 : Let U be a radial function that--

satisfies (1+ 1.) V - [P(R3) L (R3)
.

Morover
,
let

WE WiO(R3) and Apot WP10(R3 , R3) be periodic
functions and assmuse that A(0) =0.

Remark6 : If one wants to let the system choose

Whe magnetic field self-consistently one needs to

add the field energy

S(GoA(X) - Bext(x) Pd (59)

where Bext(x) does an external magnetic field ,
to

Nee BCS free energy functional. Now
,
one minimizes

over the pai (f , A). It is dea that in this

formulation regularity theory is needed in onler to
satisfy the assumptions (for Hater derivatives) for te



10
-

magnetic vector potential to carry
out our analysis 15

for the matter par of the system.

Assumpti2 : We assume that the interaction

potential is sid that tee following holds :

(a) We have Tc > O .

(b) The lowest eigenvalue of KirtV is simple .

A derivalitu
of GL theory without Assumption 2 . (b)

and in the absence of external fields (translahle

invariant case) has been given in

[FraLem 2016] R .

L. Frank
,
M

.

Lemm
, Multi-component

Gizburg - Landau Heory : microscopic derivation and

examples ,
Ann

.

Heuri Poincai 17
,
2285-2340 (2016).

The first theore concerns an asymptotic exp-
actions of the free energy of the free energy and



11
-He Cooper pair wave function .

15

Theorem2 : Zet Assumptions 1 and I hold and

let In coefficients 10
,
11

,
12 and 13 be given

as inA2) - (75) below. Then we have

FBCS(4 ,D) = k+ (E(D) + 04) .
(60)

↑

defined via T=Tc (1-GD)

Moreover
, for any approximate minimizer ↑ of F at

T= Tc (1-DG) in the sense that

F(n) -F(t) = 4Y(e& (D) +9) (G1)

holds for some 90 ,
we have

x(r , X) = <x(4(X) + 6(X ,r) (62)

for x = Nz ,
and where 6 satisfies

ul Gauxp((rix) / d(X ,r) 4
.

(63)

box will lattice

constant lim



R

T5
The funcion I dbegs

2(H) = 4 Y (EG(D) +g + 0(1) .
(64)

Remark 7 : · It should be noted that F(8) -1 .

--

This needs to be compared to the order ht ,
on whit

In GL energy appears.

.f We have

(((() (2d(rX) ~ h.(65)
RxQu

The second theorem is a statement about the dependence

of the BCS critical temperature on the external fields.

Theorem 3 : Let Assumptions 1 and I hold .

Then
-

there are constants (20 andho <o sit- for all
Ochsha the following holds :



es(a) Zeh O <ToCTc. A
To T = T(1 - 4(D + Ch2) (66)

wille

D = ifspeEmag(a)(10(i0+A)+ 1n() ,
(67)

then we have

FBS(4 ,D) < 0
.

(68)

(b) I
TTn(1 - Y(Da- (46) (65)

teen we have

=(r) - F(8) 0
,

(70)

unles T = Po
.

Remartn 8 : of The interpretation ofhe above koven
-

is that the critical temperature of the full model satisfies



i
Ta(k) = Tc(1-Dc4 + o(l)

.

(71)
15

The coefficient Dc is determined by linearized 6L Merry .
Note however

,
that we do not know wheller here exists

a unique critical temperature .

In principle,

superconductivity could be present at a certain

temperature ,
vanish if the temperature is created,

and reappear if it is further increated.

·f We expect he assumptionO <ToST
,
whil also

appeas
in [FHL2015]

,
to be only of technical nature.

The coefficients 10
,
1

,
Xe and 13 read

· 1= 8221Nx(n)(8)))+Pg2(e)
(72)

31 = 482/N(d)8) (73)

· In = Sn at (74)
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↳ S12" (7st

T3

wille

g- (x) =
(1)

- Ex <xM)
(76)

x

and

get= (77)

In the remaining part of these notes we will discuss

the proof ofTheore 2 .

We will first consider the

Case A =0 and then comment on the case AtO.

We start our discussion with the upper bound .



1
-EUppeandforthe BCs energy to

To
prove

the upper bound we need to find a

trial state
,
whose free energy can be bounded

from above by the rh .
s

. of (60) .

The Euler-Lagrange equation (also called Bogolubou-

deGenes equation) of the BCs functional reads

1

·
t = (-a) ,

ad=-
Ha (
e + 1

with k = Fi0+A)+ W -M. Her A is defined via

itsiitegral Kernel by

A(x ,y) = - 2V(x-y)x(x,y) ,

a = [N]n

Coriginal coordinates)

x(r , x) = - 2V(t)2(r ,X) . (79)

(abuse of notation ,
relative and center of mans
coordinates)



E
-

We want to show that I behaves to leading order 10

as <x(r) #(X) ,
where I minimizes the 6L functional ,

and hence we choose

* =
+ 1

will x(rX) = - 2U(t) <x(n4(X)
note that / (Po)

as trial state
. SIFNdx-4

Qu " This is a small parameter !

To compute the free energy of T it is convenient

to write

F((x) - F((d) (B1)

Ho(Taito) + Paul (V(r)(x(rX) ( d(rX)
,

where compare
to (32) QuXT3

Ho((
,
P) = E [Y(z) - 9(8)- (n)(Px-Po)]

,
(2)

Q

weak local trace

Eo[A]E Na[PAP+ (1-P)A(1-PT) with 4 = (88)
,
(83)

and ((x) = xbu(x) + (1x)(( - x) .



3

Ultig -
10

B = E - Edank (FHA) ,

lu(() = - πHx - lu(2cosh(E Ha) (4)

we can rewrite (1) as (this is not entirely trivial ,

please cheed if you are interested or have a look at ou paper

F(r) = - q(lu(cash(tHa)) - la (cash (H0)]
1
-5/
-(to)

We want + (f((2(au) (4x ,<x)
((m)to expand

His first in S V(d)(c(nX) - 2x(df(X)(2d(X ,v). (85)
powers of #

t

and Steen Tnk .

Qux R3

&al : Compute F(tx) with a resolvent expansion .

Tools: if Using cosh (EX) = (1 + (E
will the Matsubara frequencies

Wa = π(2n+1) T
,
we (86)



one can show that Yo

Fan[lu(cosk(- Ha)) - lu(cask(eH0)] (87)

- - Satanit to He toe
#

The advantage of this
all resolvents are

holds
. evaluated at

approach in comparison
to that in -HSS 2012] is kat imaginary

= Ultig [
Values and

tank(H) =-Ha morefor o
and (84) we see that

T ! e contribute

in 4
.

4 =[]= Ha]
.

(BS)

. Resolvent identity

· * (a-Ho) (d)

Chole thatthis identity can be iterated to set up an

expansion .)
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of We express all terms in the resolvent expansion
10

in terms oftheir integral Kernels .

We
eg .

have

- -
1

(x-y) = - ep)
- (x)(61)

-A -n
+ iw 4π(x)

- Civ +ul
M
I ↑

W +O standard branchof
square roof

and the resolvent identity reads (A= 0)

1
- (xy) = (x -y) (82)
-A-M +W +iw -A -u+in

+ S nn(x - z)W(z)
= (ziz)dz

.

-A -n +
W + im

R3

In case A = 0 His formalism and the approac
to expand in the operator formalism (hote that

different sets of norms are natural in the two

formalism) are basically equivalent . However ,



G

I an external field is added
to the problem ,

the -
10

approac viantegral Kernels
is more useful . Let us

briefly discuss two cases :

(a) Constant magnetic field B

Let A(x) = Beaux and demote hi = fix +A)

as well as EM

g(x) = ho(x , 0)
.

(93)

Then for all Bx0 and z+ KI [B , 8) ; x iyeM we

Ehp(x ,y) = ei . (x-y) g(x-y)
.

(84)

Y ↑ Gauge invariant andnot gange
invariant Contains all the

information we verynicely behaved
need to extract to

obtain the GL energy
in perturbation terry

(phase approximation)
.

for OcB1 .

It B

This factor is not very helpful
that his term

gange livariant .

depends only on X-y !



7

(b) General magnetic field -
10

Let A(x) = Bezex + Aper(x) and define

G(x ,y) = Fi+A) +-
(x ,y) ; xyeM . (85)

We also define the non-integrable phase factor ,
also called the Wilson line , by

P(x ,y) = - f A)tx+ G-Hy) . (x-y)d. (36)

It is convenient to conte

↓ gange
invariant

G(x ,y) = eiP(x ,y)
fz(x ,y) .

(97)

Important : The function &z and its gradient can

boke be bounded by functions that only depend
on x-y .

These functions then satisfy similar
bounds than It in (84). This fact is crucial for
ow analysis.



&
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The above facts and the way we do our analysis
10

is an extension of te please approximation method,

whil has been pioneered in the framework of
linearized BCS theory and a constant magnetic
field in [FHL 2015] ,

to ow nonlinear setzing will

periodic magnetic fields. The phase approximation
method is a well-known tool in the physics
literature

,
see e .g.

[Htelwert 1866] E . Helfand ,
N

.

R
.

Werthamer
,

Temperature and Purity dependence of the Super-

conductingantrical field ,
Has .

I. Phys .
Rev

.

147 (1966) , 288- 284 ,

and has also been used in the mathematical

literature to study spectral properties of Schrodinger
operators involving a magnetic field , for instance
-

Ur

[CorNen1998] H
.

D
.
Coreau

, 6 .
Neucin

,
On eigen-

funcion decay for two-dimentional Schrodinger



g

operators ,
Commun . Math. Phys . 182 (1SSP)

,
671-685
-

10

and

[New 2002] 6. . Neucin ,
On asymptotic perturbation theory

for quantum melanies : almost invariant subspaces

and gange invariant magnetic perturbation theory,
J.
Mall . Phys. 43 (2002) ,

1273-1288
.

Ow approach in [DHM2023a] and [DHM2023b]

should be compared to the hial state analysis in

[FHSS2012] and [FHSS 2016] , where a semiclassical

expansion is used. Also , the analysis in these

two references uses a Cauchyiitegral representation

f t function
z - la (1+ exp[z)

, white our approach
is based on a product expansion of the hyperbolic
cotine in terms of Matsubara frequencies .

In this

way we obtain better decay properies in the Sub-

sequent resolvent expansion , whil ,
in or opinion ,



10
-

simplifies the analysis contiderably .

10



1
-&ebound for the BCs freenergyor &

The proof of the lower bound for the BCS free energy

is carried out in two main steps . Step 1 contists of

proving the following theorem ,
whil guarantees a

decomposition of the Cooper pait wave funcht of

any BCs state ,
whose free energy differs from that

I the normal state only by a constant times ht.

It should be compared to that in Theorem 2. The

precise statement
reads

Theorem4 : Let Assumptions 1 and I hold. For

given Do ,
D- 0 ,

Here exists hot o sit. for all Ockcho
Whe following holds : if Tho obege T-Tc-Doh

and of H is an admissable BCS state with

5() - (10) = Diht
,

(88)

then here are PfHmag(Qu) and 3 tH(QuxM?) sit .

y

symmetric functions



2

T
2(r ,x) = 2x(s)2(X) + 3(r ,x) , (SS)

where

·Schollfl timglan)a (loo

This tells us that
the #cor of

S/F(ldx # has the same scaling
in h

bound) Han the
n 4 (as an Upper

+ Tal (8x4,(an) minimizer 9 t
62 funcht

(it is a macoscopic object) .

and

115 14(auxR3) = ChY(IFIImg/an)" D1) . Gol
1
I

Smaller in H↓ Man leading order given by
<xf

.

This worm is
= k[3*5] + Wa[fi0+A)(3*3 + 3*3)f 10+A)] C not scaled with

-

↳ as the one above.

The proof of Theorem 3 in the case of a constant magnetic
field is the main novelty in [DHM2023a]. In [DHM20233]



3
ideas from [FHSS 2012] are used to reduce the problem B

-

with general external fields to that treated in [DHM 2023 a] .

Afterward , one shows that for all ,
whose Cooper

pai have funcion <= Mic Salisfies (SS) it is possible

t replace E(r) by the free energy of a trial state

↑
x
wil x(x,y) = 2V(x-y) [x(x-y) #) (**) ,

where #

isUn funchten in (99) . For his step we adapted in

[DH20239/6] We tedniques from [FHSS 2012] .

Let us mention also here some interesting technical
rigredients .

= Relative entropyiequality with an additional
term : the followingmisquality has been proved
in [Lemma 1 ,

FHSS 2012].

For
any 0 <P<1 and

any to ofthe form
Po = [1+ exp(H)] commuting will D = (8)

,

we have



4

HolriFolFrau[u((8-1)) + Kauf(n(1-4) -Po (1-Pol)].
(loz)

Also this more precisemiequality for the relative entropy
can be proved with Klein's inequality after one has established
the relatedinequality for numbers.

. Decomposition of the Cooper pair wave function
with entanglement : in the

proof of Theorem 4

we need to quantify the coercivity of the term↓

(that is , we want to know

which horus related to 2 , f and 3 (see (3)
are dominated by this term)

(*)(3) = ) ) [EKix + Ek
*

+y
+ V(x-y)] < (x2) d(x,y)

.

(103)
i

R3xQu
This is K = sa acting on the x-

coordinate f ((x ,y) .

We highlight here again that 2(x,y) = <(7,X) holds .



5

↳
Uting this symmetry and Fowier analysis ,

he following
nequality has been proved in [Lemma 3

, FHSS2012] :

) (0) <, coust . 4 f ((x+ Vy(a(x ,y)Pd(x,y)
.

(104)

↑ R3xQU

This would be easy to prove if Ki were

replaced by -A .

In case of a constant magnetic field we write the

Cooper pair wave funcion as

a(r . X) = 2x(r)cos(E .T(x) #(X) + 30/riX)
.

Cost

d ↓

Note that the relative- = - iDX + A2B(X)
and the center-of-mass
wave funcion are entangled .

The functions I and3o are defined via he operator

(Ax)(x) = Saa(r)cos(E -Tx) < (riX) dr
,

Got



whose adjoint is given by
%

(**7)(r ,X) = <x(r) cos (E .T(x) F(X)
.

(107)

We have

& = (***)"Ax and 30 = <- ***. (108)

This decomposition of the Cooper pain wave funcion has
been reproduced in [FHL2015] to study he Birman-

Schwinger operator related to the operator

AltSiog++Ba)2(2) - V(x-yse
-

To

-

MT
,B

-
Hessian of Le BCs functional at the normal
state inIe non-translation invariant case.

It can be shown that MTB-U has zero as eigenvalue



7/
If one is in an eigenvale of the Birman-Schwinger

operator U*[T ,
BV" (LTB = Mi , Mis op .

has been studied

in [FHL2015]). We prove one direction : assume that

(MiB - V) x = 0 d

holds
.

When we multiply the equation with U,
we

find
WRL = V LTBV" VR C

I
(11)

- -

4 &

which proves
the claim

.

It also shows the relation

& =
V between the two eigenfundions. This , in

particular suggests that similar decompositions of
the relevant functions can be used to study spectral

properties of Mi-V and ULTBU. However
,
that

the same decomposition can also be used to study

He quadratic form in (103) is less obvious.

In one of ther main steps in the proof ofTheorem 4



we showe

%
/

(3) [S2F(X) fix, A2D(X))" F(x)dx
+ 150 11

(R +qn)) (112)

- coust
.

42 (If -4) ,

which replaces (104) in our setting .

This ends ow discussion

of the lower
bound for the BCS free energy.
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1
-Topicto cover in the lecture 3

Zechee 1 (Mention that questions are welcome any time)

* Lecture moten : https : /user .

matt
.

Uth
. ch/deuchert

See also C
.
Hainzl

,
R

. Seiniger , The BCS functional of
superconductivity and its mathematical propertion I
I. Mat . Phys .

57
,
021101 (2016)

if Introduction without writing formulas

. Write down Hamiltonian
,
introduce Gibs state and

Her matematical definition of superconductility

· Osi-fee States via Wick terran
, explain Wick

theore only with 2-palm

J Restrict to translation and S4(2) rivariant quai-free

states
, say we drop all interaction terms that depend

in 5 ,
and write down the translati invariant

BCS functional .

if Argue What x +0 in the minimizer simplies
Superconductivity.



2
-

. Introduce the normal state 3

. State Theorem 1

Zecte 2

.f State Klein's inequality and Lemma I

7 Prove one direction in Theorem 1 with Lemma 2 .

Hinqueness of the normal state in the case V= O

follows from this argument ,
too !

.f Remarks on Th 1 .

if Introduce BCS functional in the presence of periodic
external fields

Lecture 3

of Introduce 6L functional

of Relation between BCS and 67 theory



=* Literature in words . 3

* Write down and discuss Assumptions ,

Theorem 2 and Theorem 3

·f Construction of the trial state

I Set up expansion for BCS free energy

Lecture 4

of Discuss matematical tools for the resolvent expansion
if Discuss briefly the literature

is Strategy for proof of lower bound and Theorem 4
If llection very briefly the tinproved relative entropy

inequality
7 Discuss coravity and the decomposition of the
Coope pair wave function with entanglement .


